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Abstract

Are belief dynamics or risks and risk attitudes more important for asset pricing? Al-
lowing both, I use survey data combined with subjective-belief versions of stochastic
discount factor (SDF) volatility bounds to shed new light on this classic question. I
estimate lower bounds for the volatility of the SDF attributable to (i) risks relevant for
investor marginal utility, versus (ii) subjective belief dynamics. The estimates sug-
gest that risks, particularly long-term risks, make up at least 50% of SDF volatility,
with many estimates much higher than 50%. An example extrapolation model with
a modest direct contribution of beliefs to SDF volatility (about 25%) can account for
my estimates. This example also highlights the potential for a novel mechanism, sub-
jective risk, which is the indirect impact beliefs have on asset prices through induced
marginal utility volatility.
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1 Introduction

Are beliefs or risks more important for asset pricing? Despite a long line of research,
answers remain elusive. A common approach is to write down a fully-specified model
(behavioral or rational) and test it against a set of important asset market data. But the
results from such models can often depend on assumptions that are hard to verify or
measure. For example, while a subjective belief model may account for many properties
of asset prices, its success hinges not only on its belief dynamics but also on auxiliary
assumptions on preferences, frictions, and heterogeneity. Similarly, many prominent
rational asset-pricing models have been characterized as sensitive to “dark matter” that
is difficult to measure with statistical accuracy (Chen, Dou and Kogan, 2024a).

This paper, instead, takes a “model-free” approach similar to Hansen and Jagan-
nathan (1991) and Alvarez and Jermann (2005) but in a context where subjective beliefs
may differ from rational expectations. Rather than specifying a particular model, I char-
acterize some properties any asset-pricing model must have and in the process provide
general estimates for the contributions of beliefs versus risks.

More specifically, I estimate the fraction of stochastic discount factor (SDF) volatility
that originates from risks versus beliefs. Since SDFs summarize all asset prices, such
model-free bounds and estimates should be useful to quantitative researchers seeking
to align their models with data. Furthermore, the analysis provides a clear way to map
financial survey data to key aspects of SDFs and other objects. Finally, approaching the
problem at some level of generality can help unify disparate results from various specific
markets. That is, rather than ask how much beliefs matter for, say, stock market volatility,
this paper asks how much beliefs matter for asset pricing in general.

The basic problem. Encoded in asset prices is the key fact that the SDF must be highly
volatile (Hansen and Jagannathan, 1991). But what is not known is whether this volatility
stems primarily from beliefs or risk. Ultimately, this identification problem is related to
the fact that asset prices only encode the product of beliefs and risks and do not identify
them separately (Harrison and Kreps, 1979). An Arrow-Debreu security for state x will
have price

Price(x) = Probability(x)× Beliefs(x)×MU(x)︸ ︷︷ ︸
SDF(x)

,

where Probability(x) is the objective state probability, Beliefs(x) denotes investors’ belief
distortion (ratio of subjective-to-objective probability), and MU(x) is the representative
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investor’s marginal utility in state x. It is this latter piece, MU(x), that captures risk
and risk attitudes. With enough data, perhaps the econometrician can figure out the
state frequency Probability(x). But beyond that, asset prices only identify the product
Beliefs(x)×MU(x). To attribute SDF volatility to either component, asset prices do not
suffice, and that is where financial surveys enter.1

The literature now understands further that most of the (objective) SDF volatility
comes from permanent shocks (Alvarez and Jermann, 2005), i.e., from the first term in a
decomposition like

SDF = Permanent× Transitory. (1)

Does this additional knowledge help us separate Beliefs(x) from MU(x)? Unfortunately
not. The entirety of Beliefs(x) enters into the permanent component, so it cannot be
distinguished from “long-term risks” to MU(x) (Borovička et al., 2016). I show how,
armed with survey data, one can partly separate long-term risks from beliefs.

Solution and results. It is relatively obvious that surveys provide some information about
beliefs, but precisely what information and how should it be used? The core idea here,
different from the literature, is that survey data on expected returns are connected to
risk by no-arbitrage. If investors are optimistic about an asset, they must perceive it to
be risky in some way. This ties the survey responses to investor marginal utility (MU),
which captures risk sensitivities and is distinct from beliefs. On the other hand, realized
returns contain information about the volatility of the SDF (Hansen and Jagannathan,
1991), which is affected by both risks and beliefs. By comparing survey expected returns
to objective expected returns, one can thus learn how much of SDF volatility comes
from MU volatility, i.e., how much stems from risk. I formalize this idea and explore
variations in the paper.

My main empirical evidence, building on the logic above, suggests that at least half
of total SDF volatility stems from risk. The key reason is the simple observation that sub-
jective equity premia are large, almost as large as their true unconditional counterparts.
Relatedly, Adam et al. (2021) show that survey-respondents do not report risk-neutral
expectations (meaning their subjective expected returns are significantly above riskless
rates). According to my framework, if investors did report risk-neutral expectations,

1The analysis of financial surveys and their implications has been a fast-growing area of research (Chun,
2011; Amromin and Sharpe, 2014; Greenwood and Shleifer, 2014; Piazzesi et al., 2015; Crump et al., 2018;
Xu, 2019; Wang, 2021; d’Arienzo, 2020; De La O and Myers, 2021; Adam et al., 2021; Nagel and Xu, 2023).
I build, in particular, on the surveys used by Nagel and Xu (2023).
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then 100% of SDF volatility would be attributable to beliefs and none to risk. Like Adam
et al. (2021), I strongly reject this hypothesis, but I take the idea a step further and use
the level of subjective expected excess returns to quantify the fraction of SDF volatility
due to risk.

What type of risk matters? I provide some direction by estimating a subjective version
of the Alvarez and Jermann (2005) bounds. In particular, a decomposition like (1) exists
for investor’s MU as well as the SDF. I estimate that the permanent component of MU is
responsible for at least 90% of total MU volatility. This cannot be attributed to beliefs, at
least not directly, and it says that investors perceive substantial long-term risks.

Finally, I analyze several example models to illustrate and interpret the results. I
consider a long-run risks model (Bansal and Yaron, 2004) and a growth extrapolation
model that features “perceived long-run risks” (Collin-Dufresne et al., 2017; Nagel and
Xu, 2022). The latter is an interesting case study because both beliefs and risks are oper-
ational: investors fear a hypothetical long-run risk, even though they are wrong. Should
SDF volatility stemming from this interaction between beliefs and preferences be clas-
sified as “belief-driven” or “risk-driven”? While not obvious a priori, my framework
provides a clear answer. The calibrated growth extrapolation model is surprisingly con-
sistent with my estimated volatility bounds, revealing as a by-product that beliefs can
account for about 25% of SDF volatility. I also investigate what happens when the di-
rect role for beliefs is magnified, by introducing sentiment shocks. In that case, the
transitory component of the SDF is given too large a role, standing against the existing
evidence. Thus, within this class of models, the direct role of beliefs cannot be too large.
Instead, if beliefs matter significantly, they must matter indirectly by creating marginal
utility volatility, i.e., perceived risks. Isolating this more nuanced role for subjective beliefs
provides a potential way forward for the behavioral finance literature.

Related literature and other approaches. My approach relies on volatility bounds, simi-
lar to Alvarez and Jermann (2005) and Bakshi and Chabi-Yo (2012). While this approach
is relatively model-free, it can only provide partial information about SDFs, risks, and
beliefs. If one wants more information, one needs to make more assumptions. For
instance, assuming rational expectations and putting structure on objective dynamics
allows the econometrician to extract (some aspects of) investor marginal utility.2 An
alternative is to put some structure on marginal utility (e.g., assumptions about pref-
erences and risks) and treat beliefs as a “residual” needed to match asset market data

2Approaches in this vein include Bansal and Viswanathan (1993); Hansen and Jagannathan (1997);
Jackwerth (2000); Ait-Sahalia and Lo (2000); Rosenberg and Engle (2002); Ghosh, Julliard and Taylor (2017);
Beason and Schreindorfer (2022); Chen, Pelger and Zhu (2024b).
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(Ghosh and Roussellet, 2023; Chen, Hansen and Hansen, 2024c).
While these approaches are useful, my goal is to see how much can be said without

these additional assumptions. I do not take a stand on investor preferences. I make no
assumptions about the underlying objective dynamics and the types of risks. Is there
long-run growth risk; is uncertainty time-varying; does the economic state “jump” or
evolve continuously? I also avoid some practical challenges like the high dimensionality
and nonlinear mapping from states to the SDF dynamics. As long as we trust the survey
data to proxy for investor beliefs, my procedure imposes minimal additional assump-
tions. The cost is that we will only be able to learn certain bounds on the volatilities of
SDFs and marginal utilities, rather than their actual values.

A separate stream of behavioral finance literature is concerned with how belief dy-
namics may help resolve “excess volatility” puzzles, by combining present-value rela-
tions with survey data (Chen et al., 2013; De La O and Myers, 2021, 2024; De La O et
al., 2023; Bordalo et al., 2019, 2024a,b). This paper differs by focusing more on excess
returns rather than excess volatility, and examining the SDF rather than a particular as-
set’s present-value relation.3 However, there is a connection between my work and this
literature. For example, if the market excess return is an important factor for the SDF,
then its volatility is a key contributor to SDF volatility. In that case, subjective beliefs’
role in SDF volatility is tied to their importance for stock market volatility and vice versa.

2 Theory: Subjective belief bounds

2.1 General environment

Let P denote the objective probability measure and E the associated expectation op-
erator. I allow the marginal investor to possess subjective beliefs and use a distorted
probability and expectation, which we will denote by P̃ and Ẽ. To maintain a minimal
amount of consistency for beliefs, I assume that P and P̃ agree on null sets, so that their

3While a decomposition into “future cash flows” and “future returns” is interesting in its own right, it
is the wrong framework to evaluate whether return premia are due to behavioral biases or risk. For this
question, it is better to work directly with returns and return expectations. For instance, it is not clear
whether or not subjective expectations about future cash flows, even if they are biased, capture risk premia
or not. Nor is it necessary for valuation ratios or expected returns to be time-varying; even if those objects
are constant, one can ask what fraction of constant premia arise from beliefs versus risk.
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discrepancy can be modeled via the positive martingale Bt (likelihood ratio):4

Bt =
(dP̃

dP

)
t

(2)

In other words, the subjective probability can be defined by P̃(E) := E[ Bt
B0

1E ] for any
event E that resides in the time-t information set.

I will assume absence of arbitrage opportunities. (Because P and P̃ are equivalent
measures, there is no ambiguity to simply saying “arbitrage” without reference to any
probability.) In that case, let (St)t≥0 denote the stochastic discount factor (SDF) process
that prices all assets, i.e., S is positive and for any gross return Rt+1 we have

1 = Et

[St+1

St
Rt+1

]
, (3)

where Et denotes the conditional expectation operator. At the same time, there is a
subjective SDF S̃t that prices assets under investor beliefs, i.e., investors’ Euler equation:

1 = Ẽt

[ S̃t+1

S̃t
Rt+1

]
. (4)

The interpretation of equation (4) is that S̃t represents the investors’ marginal utility of
wealth—we will often refer to S̃ as marginal utility, in contrast to the objective SDF S.
There are actually two key economic assumptions embedded in (4). First, I am assuming
that some investors are marginal in all the relevant markets considered in this paper.
Second, because I will be identifying the survey results with the subjective probability
P̃, I am essentially assuming that these marginal investors hold beliefs identical to those
in the surveys. A special case would be if the survey-respondents were, themselves,
marginal investors.

Without loss of any generality for my points, impose the normalization S0 = S̃0 =

B0 = 1. Then, comparing (3)-(4) and using (2), we have

St = S̃tBt. (5)

The SDF is the product of investor marginal utility and investor beliefs. Roughly speak-

4This assumption on subjective beliefs is quite general and captures almost all belief-based models in
the behavioral finance literature. However, some models are ruled out, such as those where the law of
iterated expectations (LIE) is violated (e.g., Fuster et al., 2010). Other models, like the fading memory
model of Nagel and Xu (2022), may violate LIE when interpreted literally but can be written in an ob-
servationally equivalent form where LIE holds. Therefore, that model would be included in the general
setup here.
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ing, the idea of this paper is to use survey data to learn about the volatilities of S and S̃
separately, thereby providing information about the belief distortion B.

In addition to the volatilities of S and S̃, information is contained in the volatilities
of their permanent components. Under fairly general conditions, which I assume, the
SDF obeys a unique factorization into permanent and transitory components (Alvarez and
Jermann, 2005; Hansen and Scheinkman, 2009; Qin and Linetsky, 2016, 2017):

St = GtHt, (6)

where G is trend-stationary (transitory component) and H is a P-martingale (permanent
component). An analogous factorization holds for investors’ marginal utility:

S̃t = G̃tH̃t, (7)

where G̃ is trend-stationary and H̃ is a P̃-martingale.
Luckily, equation (5) then implies that

Ht = H̃tBt (8)

and hence

Gt = G̃t. (9)

To see this, notice that E0[Ht] = H0E0[
Bt
B0

H̃t
H̃0
] = H0Ẽ0[

H̃t
H̃0
] = H0, so that H and H̃ are

indeed P- and P̃-martingales, respectively, when they satisfy (8). The interpretations of
H̃ and H are different: H̃ captures the impact of permanent risks on investor marginal
utility, while H = H̃B captures the joint impact of permanent risks and belief distortions.
The permanent components H and H̃ will be given special attention, in light of evidence
from Alvarez and Jermann (2005) and Bakshi and Chabi-Yo (2012) that G carries a rela-
tively minor contribution to overall SDF volatility. What is not yet agreed is whether the
prominence of H is due to H̃ or B.

This entire theoretical setup has referenced a single investor belief and marginal util-
ity, when in fact there is clearly heterogeneity in the real world and in the surveys that
I will use empirically. Appendix B shows that the presence of heterogeneity can be
accommodated in this setup. In particular, the common practice of averaging across
survey respondents (the so-called consensus forecast) allows us to interpret B, S̃, and
H̃ as the average belief, the belief-weighted average marginal utility, and its permanent
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component.
Finally, I will make frequent reference to a few special returns in this theory section.

First, I denote the one-period risk-free rate R f
t . Since this is conditionally risk-free, we

have from (3)-(4) that R f
t = (Et

St+1
St

)−1 = (Ẽt
S̃t+1

S̃t
)−1. I will assume, as in most of the

asset-pricing literature, that the risk-free rate is traded.
Second, I will make use of the long bond return R∞

t+1, defined as the one-period holding
return on an arbitrarily long-maturity discount bond:

R∞
t+1 := lim

T→∞

Et+1[
ST

St+1
]

Et[
ST
St
]

.

The long bond was originally studied in Kazemi (1992) (see also Martin and Ross, 2013,
and Ross, 2015). In particular, it turns out that R∞

t+1 identifies the transitory component
of the SDF:

R∞
t+1 = lim

T→∞

Et+1[
ST

St+1
]

Et[
ST
St
]

= lim
T→∞

Gt

Gt+1

Et+1[
HT

Ht+1
GT]

Et[
HT
Ht

GT]
=

Gt

Gt+1
, (10)

because the ratio of conditional expectations converges to 1 under mild conditions. Of
course, an infinite-maturity discount bond does not exist, but we can proxy this with the
longest-maturity bonds available.

Third, I will occasionally consider the growth-optimal return R∗t+1. This is the portfolio
that maximizes the growth rate of wealth, i.e., it solves maxR Et[log(R)] subject to the
pricing constraint (3). The solution is R∗t+1 = St

St+1
(Roll, 1973; Bansal and Lehmann,

1997). Thus, there is a well-known equivalence between extracting the SDF from the
data and finding the growth-optimal portfolio. Because of the difficulties in identifying
R∗, I will not rely on any one particular approach but rather present results from several.
Note that there is also a perceived growth-optimal return R̃∗t+1, which the subjective version
and is defined analogously by arg maxR Ẽt[log(R)]. I will also refer to R̃∗t+1 at times.

2.2 Volatility bounds

I consider the following entropy measures of volatility. For any positive random variable
X, define

Lt(X) := log
(
Et[X]

)
−Et

[
log(X)

]
(11)

L̃t(X) := log
(
Ẽt[X]

)
− Ẽt

[
log(X)

]
. (12)
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Entropy measures played an important role in Alvarez and Jermann (2005), but have
also been used in various other asset-pricing contexts (Backus et al., 2011, 2014; Martin,
2017) By Jensen’s inequality, Lt(X) ≥ 0 and L̃t(X) ≥ 0. In the special case that Xt+1 is
conditionally lognormal, Lt(Xt+1) =

1
2Vart[log Xt+1], but in other cases entropy conveys

more information about the left tail of a distribution, relative to variance.
Whereas Lt(X) represents objective volatility, L̃t(X) represents subjective, or per-

ceived, volatility. To make interpretable comparisons, I will sometimes invoke the fol-
lowing condition relating objective and subjective entropies. This condition allows us to
bound time-series averages of conditional entropies.

Definition 1. X satisfies the unconditional entropy inequality (UEI) if L(Xt+1) ≥ E[L̃t(Xt+1)].

When does a variable X to satisfy UEI? To understand this condition, first note the
following property, analogous to the “law of total variance” but for entropies:

L(X) = E[Lt(X)] + L(Et[X])

Total entropy is the average of conditional entropy plus the entropy of the conditional
mean. With this law in mind, and noting that L(Et[X]) ≥ 0, one obvious situation
where UEI holds is if Lt(X) ≥ L̃t(X), meaning that the subjective measure understates
risk to X. This case is relevant because, empirically, survey measures of risk tend to be
lower than actual risk (see Figure C.7). This case is also theoretically appealing, because
when the underlying joint dynamics are conditionally lognormal over sufficiently short
time periods (i.e., no jumps), then Lt(X) = L̃t(X) and so UEI holds.5 Most models in
macro-finance have this property. A second situation where UEI is likely appropriate is
if L(Et[X]) is large, meaning that X has significant predictability. This case is relevant
because actual returns do tend to have non-trivial predictability.

Lemma 1. The following conditional volatility bounds hold for all returns Rt+1:

Lt

(St+1

St

)
≥ Et

[
log Rt+1

]
− log R f

t (13)

L̃t

( S̃t+1

S̃t

)
≥ Ẽt

[
log Rt+1

]
− log R f

t (14)

5One easy way to see this is that Lt(Xt+1) = 1
2 Vart[log Xt+1] and L̃t(Xt+1) = 1

2 Ṽart[log Xt+1] under
conditional lognormality. Then, combine this result with the fact that belief distortions about variance
necessarily become negligible as the time interval shrinks. See Appendix A.6 for a formal proof.
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and

Lt

(Ht+1

Ht

)
≥ Et

[
log Rt+1 − log R∞

t+1
]

(15)

L̃t

( H̃t+1

H̃t

)
≥ Ẽt

[
log Rt+1 − log R∞

t+1
]

(16)

The proofs of all theoretical results are contained in Appendix A.
The SDF bound (13) is exactly the “growth-optimal bound” uncovered by Bansal

and Lehmann (1997). Expected log returns, which incorporate a risk adjustment due
to the concavity of log, bound the entropy of the SDF from below. Viewed this way,
the SDF bound is also reminiscent of how risk-adjusted returns bound SDF volatility
in Hansen and Jagannathan (1991). What is new is the marginal utility bound (14).
Whereas the first object Lt(∆St+1) measures the true conditional volatility of S = BS̃,
which jointly captures contributions from beliefs (B) and risks (S̃), the second object
L̃t(∆S̃t+1) isolates the role of risks. If conditional log-normality holds and time-periods
are short, then L̃t(∆S̃t+1) ≈ Lt(∆S̃t+1), so that the perceived marginal utility volatility
equals true marginal utility volatility. In that case, comparing the volatilities from (13)-
(14) provides information about the importance of the belief distortion B, which is the
wedge between S and S̃. This is the basic idea behind the entire paper.

A similar discussion holds for the permanent components H and H̃. Whereas (15)
measures the total volatility coming from beliefs (B) and long-run risks (H̃) together, the
subjective bound (16) measures the perceived conditional volatility of the long-run risks
(H̃) alone. The gap between them informs us about how important beliefs alone are to
asset pricing.

At first glance, it is not obvious why Ẽt[log Rt+1]− log R f
t and Ẽt[log Rt+1 − log R∞

t ]

are informative about risks, rather than beliefs. Is it not possible that investors are just
optimistic about an asset return R, which has nothing to do with their marginal utility S̃?
No-arbitrage rules this out: if investors are optimistic about an asset, they must perceive
it to have some risk. Since marginal utility S̃ summarizes investors’ risk attitudes, this
risk necessarily manifests in their marginal utility volatility.

In light of this discussion, let us pause to build intuition by reconsidering a question
asked in Adam et al. (2021): do survey-respondents report risk-neutral expectations, and
if so what does that imply? If Ẽt[Rt+1] = R f

t , then Ẽt[log Rt+1]− log R f
t ≤ 0. If this holds

for all assets R, then the lower bound in (14) would be tight for Rt+1 = R f
t , meaning that

L̃t(∆S̃t+1) = 0. In this hypothetical world, we would conclude that none of SDF volatility
comes from risk, and all SDF volatility emanates from beliefs. Essentially, this is just a
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restatement of the fact that, if they survey-takers are marginal investors, then we would
conclude from the surveys that investors are risk-neutral, i.e., ∆S̃t+1 = 1/R f

t . Of course,
Adam et al. (2021) reject this hypothesis empirically, meaning that at least some SDF
volatility must come from risk. One can view this paper as taking their idea one step
further and quantifying how much of SDF volatility comes from risk.

One additional benefit of working under subjective beliefs is the direct availability of
conditional expectations. In particular, survey data on subjective expected returns con-
tain proxies for Ẽt[log Rt+1] and Ẽt[log R∞

t+1], which combined with Lemma 1 delivers
time series of bounds for L̃t(∆S̃t+1) and L̃t(∆H̃t+1). By contrast, it is often more difficult
to find a reasonable proxy for objective conditional expectations of returns (although I
will present a few candidates from the literature).

Building on the conditional results of Lemma 1, I also present unconditional bounds.
For the objective probability, this is straightforward. On the other hand, the subjective
bound does not generalize immediately to a useful unconditional version. Indeed, the
unconditional subjective expectation Ẽ is not directly observable; taking time-series aver-
ages of conditional subjective expectations Ẽt will not yield an estimate of Ẽ unless beliefs
are rational. We can make progress if we invoke UEI in Lemma 1.

Proposition 1. The following unconditional volatility bounds hold for all returns Rt+1:

L
(St+1

St
R f

t

)
≥ E

[
log Rt+1 − log R f

t
]

(17)

L
(Ht+1

Ht

)
≥ E

[
log Rt+1 − log R∞

t+1
]

(18)

Additionally, if UEI holds for H̃t+1
H̃t

and S̃t+1
S̃t

, then

L
( S̃t+1

S̃t
R f

t

)
≥ E

[
Ẽt
[

log Rt+1 − log R f
t
]]

(19)

L
( H̃t+1

H̃t

)
≥ E

[
Ẽt
[

log Rt+1 − log R∞
t+1
]]

(20)

Finally, while Lemma 1 and Proposition 1 hold in levels, we may want a ratio version
in order to lower-bound the fraction of long-run SDF volatility that is due to marginal
utility rather than beliefs. This approach requires more assumptions—namely the hy-
pothesis that a return is “closer” to the objective growth-optimal return than a subjec-
tive counterpart (which holds, for example, if the chosen return is actually the growth-
optimal return, but in other cases too). But the benefit is this approach permits a more
intuitive scale as a ratio of volatilities.
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Definition 2. For any return R, define its distance to growth-optimal δt(R) and distance to
perceived growth-optimal δ̃t(R), respectively, by

δt(R) := Et[log R∗t+1]−Et[log Rt+1]

δ̃t(R) := Ẽt[log R̃∗t+1]− Ẽt[log Rt+1].

Proposition 2. Suppose UEI holds for H̃t+1
H̃t

and S̃t+1
S̃t

. Let R and R̃ be any two returns such that,
on average, R is closer to growth-optimal than R̃ is to perceived growth-optimal, in the sense that
E[δt(R)] ≤ E[δ̃t(R̃)]. Then, the following volatility bounds hold:

L( S̃t+1
S̃t

R f
t )

L(St+1
St

R f
t )
≥ min

{
1,

E
[
Ẽt[log R̃t+1 − log R f

t ]
]

E[log Rt+1 − log R f
t ]

}
(21)

L( H̃t+1
H̃t

)

L(Ht+1
Ht

)
≥ min

{
1,

E
[
Ẽt[log R̃t+1 − log R∞

t+1]
]

E[log Rt+1 − log R∞
t+1]

}
(22)

The results so far allow me to infer how much risk matters for the SDF, but what type
of risk matters? I conclude this section with two auxiliary results, stated as corollaries,
that measure the size of the permanent components of the SDF and marginal utility—the
first one due to Alvarez and Jermann (2005), and the second one a novel subjective (and
conditional) version. Whereas the Alvarez and Jermann (2005) bound quantifies the per-
manent component H, the subjective version below quantifies the subjective permanent
component H̃, which is informative about how much risk investors perceive as coming
from permanent sources. I will also report empirical estimates for these bounds.

Corollary 1.

L
(Ht+1

Ht

)
L
(St+1

St

) ≥ min

{
1,

E
[

log Rt+1 − log R∞
t+1
]

E
[

log Rt+1 − log R f
t
]
+ L(1/R f

t )

}
(23)

for any return R such that E[log Rt+1 − log R f
t ] + L(1/R f

t ) > 0.

Corollary 2.

L̃t
( H̃t+1

H̃t

)
L̃t
( S̃t+1

S̃t

) ≥ min

{
1, max

{
0,

Ẽt
[

log Rt+1 − log R∞
t+1
]

Ẽt
[

log Rt+1
]
− log R f

t

}}
(24)

for any return R such that Ẽt log Rt+1 > log R f
t .

12



3 Estimating the bounds

In the results to follow, I use the following return notations. Let Rm denote the aggregate
stock market return. Given a positive number k, let yk and Rk denote the (continuously-
compounded) yield and holding return, respectively on a discount bond with maturity
k. For example, R10 denotes the return on a 10-year Treasury. The risk-free rate between
t and t + 1 will alternatively be written either as R1

t+1, following the notation for other
bonds, or as R f

t , following the convention from the theory section. I assume a period
length of one year, so the risk-free rate corresponds to the yield of a 1-year Treasury
security.

3.1 Data and variable construction

The key data comes from multiple sources, summarized in Table 1.

Frequency Sample Period

A. Stocks
Excess return Monthly 1926:12–2020:12
Nagel-Xu Quarterly 1972:06–1977:066 and 1987:03–2021:03
Livingston Semi-annually 1952:05–2021:05
CFO Quarterly 2000:08–2021:05

B. Treasuries
Par yield, 1-year Monthly 1953:04–2024:07
Par yield, 10-year Monthly 1953:04–2024:07
Par yield, 30-year Monthly 1961:06–2024:07
ZCB yield, 10-year Monthly 1971:08–2024:07
ZCB yield, 30-year Monthly 1985:11–2024:07
Return, 10-year Monthly 1962:06–2024:07
Return, 30-year Monthly 1962:06–2024:07
Return, index (> 10-year) Monthly 1954:04–2020:12
BCFF Monthly 2001:01–2018:06

Table 1: Samples from key data sources

For the realized returns and yields, the data sources are standard. Realized returns
on the aggregate value-weighted stock market are obtained from CRSP. I supplement
this with a few volatility measures: I construct realized variance from daily return series
obtained from Ken French’s website; I use the CBOE VIX obtained from OptionMetrics;
and I use the “SVIX” from Ian Martin’s website (Martin, 2017). Realized Treasury yields

6From 1972 to 1977, the data is annual only.
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and returns come from the St. Louis Fed (FRED), the Fed Board updates to Gürkaynak
et al. (2007) (GSW), and CRSP. When there is overlapping data on par yields, I use the
FRED yields as the first choice, followed by the GSW second, followed by the CRSP last.
For zero-coupon yields, GSW is the only source. Appendix C.1 displays these various
sources for comparison. For bond returns, CRSP is the only source. From the fixed-
term indexes file, I obtain return series corresponding to an approximately 10-year and
30-year bond, respectively. I also obtain returns on a bond index tracking bonds with
maturities above 10 years.

Survey-based US stock market expected returns come from Nagel and Xu (2023),
who compile three sources: (i) the individual investor expectations from Nagel and Xu
(2022), which agglomerate the UBS/Gallup survey, the Conference Board survey, and the
Michigan Survey of Consumers, plus a few smaller surveys; (ii) the Livingston Survey
from the Philadelphia Fed; and (iii) the Graham-Harvey CFO survey (Ben-David et al.,
2013). From these sources, Nagel and Xu (2023) construct proxies for annual expected
excess returns on the stock market (or S&P 500, depending on the source). See Nagel
and Xu (2023) for more details on this data.

I convert expected stock returns Ẽt[Rm
t+1] to expected log returns Ẽt[log Rm

t+1] via the
identity Ẽt[log Rt+1] = log Ẽt[Rt+1] − L̃t(Rt+1). While I do not have access to a mea-
sure of perceived entropy L̃t(Rt+1), the lognormal approximation implies L̃t(Rt+1) ≈
1
2Ṽart[log Rt+1]. Nagel and Xu (2023) construct a measure of Ṽart[log Rm

t+1] from the
elicited 10th and 90th percentile return forecasts in the CFO survey. To extend this sub-
jective variance measure to a longer history, I regress it on measures of uncertainty that
are available further back in time. First, I regress the subjective variance Ṽart[log Rm

t+1]

onto the contemporaneous squared VIX, its one-month lag, and its trailing-12-month
moving average. This regression generates the fitted value ŷt = 0.012 + 0.52VIX2

t +

0.005VIX2
t−1 + 0.071( 1

12 ∑11
j=0 VIX2

t−j), has an R-squared of 0.60, and its fit appears to
be roughly a slightly smoothed version of the CFO subjective variance estimate.7 I
then backfill fitted values for months that pre-date the VIX by using the Nagel and
Xu (2023) procedure of projecting VIX onto the news-implied volatility (NVIX) mea-
sure of Manela and Moreira (2017). Figure C.7 in Appendix C.3 displays the CFO’s

7The VIX is theoretically a reasonable regressor. Indeed, Result 3 of Martin (2017) shows that VIX2
t→T =

2
T−t L∗t (Rm

t→T), where L∗ is the risk-neutral entropy. To the extent that the risk-neutral and investors’
subjective entropies move together at the one-year horizon (as they would in a conditionally log-normal
model), the VIX is the ideal regressor. That said, the standard VIX is a one-month-ahead implied volatility,
while the independent variable Ṽart[log Rm

t+1] is a one-year ahead volatility. However, this seems to be of
minor importance: adding the one-year squared SVIX (Martin, 2017) to this regression produces a very
minor adjustment to the resulting fitted value of CFO perceived return volatility—in particular, for the
sample where SVIX is available, I find an R-squared of 0.778 from including it, versus 0.774 without it.
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reported subjective variance versus its fitted value from this procedure. Notice that it
is substantially below the VIX on average, consistent with the UEI condition (in par-
ticular, we argued that E[Lt(X)] ≥ E[L̃t(X)] is a sufficient condition for UEI; taking
variance as a good proxy for risk perception, our results suggest that this sufficient
condition holds). The result of this is a time series of fitted and backfilled subjective
variance estimates Ṽart[log Rm

t+1] that I use to construct expected log market returns as
Ẽt[log Rm

t+1] = log Ẽt[Rm
t+1] −

1
2Ṽart[log Rm

t+1]. The resulting expected excess log stock
returns are depicted in Figure 1.

Figure 1: Expected one-year log stock returns in excess of the one-year Treasury rate. Expected log returns
are obtained from expected arithmetic returns via a variance adjustment that is described in the text.

Treasury Bond expected returns are constructed from yield forecasts in the Blue Chip
Financial Forecasts (BCFF) survey. BCFF has consensus (i.e., averaged across respon-
dents) yield forecasts for Treasuries with maturities 6 months, 1 year, 2 years, 5 years, 10
years, and 30 years.8 I follow Kim and Orphanides (2012) in treating the BCFF forecasts
as approximately mid-quarter forecasts, and so I use a weighted-average of the 3-, 4-, and
5-quarter ahead forecasts, with weights depending on the survey calendar month, to get
a forecast at a one-year horizon. Since the BCFF surveys are taken nearer to the begin-

8From March 2002 through February 2006, there was no 30-year bond issued, so the survey records a
forecast of the 20-year yield. I account for this in all results with both the survey expected returns and
realized returns.
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ning of the month, I also shift the responses and align them with with previous-month
yields and asset prices, which are measured at month-end (this shift does not materi-
ally affect any result). I then interpolate these yields to obtain a full term structure by
linear interpolation for maturities up to 5 years and a fitted Nelson-Siegel model for
maturities beyond 5 years (with the Nelson-Siegel model fitted to expectations data on
maturities 2+ years). The result is a term structure of one-year-ahead expectations of the
par yield curve. I then bootstrap the approximate expected continuously compounded
zero-coupon yield curve (Ẽt[yk

t+1])
30
k=1 from this expected par yield curve.9 Appendix

C.2 contains additional documentation of the transformation from the raw data (sparse
par yield forecasts) to an interpolated par yield curve forecast to a bootstrapped zero-
coupon yield curve forecast. Finally, I construct one-year subjective expected log returns
via Ẽt[log Rk

t+1] = kyk
t − (k− 1)Ẽt[yk−1

t+1 ] at the k = 10-year and k = 30-year maturities.
As an extension, I also project the bond expectations back and forward in time by

regressing them on various yields and their lags.10 I regress Ẽty9
t+1 (resp., Ẽty29

t+1) onto
the time-t 1-year and 10-year (30-year) par yields, as well as their one-month lagged
values and a trailing-12-month average of their values. The in-sample R-squareds from
these regressions are 0.9821 and 0.9612, respectively. I use this estimation to construct
hypothetical values of Ẽt[log R10

t+1] and Ẽt[log R30
t+1] going back as far as I have actual

yield data.
The resulting subjective expected excess log bond returns, as well as their extended

backfilled values, are depicted in Figure 2. Notice from the figure that the subjective
expected returns tend to be below the long-maturity yield. Since the yield measures the
long-term expected return, this implies that survey respondents are pessimistic about
bond returns in this sample. The situation is particularly extreme in 30-year bonds.
As Figure 3 shows, this stems from pessimism about yields: survey respondents think
yields will either stop falling or even rise during this period. The extremely pessimistic
30-year bond expected return is then the result of general pessimism about yields (Figure
3 shows that both the 10-year and 30-year yield forecasts are consistently about 0.5%
above yield levels) combined with the significantly higher duration of the 30-year bond.

9Technically, this bootstrapping is a nonlinear transformation. I am effectively assuming a small
amount of uncertainty in the par yield expectations to construct the zero-coupon yield expectations using
this approximation.

10I am in the process of obtaining a longer time series of BCFF data and will de-emphasize this backfill-
ing in a subsequent version.
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Figure 2: Expected log (zero-coupon) bond returns constructed using BCFF consensus forecasts of the one-
year ahead yield curve. “Backfilled” refers to expected returns constructed from projecting yield forecasts
onto the contemporaneous and lagged yield curve.

Figure 3: Par yields and the BCFF consensus one-year ahead forecasts of those par yields. All yields and
yield forecasts are converted from coupon-equivalent to continuously compounded units.

3.2 Results

To start, Table 2 reviews and refreshes the original Alvarez and Jermann (2005) results
on the size of the permanent component in the SDF. Overall, the message from the point
estimates is that at least 2/3 of the volatility of S stems from H. The reason: the equity
premium (5.55%) is substantially larger than the term premium (between 1% and 2%,
depending on the method), so that E[log Rm − log R∞] is likely to be nearly as large as
the entire equity premium. Standard errors, shown in parentheses, are computed using
a Newey and West (1987) window with 36 months of lags to account for the overlap in

17



returns and persistence in spreads. The standard errors for the size of the permanent
component are computed using the Delta Method. Based on these standard errors, the
estimates appear to be reasonably precise.

As in the original paper, I use several methods for the long bond component. I use
both holding period returns (Panel A) and yields (Panel B) as alternatives to measure
expected returns. In a stationary and ergodic environment, the time-series average yield
also measures a bond expected return; yields are much less volatile (though more persis-
tent) than holding returns, which explains why Panel B features much tighter standard
errors. I also examine both the 10-year and 30-year maturities as proxies for the long
bond. While 30-year bonds are preferable in principle, the discrepancy in results is
negligible in practice.

Equity
Premium

Term
Premium

Adjustment for
Volatility of
Short Rate

Size of
Permanent
Component

E[log Rm/R1] E[log R(k)/R1] L(1/R1) L(∆H)/L(∆S)

A. Holding returns.
k = 10 years 0.0555 0.0100 0.0005 0.8134

(0.0161) (0.0099) (0.0001) (0.1641)
k = 30 years 0.0091 0.8292

(0.0143) (0.2308)
k > 10 (index) 0.0125 0.7686

(0.0087) (0.1564)

B. Yields.
k = 10 years (par) 0.0555 0.0097 0.0005 0.8185

(0.0161) (0.0016) (0.0001) (0.0566)
k = 10 years (zcb) 0.0129 0.7615

(0.0022) (0.0718)
k = 30 years (par) 0.0119 0.7791

(0.0027) (0.0692)
k = 30 years (zcb) 0.0195 0.6428

(0.0031) (0.1096)

Table 2: Objective Alvarez and Jermann (2005) volatility bound from Corollary 1. Panel A uses holding
period returns to measure the term premium; each row uses a different proxy for R∞. Panel B uses yields
(par or zero-coupon bond yields) to measure the term premium. Newey-West asymptotic standard errors
using 36 months of lags are shown in parentheses.

Next, I perform a similar analysis in the subjective measure. Table 3 presents esti-
mates for the average size of the permanent component H̃ in marginal utility S̃. The
estimates in the final column are the time-series average of the conditional subjective
bound from Corollary 2. (Figure 4 below shows the time series of this conditional sub-
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jective bound, before taking averages.) As before, standard errors, shown in parentheses,
are computed using a Newey and West (1987) window with 3 years of lags; since the
equity surveys feature different sampling frequencies, this means a different number of
period lags in each panel (Nagel-Xu and CFO data use 12 quarter lags; the Livingston
survey use 6 semi-annual lags). The results, across the three equity surveys and four dif-
ferent proxies for the long bond expected return, broadly echo the message of Alvarez
and Jermann (2005): investors perceive that the lion’s share of marginal utility volatility
(90% or more) emanates from permanent risks.

In my sample, I find a very negative subjective long bond term premium, particularly
for the 30-year bond. This is the source of the large estimated subjective permanent
component. One caveat is that the BCFF sample period (2001–2018) only covers a period
of low long-term yields, which survey respondents expected to revert. Thus, it is possible
that the extremely low subjective term premia is a particular result of the sample period.
The backfilled yield forecasts, which lead to very similar results in Table 3, may not
address this issue because they inherit the estimated in-sample pessimism from the BCFF
survey.11

Table 4 presents the main empirical result that risk accounts for at least half the
volatility of the SDF. The table displays each unconditional mean in Proposition 1, fol-
lowed by ratios of the subjective-to-objective bounds. Strictly speaking, the subjective-to-
objective ratio may not be meaningful if the stock market is far from the growth-optimal
portfolio. But as Proposition 2 makes clear, if the stock market is close to growth-optimal,
the ratios provide lower bounds on the contribution of risk to various components of the
SDF (i.e., to the risk-neutral density R f ∆S or the permanent component ∆H, respec-
tively). A weaker interpretation is also permitted: if S represents an SDF that prices the
stock market, riskless rate, and long bond (which may be taken to be unique by project-
ing into this space of returns), then all I require for the subjective-to-objective ratios to be
meaningful is that the stock market is close to growth-optimal among this subset of assets.
Standard errors assume the same Newey-West lag structure as before, with the standard
errors for the volatility ratios computed using the Delta Method.

The extreme pessimism in long bond forecasts, particularly the 30-year bond, results
in enormous estimates of L(∆H̃)/L(∆H) in the final column. As mentioned earlier, such

11For example, when projecting the 29-year zero-coupon yield forecast onto the 1-year and 30-year par
yields, their one-month lags, and their trailing-12-month average, I estimate

̂
Ẽt[y

(29)
t+1 ] = −0.074+ 0.316Y(1)

t + 0.614Y(30)
t − 0.097Y(1)

t−1 + 0.182Y(30)
t−1 − 0.434

( 1
12

11

∑
j=0

Y(1)
t−j

)
+ 0.518

( 1
12

11

∑
j=0

Y(30)
t−j

)
with an R-squared of 0.9612. The negative estimated constant can be interpreted as estimated pessimism.
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Subj. Equity
Premium

Subj. Term
Premium

Size of Subj.
Permanent
Component

E[Ẽt(log Rm
t+1/R1

t+1)] E[Ẽt(log R(k)
t+1/R1

t+1)] E[L̃t(∆H̃t+1)/L̃t(∆S̃t+1)]

A. Nagel-Xu.
k = 10 years 0.0476 -0.0175 0.8817

(0.0044) (0.0075) (0.0547)
k = 30 years -0.1454 0.9740

(0.0137) (0.0234)
k = 10 (backfill) -0.0227 0.9101

(0.0035) (0.0294)
k = 30 (backfill) -0.1498 0.9736

(0.0161) (0.0140)

B. Livingston.
k = 10 years 0.0300 -0.0175 0.9135

(0.0081) (0.0075) (0.0365)
k = 30 years -0.1454 0.9719

(0.0137) (0.0271)
k = 10 (backfill) -0.0227 0.9316

(0.0035) (0.0206)
k = 30 (backfill) -0.1498 0.9477

(0.0161) (0.0260)

C. CFO.
k = 10 years 0.0297 -0.0175 0.8685

(0.0038) (0.0075) (0.0562)
k = 30 years -0.1454 0.9848

(0.0137) (0.0149)
k = 10 (backfill) -0.0227 0.8816

(0.0035) (0.0498)
k = 30 (backfill) -0.1498 0.9627

(0.0161) (0.0254)

Table 3: Subjective versions of the Alvarez and Jermann (2005) volatility bound from Corollary 2. Panels
A, B, and C use the Nagel-Xu, Livingston, and CFO survey expectations for the market, respectively. The
rows labeled “backfill” refer to BCFF forecasts fitted to the contemporaneous and lagged yield curve, and
then projected to other periods in which the survey is not available. Newey-West asymptotic standard
errors using 3 years of lags (i.e., 12 periods for Nagel-Xu, 6 periods for Livingston, 12 periods for CFO)
are shown in parentheses.

a large volatility ratio estimate may be due partly to the specificity of the data sample; the
very large standard errors suggest that the large estimate may also be due to the tremen-
dous volatility in long-term bond expectations. If L(∆H̃)/L(∆H) > L(R f ∆S̃)/L(R f ∆S)
is true, even if the gap is not as large as the point estimates of Table 4 suggest, this means
that the permanent component H is driven by risks to a greater extent than is the overall
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Figure 4: Time series of subjective versions of the Alvarez and Jermann (2005) volatility bound from
Corollary 2.

SDF S. This can happen if belief fluctuations partly manifest in transitory SDF variation,
i.e., via G. The example models in Section 4 contain mechanisms of this type.

As mentioned, my bounds work better if an asset is closer to objective growth-
optimal, which may not be true for the stock market. The most obvious modification
to the trading strategy is to introduce a constant amount of leverage in order to opti-
mize log returns. In particular, for any constant equity share θ, I construct the following
return:

Rθ
t+1 = θRm

t+1 + (1− θ)R f
t . (25)

I can then estimate the objective expected excess log return E[log(Rθ
t+1)] − E[log(R f

t )]

for this strategy. I can also use the surveys to compute proxies for the subjective version
E[Ẽt[log(Rθ

t+1)− log(R f
t )]] using the same lognormal approximation as in the baseline

results.12 Table 5 presents the results of these leveraged returns for various values of θ.

12Specifically, we have the approximation

Ẽt[log(Rθ
t+1)] ≈ log Ẽt[Rθ

t+1]−
1
2

Ṽart[Rθ
t+1] = log

(
θẼt[Rm

t+1] + (1− θ)R f
t

)
− 1

2
θ2Ṽart[Rm

t+1],

all of which are available in surveys. Then, to estimate E[Ẽt[log(Rθ
t+1)− log(R f

t )]], we take the time series

average of the above quantity minus the time series average of log(R f
t ).
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Very similar to the main result, I continue to find that risk accounts for at least half the
volatility of the SDF. Implementing leveraged versions of the market makes almost no
difference to such results.

Finally, Table 6 presents a very conservative bound by following the methodology in
Chen, Pelger and Zhu (2024b) to construct the growth-optimal portfolio R∗. Given the
results in Proposition 2, the closer a return is to the true growth-optimal portfolio, the
more conservative is our estimate for the size of risks in the SDF. In a sense, the following
comparison is unfair and likely understates the importance of risk, because I will make
significant adjustments to the portfolio behind the objective expected return series while
doing nothing to “optimize” the portfolio for the subjective expected returns.

The methodology in Chen et al. (2024b) uses a combination of neural networks and
an adversarial estimation method to estimate jointly the SDF and relevant test assets—
in particular, which weights to put on the cross-section of assets, and at which times.
The result is an SDF which takes the form St+1

St
= 1−∑N

n=1 ω(It, In,t)Re
n,t+1, where Re

n,t+1

is the excess return of stock n, and where ω are portfolio weights. These weights are
estimated as a function of (It, In,t), where It are macroeconomic time-series factors and
In,t is a vector of characteristics for stock n. Market timing is captured by the extent
to which ω depends on macro time-series factors in It, while stock-picking is captured
by the way ω depends on characteristics in In,t. Given the assumed structure of the
SDF, we construct the proxy for the growth-optimal portfolio by R∗t+1 = St

St+1
= (1−

∑N
n=1 ω(It, In,t)Re

n,t+1)
−1.13

The first row of Table 6 shows that the bound does indeed become more conserva-
tive: in the baseline SDF construction, the size of risks in the SDF is lower-bounded
by between 31% and 50%. This is because the baseline estimate for the growth-optimal
portfolio performs extremely well, obtaining an average log excess return of 9.6% per
annum.

As is well known, such estimation methods using a rich cross-section of stocks and a
rich set of time series predictors can potentially overstate the returns of the true growth-
optimal portfolio. Specifically, many apparently anomalous strategies rely heavily on
small stocks, while market timing is very sensitive to the predictors used and the sample
period. To explore the sensitivity of the method to these issues, I re-run the method by

13The results would be almost identical if we instead used R∗t+1 = 1 + ∑N
n=1 ω(It, In,t)Re

n,t+1, which
more clearly lies in the return space if the riskless rate was equal to 1. While the actual riskless rate in
the data differs from 1, note that the estimation procedure of Chen et al. (2024b) only uses excess returns
and therefore does not correctly price the riskless rate. For that reason, it is consistent with the form of
the SDF to assume a riskless rate of 1 in forming the growth-optimal portfolio. Nevertheless, we use the
theoretically-correct specification of R∗t+1 = St/St+1. As a minor additional note, the estimation is done at
the monthly level, so we annualize the returns of this growth-optimal portfolio for our tests.
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restricting the SDF in one of two ways: (i) disallowing the SDF to load on small stocks;
and (ii) disallowing the SDF to depend on the macro factors. As shown in the subsequent
rows of Table 6, these SDFs imply a significantly-worse growth-optimal portfolio. And
consequently, the size of risks in the SDF is once again very high. Given the difficulty
in confidently pinning down the objective growth-optimal portfolio, I interpret these
findings as showing that my main result—namely that risks constitute the majority of
SDF volatility—is robust.
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Objective
Premium

A. Nagel-Xu.
Size of Risks

in SDF

B. Livingston.
Size of Risks

in SDF

C. CFO.
Size of Risks

in SDF
equity share θ E[log Rθ/R1] L(R1∆S̃)/L(R1∆S) L(R1∆S̃)/L(R1∆S) L(R1∆S̃)/L(R1∆S)

θ = 0.5 0.0313 0.8408 0.5620 0.5501
(0.0079) (0.2114) (0.1427) (0.1384)

θ = 1 (baseline) 0.0555 0.8567 0.5412 0.5349
(0.0161) (0.2449) (0.1566) (0.1524)

θ = 1.5 0.0722 0.8821 0.5179 0.5178
(0.0250) (0.2995) (0.1779) (0.1743)

θ = 2 0.0786 0.9513 0.5055 0.5131
(0.0361) (0.4268) (0.2264) (0.2267)

Table 5: Estimates of the importance of risks versus belief volatility, as in Proposition 1. The various rows
indicate different equity shares θ in equation (25). Note that increasing θ above 2 is not possible in the
time series, because a requirement to compute log returns is that θRm

t+1 + (1− θ)R f
t > 0, which is violated

in some periods for θ > 2. Panels A, B, and C use the Nagel-Xu, Livingston, and CFO survey expectations
for the market, respectively. Newey-West asymptotic standard errors using 3 years of lags (i.e., 12 periods
for Nagel-Xu, 6 periods for Livingston, 12 periods for CFO) are shown in parentheses.

Objective
Premium

A. Nagel-Xu.
Size of Risks

in SDF

B. Livingston.
Size of Risks

in SDF

C. CFO.
Size of Risks

in SDF
E[log R∗/R1] L(R1∆S̃)/L(R1∆S) L(R1∆S̃)/L(R1∆S) L(R1∆S̃)/L(R1∆S)

baseline SDF 0.0955 0.4981 0.3146 0.3110
(0.0118) (0.0456) (0.0453) (0.0244)

top 30pct stocks 0.0508 0.9355 0.5909 0.5841
(0.0100) (0.1270) (0.1050) (0.0713)

top 20pct stocks 0.0450 1.0582 0.6684 0.6607
(0.0099) (0.1677) (0.1278) (0.0976)

top 10pct stocks 0.0370 1.2852 0.8118 0.8024
(0.0104) (0.2819) (0.1932) (0.1687)

no macro vars 0.0718 0.6622 0.4183 0.4134
(0.0064) (0.0539) (0.0589) (0.0248)

Table 6: Estimates of the importance of risks versus belief volatility, as in Proposition 2, using proxies for
the growth-optimal portfolio R∗ from Chen et al. (2024b). The various rows indicate different specifications
of the SDF-mimicking portfolio, or equivalently different growth-optimal portfolios R∗. The first row
“baseline SDF” uses the baseline specification, data, and neural network settings in Chen et al. (2024b).
The rows labelled “top XXpct stocks” uses only the top XX percent largest stocks to construct R∗. The row
“no macro vars” does not use macroeconomic factors It to construct the portfolio weights for R∗. Panels
A, B, and C use the Nagel-Xu, Livingston, and CFO survey expectations for the market, respectively.
Newey-West asymptotic standard errors using 3 years of lags (i.e., 12 periods for Nagel-Xu, 6 periods for
Livingston, 12 periods for CFO) are shown in parentheses.
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4 Example structural models

I provide three example models to help interpret the general theory above. All models
are exchange economies but with differing endowment and belief structures. The first
model features rational expectations about a time-varying long-run growth rate (Bansal
and Yaron, 2004). The second model features distorted beliefs, formed using past growth
extrapolation, about future growth (Collin-Dufresne et al., 2017; Nagel and Xu, 2022). In
these two settings, there is a representative agent with recursive preferences a la Epstein
and Zin (1989) and elasticity of intertemporal substitution (EIS) equal to one. These
preferences are described by the utility recursion (Bellman equation)

Ut = (1− β) log Ct + β
log Ẽt[exp((1− γ)Ut+1)]

1− γ
, (26)

where Ẽ represents the agent’s subjective expectation, γ is her risk aversion, and β is
her discount factor. Finally, the third model also features growth extrapolation but with
CRRA preferences for comparison. After presenting the details of the environments,
Section 4.4 compares them across various measures of SDF volatility.

4.1 Long-run risks

In this canonical long-run risks example, the agent has rational expectations: Ẽ = E.
There are two shocks which are jointly Normal, W := (W(1), W(2))′ ∼ N(0, I). Aggregate
consumption follows

log Ct+1 = log Ct + xt + σc
(

1
0
)
·Wt+1,

and its expected growth rate xt has AR(1) dynamics

xt+1 = (1− ρ)x̄ + ρxt + σx
(
(1−κ2)1/2

κ

)
·Wt+1 (27)

The parameter ρ captures the persistence of expected consumption, and κ controls the
correlation between consumption and growth shocks. A typical specification sets κ = 1,
but this flexibility will be helpful going forward.
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Solving the model, the value function is given by14

Ut = constant + log Ct +
β

1− βρ
xt

From this solution, we can write the SDF explicitly as

St+1

St
= β

Ct

Ct+1

exp[(1− γ)Ut+1]

Et[exp[(1− γ)Ut+1]]
(28)

= exp
{
− rt − π ·Wt+1 −

1
2
‖π‖2

}
,

where the one-period interest rate rt = log R f
t and market price of risk π are given by

rt := − log(β) + xt +
1
2

σ2
c − γσ2

c −
(γ− 1)β

1− βρ
(1− κ2)1/2σxσc (29)

π := γσc
(

1
0
)
+

(γ− 1)β

1− βρ
σx

(
(1−κ2)1/2

κ

)
. (30)

The permanent and transitory components of the SDF are given by15

Ht+1

Ht
= exp

{
− 1

2

∥∥∥π +
σx

1− ρ

(
(1−κ2)1/2

κ

)∥∥∥2
−
(

π +
σx

1− ρ

(
(1−κ2)1/2

κ

))
·Wt+1

}
. (31)

and

Gt+1

Gt
= exp

[
η +

1
1− ρ

(xt+1 − xt)
]
, (32)

14Guess that the value function is given by the form Ut = log Ct + u0 + uxxt, and obtain the values of u0
and ux by substituting this guess into the Bellman equation (26) and using the method of undetermined
coefficients. The “constant” term u0 (not reported in the main text) is

u0 =
β

1− β

[
(1− ρ)x̄ux +

1
2
(1− γ)

(
[σc + (1− κ2)1/2σxux]

2 + κ2σ2
x u2

x)
]

15Guess that the transitory piece is given by Gt = eηt−ζ(xt−x0) for some constants (η, ζ), and then
substitute the guess St = GtHt into the SDF formula. This yields

Ht+1

Ht
= exp(−η + ζ(xt+1 − xt))

St+1

St

= exp
{
− η − rt − (π − ζσx

(
(1−κ2)1/2

κ

)
) ·Wt+1 −

1
2
‖π‖2 + ζ(1− ρ)(x̄− xt)

}
Using the conjecture that H is a martingale allows us to solve for η and ζ with the method of undetermined
coefficients. These values are then ζ = −(1− ρ)−1 and η = log(β)− 1

2 σ2
c + γσ2

c + (γ−1)β
1−βρ (1− κ2)1/2σxσc +

ζ(1− ρ)x̄ + 1
2 ζ2σ2

x − ζσx
(
(1−κ2)1/2

κ

)
· π.
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for some constant η (given in footnote 15).
This is a model that can generate a large amount of SDF volatility via a very promi-

nent permanent component. Indeed, amount of conditional SDF volatility is

Lt

(St+1

St

)
=

1
2
‖π‖2

A typical calibration sets γ = 10, β = 0.99 (or higher), ρ = 0.95 (or higher), σc = 0.02,
σx = 0.002, and κ = 0.9 (Bansal et al., 2012), in which case L(St+1

St
) = 1

2(0.43)2, cor-
responding to an annual Sharpe ratio of 0.43. As argued by Hansen and Jagannathan
(1991), this large conditional SDF volatility (i.e., large short-term risk prices) is an impor-
tant target for asset-pricing models. This class of models obtains large short-term risk
prices via a highly persistent growth rate (high ρ), combined with an investor who is
both patient (high β) and risk averse (high γ)—see equation (30).

At the same time, the Alvarez and Jermann (2005) volatility ratio is given by

L(Ht+1
Ht

)

L(St+1
St

)
=

∥∥π + σx
1−ρ

(
(1−κ2)1/2

κ

)∥∥2

‖π‖2 + Var[rt]

Theoretically, one can show that that this expression is always greater than 1 if γ ≥
1.16 Quantitatively, under the calibration just given, L(Ht+1

Ht
)/L(St+1

St
) = 1.18, in large

part because of small riskless rate volatility, Var[rt] = 0.00004. On the other hand, the
transitory component of the SDF is relatively small, with

L(Gt+1
Gt

)

L(St+1
St

)
=

2
1−ρ Var[rt]

‖π‖2 + Var[rt]

For instance, under the calibration given above, L(Gt+1
Gt

)/L(St+1
St

) = 0.01.
While obvious, let us just mention that any volatility ratio of perceived-to-actual will

be one in this rational expectations model. Because B ≡ 1, marginal utility coincides
with the SDF, S̃ ≡ S, and the perceived permanent component coincides with the actual

16The unconditional variance of rt is computed as σ2
x /(1− ρ2) using its AR(1) dynamics inherited from

xt. Then, using the fact that π ≥ 0 when γ ≥ 1, followed by the assumption 0 < ρ < 1, we have

‖π + σx
1−ρ (

(1−κ2)1/2

κ
)‖2 ≥ ‖π‖2 + ( σx

1−ρ )
2 ≥ ‖π‖2 + σ2

x
1−ρ2 = ‖π‖2 + Var[rt].
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permanent component, H̃ ≡ H. Therefore,

L(Bt+1
Bt

)

L(St+1
St

)
= 0 and

L( S̃t+1
S̃t

)

L(St+1
St

)
=

L( H̃t+1
H̃t

)

L(Ht+1
Ht

)
= 1.

Working in reverse, the latter two ratios being near one can be interpreted as evidence
of near-rational expectations. The magnitudes of various volatilities and volatility ratios,
under the calibration here, are consolidated at the end of this section in Table 7.

4.2 Growth extrapolation

Now, consider a model in which actual growth is IID but agents perceive a stochastic
growth rate. It turns out, with the appropriate modeling of beliefs, we can just reinterpret
the previous example as x representing the subjective expected growth rate, which remains
constant at x̄ under the rational expectation. This will be a model with long-run risks
only in investors’ heads.

Therefore, the solution will be identical to the actual long-run risks model but with a
corresponding reinterpretation of the results. The expression in (28) now corresponds to
investors’ marginal utility S̃t. Its permanent component H̃t is given by the expression in
(31). In essence, the extrapolative growth model can be solved as a long-run risk model
but then simulated by turning off long-run risks.

To justify these claims, consider the following enriched version of an extrapolative
growth model. True consumption dynamics are

log Ct+1 = log Ct + x̄ + σc
(

1
0
)
·Wt+1.

While conditional mean growth is constant at x̄, agents are not convinced of this fact,
and they do not observe the objective shocks W either. Building on many extrapolation
models, agents will learn about the mean consumption growth via constant-gain learning.
I will also allow the learning process to be subject to sentiment shocks.

Mathematically, let xt denote the agent’s perceived expected growth rate, i.e., xt :=
Ẽt[log Ct+1 − log Ct]. Then, the agent’s perception of consumption dynamics are

log Ct+1 = log Ct + xt + σc
(

1
0
)
· W̃t+1,

where W̃ represent perceived shocks, i.e., a normally-distributed variable which has
zero mean under the agent’s belief, Ẽt[W̃t+1] = 0. Learning is modeled as follows. The
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posterior expected growth is given by

xt = (1− φ)x̄ + φzt, (33)

where zt is a “sentiment” variable that follows

zt+1 − zt = λ[log Ct+1 − log Ct − zt]︸ ︷︷ ︸
constant gain learning

+
(

ν1−λσc
ν2

)
· W̃t+1︸ ︷︷ ︸

sentiment shocks

(34)

In words, sentiment increases with excess growth realizations log Ct+1 − log Ct − zt, at
a fixed learning rate λ, and is also subject to additional shocks. After sentiment is
determined, posterior expected growth is determined by a type of “model averaging”
between the correct time-invariant growth x̄ and the growth sentiment zt. The param-
eter φ governs the degree of rationality: φ = 0 is fully rational, while φ = 1 is fully
extrapolative. Alternatively, as shown in Nagel and Xu (2022), 1− φ captures the weight
a constant-gain learner puts on his prior.

Combining equations (33)-(34) with the perceived consumption law of motion yields
the belief evolution

xt+1 = λ(1− φ)x̄ + (1− λ(1− φ))xt + φν · W̃t+1, (35)

where ν := (ν1, ν2)
′. From equation (35), we can see the analogy to the long-run risks

model. By inspection, the dynamics in this equation are identical to those of equation
(27), provided we set the prior dependence parameter to any interior value φ ∈ (0, 1)
and then put λ = 1−ρ

1−φ , ν1 = φ−1(1 − κ2)1/2σx, and ν2 = φ−1κσx.17 In that case, the
impact of λ is entirely through the following “perceived growth persistence” that I will
use going forward:

ρ̃ := 1− (1− φ)λ.

Notice also that setting φ < 1 serves a technical convenience by keeping ρ̃ < 1 so that xt

is stationary under the subjective probability.
Given this isomorphism, the long-run risks solution above fully characterizes the

17The special case without sentiment shocks (ν1 = λσc and ν2 = 0) would be like a long-run risk model
with perfect correlation between level and growth shocks (κ = 0) and with a particular calibration of
growth volatility (σx = φλσc).
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investor marginal utility S̃t and its permanent component H̃t. These are given by

S̃t+1

S̃t
= exp

{
− rt − π̃ · W̃t+1 −

1
2
‖π̃‖2

}
(36)

H̃t+1

H̃t
= exp

{
− 1

2

∥∥∥π̃ +
φν

1− ρ̃

∥∥∥2
−
(

π̃ +
φν

1− ρ̃

)
· W̃t+1

}
(37)

where rt and π̃ are the riskless rate and perceived risk prices, respectively,

rt := − log(β) + xt +
1
2

σ2
c − γσ2

c −
(γ− 1)β

1− βρ̃
σcφν1

π̃ := γσc
(

1
0
)
+

(γ− 1)β

1− βρ̃
φν.

Similarly, the transitory component of the SDF, which recall is identical under both the
subjective and objective probability, is given by

Gt+1

Gt
= exp

[
η̃ +

1
1− ρ̃

(xt+1 − xt)
]
,

for some constant η̃. This fully solves the model from the perspective of agent’s subjec-
tive probability.

It remains to characterize the belief distortion Bt, in order to map this solution back
into the objective probability. In this conditionally lognormal environment, all belief
distortions are characterized by a mean distortion to the shocks. In other words, while
W are the true zero-mean shocks, the agent perceives them to have non-zero mean,
Ẽt[Wt+1] = µt, and instead views W̃t+1 = Wt+1 − µt as the relevant disturbance. This
means that

Bt+1

Bt
= exp

[
µt ·Wt+1 −

1
2
‖µt‖2

]
(38)

for some µt. To identify this mean, compare the true and perceived consumption dy-
namics to see that

(
1
0
)
· µt =

xt − x̄
σc

.

While this determines the first component of µt, the second component is not pinned
down, because any value for it leads to the same perceived growth dynamics. Intuitively,
pure sentiment shocks are not tied down by any objective dynamic. For theoretical
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clarity, let us set

(
0
1

)
· µt = 0,

so that all results are generated via mechanisms that are tied down. (This can be easily
generalized, and allowing a non-zero and possibly time-varying second component of
µt would work like irrational exuberance in this model.)

Combining equations (36)-(37) with the belief distortion (38), we have the objective
SDF and its permanent component

St+1

St
= exp

{
− rt − (π̃ − µt) ·Wt+1 −

1
2
‖π̃ − µt‖2

}
(39)

Ht+1

Ht
= exp

{
− 1

2

∥∥∥π̃ − µt +
φν

1− ρ̃

∥∥∥2
−
(

π̃ − µt −
φν

1− ρ̃

)
·Wt+1

}
(40)

Thus, objective risk prices are lowered by µt relative to perceived risk prices. For exam-
ple, if agents are pessimistic about growth, then the first component of µt is negative,
which raises risk prices.

Now, we may compute various volatility ratios, analogously to the previous model.
For example, the annual average SDF volatility is

E
[
2Lt

(St+1

St

)]1/2
=
(

E‖π̃ − µt‖2
)1/2

=
(
‖π̃‖2 +

Var[rt]

σ2
c

)1/2

Relative to the long-run risk model, extrapolation induces time-variation in objective
risk pricing, which raises SDF volatility via the second term above. Note that Var[rt] =

Var[xt], i.e., the objective variance of agent’s growth perceptions. The sizes of the per-
manent and transitory components are given by

L(Ht+1
Ht

)

L(St+1
St

)
=
‖π̃ + φν

1−ρ̃‖2 + 1
σ2

c
Var[rt]

‖π̃‖2 + (1 + 1
σ2

c
)Var[rt]

L(Gt+1
Gt

)

L(St+1
St

)
=

2(1−ρ̃− φν1
σc )

(1−ρ̃)2 Var[rt]

‖π̃‖2 + (1 + 1
σ2

c
)Var[rt]

Finally, the ratio of subjective-to-objective SDF volatility is given by

L( S̃t+1
S̃t

)

L(St+1
St

)
=
‖π̃‖2 + (1− π̃1

σc
)2Var[rt]

‖π̃‖2 + (1 + 1
σ2

c
)Var[rt]
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and its permanent counterpart by

L( H̃t+1
H̃t

)

L(Ht+1
Ht

)
=
‖π̃ + φν

1−ρ̃‖2 + (π̃1 +
φν1
1−ρ̃ )

2 1
σ2

c
Var[rt]

‖π̃ + φν
1−ρ̃‖2 + 1

σ2
c
Var[rt]

These are all easily computable analytically, because of the lognormality of the equilib-
rium solution.18

A standard calibration without sentiment shocks (i.e., pure extrapolation) sets γ = 4,
β = 0.99, σc = 0.02, φ = 0.9 (almost fully extrapolative), λ = 0.075 (interpretable as
roughly 13 years of effective information retention), and ν1− λσc = ν2 = 0 (no sentiment
shocks).19 This calibration generates perceived conditional growth rate volatility φ‖ν‖ =
0.0013 and a perceived persistence ρ̃ = 1− (1− φ)λ = 0.993. Relative to the long-run
risk model calibration, the extrapolative calibration features a lower short-run volatility
of perceived growth but a higher persistence hence higher long-run volatility.

Because of the relatively high persistence of perceived growth, the permanent compo-
nent is even larger here than in the long-run risk calibration, L(Ht+1

Ht
)/L(St+1

St
) = 2.13. It

turns out the transitory component is also larger, i.e., L(Gt+1
Gt

)/L(St+1
St

) = 0.26, because of
negative correlation between G and H. In particular, optimism about perceived growth
(high xt) raises the transitory component of marginal utility, while simultaneously re-
ducing the permanent component.

Finally, the two subjective-to-objective volatility ratios, which measure the amount of

18Every object of interest (e.g., S, H, S̃, H̃, G, B) in this model takes the form

Mt+1

Mt
= exp

{
a + bxt − [p + qµt] ·Wt+1 −

1
2
‖p + qµt‖2

}
for some scalars a, b, q and vector p. The dynamics of xt under the objective measure are an AR(1) with
modified persistence:

xt+1 − x̄ =
(

1− λ(1− φ)− φν1

σc

)
(xt − x̄) + φν ·Wt+1

so that E[xt] = x̄ and Var[xt] =
φ2‖ν‖2

1−(1−λ(1−φ)− φν1
σc )2

. Similarly, E[µt] = 0 and Var[( 1
0 ) · µt] =

1
σ2

c
Var[xt].

Therefore, for each object whose growth takes the form of M,

L
(Mt+1

Mt

)
= log E

[
ea+bxt

]
− (a + bx̄) +

1
2

E‖p + qµt‖2 =
1
2
(b2 +

q2

σ2
c
)Var[xt] +

1
2
‖p‖2.

19These parameters largely follow Nagel and Xu (2022). They set λ = 0.018 at a quarterly frequency,
which translates to approximately 4× 0.018 annually. Furthermore, in their model 1− φ can be interpreted
as the weight (in belief updating) that agents place on their prior. Their baseline model sets φ = 1, but
this would cause the agent to believe that x̃t follows a random walk, which causes some technical issues
for unconditional subjective volatilities. Thus, I pick a value φ close to 1 but slightly below.
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SDF volatility coming from risk, are obviously smaller in this distorted belief model than
a rational expectations model. However, under the calibration given, L( S̃t+1

S̃t
)/L(St+1

St
) =

0.77 and L( H̃t+1
H̃t

)/L(Ht+1
Ht

) = 0.91, which are not far from their rational-expectations
benchmarks of 1. Intuitively, although subjective beliefs about growth are non-trivial
here, a large chunk of their effect comes through their interaction with investors’ prefer-
ences (specifically the preference for early resolution of uncertainty). The result might be
called fear of perceived growth, a mechanism that causes marginal utility and its permanent
component to be highly sensitive to perceived growth shocks.

As with the long-run risk model, the magnitudes of various volatilities and volatility
ratios for this model are summarized at the end of this section in Table 7.

4.3 Growth extrapolation (CRRA)

For comparison, I also consider a version of the previous extrapolative growth model
under CRRA utility with risk aversion γ. The sentiment and belief processes are identical
to the previous setting. But now, marginal utility growth is simply

S̃t+1

S̃t
= β

(Ct+1

Ct

)−γ
= exp

{
− rt −

1
2
‖π̃‖2 − π̃ · W̃t+1

}
,

where the riskless rate and perceived risk prices are the familiar expressions

rt := − log(β) + γxt −
1
2
(γσc)

2

π̃ := γσc
(

1
0
)

Notice that the structure of the solution is very similar, with two key differences. First,
perceived short-run risk prices π̃ do not inherit any growth rate exposure. Second, the
growth rate volatility enters instead into magnified interest rate volatility. The result of
these two differences will be (i) much less marginal utility volatility, hence much more of
SDF volatility attributable to beliefs; and (ii) much more of SDF volatility coming from
transitory fluctuations.

Following the same procedures as above, we can compute the perceived permanent
component, the objective SDF, the objective permanent component, and the transitory
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component as

H̃t+1

H̃t
= exp

{
− 1

2

∥∥∥π̃ +
γφν

1− ρ̃

∥∥∥2
−
(

π̃ +
γφν

1− ρ̃

)
· W̃t+1

}
St+1

St
= exp

{
− rt −

1
2
‖π̃ − µt‖2 − (π̃ − µt) ·Wt+1

}
Ht+1

Ht
= exp

{
− 1

2

∥∥∥π̃ − µt +
γφν

1− ρ̃

∥∥∥2
−
(

π̃ − µt +
γφν

1− ρ̃

)
·Wt+1

}
Gt+1

Gt
= exp

[
η̃ +

γ

1− ρ̃
(xt+1 − xt)

]
,

for some constant η̃. As suggested above, notice that the transitory component is mag-
nified by risk aversion γ, whereas this was not the case in the previous recursive utility
version.

4.4 Comparing the models

Table 7 provides a comparison of the three models in terms of various volatilities and
volatility ratios. Comparing the extrapolation models to the long-run risk model, one
sees that more SDF volatility comes from beliefs and more of it is transitory. This sit-
uation is extreme in the CRRA model, whose transitory SDF volatility is far too high
relative to the data (Alvarez and Jermann, 2005).

Long-Run Risk Extrapolation (EZ) Extrapolation (CRRA)

Annual Avg SDF Volatility
E[2Lt(∆St+1)]

1/2 0.4265 0.3574 0.1948
Size of Permanent Component

L(∆H)/L(∆S) 1.1786 2.1275 17.5983
Size of Transitory Component

L(∆G)/L(∆S) 0.0090 0.2635 14.1140
Risk Component

L(∆S̃)/L(∆S) 1.0000 0.7736 0.1677
Permanent Risk Component

L(∆H̃)/L(∆H) 1.0000 0.9118 0.9831
Belief Component

L(∆B)/L(∆S) 0.0000 0.2471 0.8270

Table 7: Entropies and entropy ratios across the three example models, in their benchmark calibrations.
The “Long-Run Risk” model has γ = 10, β = 0.99, ρ = 0.95, σc = 0.02, σx = 0.002, κ = 0.9. The
“Extrapolation (EZ)” model has γ = 4, β = 0.99, φ = 0.9, λ = 0.075, σc = 0.02, and ν = (λσc, 0)′.
“Extrapolation (CRRA)” uses the same parameters as Extrapolation (EZ), except with CRRA preferences.
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The extrapolation model with recursive utility succeeds in generating high SDF volatil-
ity, a large permanent component, and a modest transitory component. In fact, the cal-
ibrated values of L(∆S̃)/L(∆S) and L(∆H̃)/L(∆H) are not too far from the empirical
estimates in Table 4. Interestingly, only 24.71% of total SDF volatility comes from beliefs
directly in this model. This is because the action in that model, leading to the large value
of L(∆S), arises via an interaction between preferences and perceived growth dynamics.
While shutting down the belief dynamics mitigates SDF volatility, so does eliminating
the preference for early resolution of uncertainty. In general, when SDF volatility is
created by interaction effects, it is not a priori clear how to attribute it; my framework
provides a clear-cut answer to that question.

Figure 5: Comparison between the baseline long-run risk model (solid black dot), the baseline growth ex-
trapolation model (solid red dot), and various growth extrapolation models with sentiment shocks (hollow
blue circles), i.e., models with ν2 > 0. As ν2 is increased, γ is also decreased to keep the measure of one-
year average SDF volatility E[2Lt(∆St+1)]

1/2 unchanged at 0.3574 (the baseline value for the extrapolation
model). The calibrations of the baseline models are the same as in Table 7.

In a final exercise, I also illustrate what happens when sentiment shocks are added
to the extrapolation model. For various models, Figure 5 displays results for the size of
the permanent component L(∆H), transitory component L(∆G), and belief component
L(∆B), all scaled by the total volatility of the SDF L(∆S). The extrapolation model is
solved for different levels of ν2 (the sensitivity of perceived growth to a shock orthogonal
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to consumption). To keep these various settings on a level playing field, I recalibrate risk
aversion γ to hold fixed the model-implied average SDF volatility E[2Lt(∆St+1)]

1/2. That
is, since sentiment shocks increase SDF volatility, I reduce γ as I increase ν2. What the
figure shows is that sentiment shocks raise the contribution of beliefs to SDF volatility,
as expected, but they do so by increasing the size of both the permanent and transitory
components of the SDF. At least in this class of models, there is a tension: attributing
large amounts of SDF volatility to beliefs necessitates a counterfactually transitory SDF.

5 Conclusion

Undoubtedly, asset markets are influenced jointly by risk, risk attitudes, and investors’
subjective beliefs. For example, the popular narrative that long-term risk should be
particularly important for asset pricing has accumulated a substantial amount of direct
evidence.20 On the other hand, pervasive violations of full-information rational expecta-
tions in macro-finance surveys suggests that belief dynamics must also matter.21 In the
theoretical literature, rigorous frameworks alternatively emphasizing risks or beliefs can
account for a variety of facts in asset markets.

Against this backdrop, this paper seeks to quantify how much of asset market dynam-
ics should be attributable to risk versus beliefs. I find that both risk and beliefs matter,
with risk likely to be a more important factor. In particular, combining a volatility
bounds approach with financial survey data in stocks and bonds, I estimate that at least
50% of SDF volatility must stem from risk. Some estimates for this risk-based fraction
exceed 100%. I also show that a growth extrapolation model with preferences for early
resolution of uncertainty is remarkably consistent with my estimated volatility ratios.
Within that particular model, beliefs are directly responsible for 25% of SDF volatility.
The model also reveals an interesting possibility: beliefs can matter indirectly for SDF
volatility by creating risk perceptions. Further investigation into this direct versus indi-
rect role of beliefs would help bring nuance to the discussion of beliefs and risks.

20For instance, consider the literature that argues news and news shocks matter for asset markets and
the macroeconomy (McQueen and Roley, 1993; Francis and Ramey, 2005; Beaudry and Portier, 2004, 2006;
Barsky and Sims, 2011; Schmitt-Grohé and Uribe, 2012; Kurmann and Otrok, 2013; Barsky et al., 2015;
Leduc and Liu, 2016; Nakamura et al., 2017; Basu and Bundick, 2017; Schorfheide et al., 2018; Berger et
al., 2020; Liu and Matthies, 2022).

21In addition to the belief dynamics uncovered in financial surveys cited in the introduction, similar
phenomena have been found in macroeconomic surveys (Coibion and Gorodnichenko, 2015; Gennaioli et
al., 2016; Bordalo et al., 2020; Bhandari et al., 2022; Bianchi et al., 2022; Farmer et al., 2023) and experimental
settings (Coibion et al., 2018; Afrouzi et al., 2023).
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Appendix

A Proofs

A.1 Proof of Lemma 1
We prove only the subjective versions; the objective bounds follow from those by taking B ≡ 1 (no
belief distortion). Note by the pricing equation (4), the permanent-transitory factorization (7), the
fact G̃ = G, and the long bond result (10) that

0 ≤ L̃t

( S̃t+1

S̃t
Rt+1

)
= −Ẽt log

( S̃t+1

S̃t

)
− Ẽt log Rt+1

= −Ẽt log
(Gt+1

Gt

)
− Ẽt log

( H̃t+1

H̃t

)
− Ẽt log Rt+1

= Ẽt log R∞
t+1 + L̃t

( H̃t+1

H̃t

)
− Ẽt log Rt+1

Rearranging leads to (16). To derive (14), start with the identity

L̃t

( S̃t+1

S̃t

)
= L̃t

( S̃t+1

S̃t
R f

t

)
= Ẽt[log R∞

t+1]− log R f
t + L̃t

( H̃t+1

H̃t

)
(A.1)

and then use (16).

A.2 Proof of Proposition 1

To prove (20), use the UEI property to get L( H̃t+1
H̃t

) ≥ E[L̃t(
H̃t+1

H̃t
)]. Combining this result with the

bound in (16), we obtain (20).
The same argument with S̃t+1

S̃t
R f

t in place of H̃t+1
H̃t

leads to L( S̃t+1
S̃t

R f
t ) ≥ E[L̃t(

S̃t+1
S̃t

R f
t )]. Because R f

t

is conditionally risk-free, we have L̃t(
S̃t+1

S̃t
R f

t ) = L̃t(
S̃t+1

S̃t
). Combining these results with the bound in

(14), we obtain (19).
Finally, we can deduce (17)-(18) from the subjective versions by considering B ≡ 1 (i.e., no

belief distortion), so that all objects and expectations with tildes become objective versions, and
then applying the law of iterated expectations.

A.3 Proof of Proposition 2
First, make note of the following key result: the inequalities in (13) and (15) become equalities with
Rt+1 = R∗t+1. Similarly, the subjective versions in (14) and (16) become equalities with Rt+1 = R̃∗t+1.

Now, let us characterize the “wedges” between the bounds in Proposition 1: For the objective
bounds, we obtain

ω(R) := L
(St+1

St
R f

t

)
−E[log Rt+1 − log R f

t ]

= E[log R∗t+1 − log R f
t ]−E[log Rt+1 − log R f

t ] = E[δt(R)]
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For the subjective bounds, we also use the UEI assumption to obtain

ω̃(R) := L
( S̃t+1

S̃t
R f

t

)
−E

[
Ẽt[log Rt+1 − log R f

t ]
]

≥ E
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R f
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= E
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Ẽt[log R∗t+1 − log R f

t ]
]
−E

[
Ẽt[log Rt+1 − log R f

t ]
]
= E[δ̃t(R)]

Using the assumption that R is closer to objective growth-optimal than R̃ is to subjective growth-
optimal, i.e., E[δt(R)] ≤ E[δ̃t(R̃)], we thus obtain

ω(R) ≤ ω̃(R̃)

Therefore, compute

L( S̃t+1
S̃t

R f
t )

L( St+1
St
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E
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E[log Rt+1 − log R f
t ] + ω(R)

Note that this ratio is increasing (decreasing) in ω(R) if it is smaller (larger) than one. This leads to
the result in (21). To obtain (22), we repeat a very similar argument to obtain

L( H̃t+1
H̃t
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,

where ωH(R) := L
(Ht+1

Ht

)
− E[log Rt+1 − log R∞

t ] is the corresponding wedge for the permanent
component.

A.4 Proof of Corollary 1
See Alvarez and Jermann (2005), Proposition 2.

A.5 Proof of Corollary 2

Throughout, suppose R is a return such that Ẽt log Rt+1 > log R f
t . From (A.1), we have
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) if it is smaller (larger) than one. So if
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On the other hand, if Ẽt log R∞
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t , we use (16) to get
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Combine these results with the non-negativity of entropies to obtain the result.
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A.6 UEI holds in continuous-time Brownian environments
The Unconditional Entropy Inequality (UEI) assumption says that all higher moments beyond the
mean are perceived equally by the subjective and objective probability. In this section, I show, as
claimed by Footnote 5, that the UEI automatically holds in continuous-time Brownian environments.
I model the dynamics of a variable log Xt via an Itô process and prove in such case that

lim
∆→0

∆−1 L̃t(Xt+∆) = lim
∆→0

∆−1Lt(Xt+∆).

i.e., local versions of the entropy operator coincide.
Suppose

d log Xt = αtdt + νt · dWt,

where W is a Brownian motion under P. By Girsanov’s theorem, the dynamics under the subjective
measure are

d log Xt = α̃tdt + νt · dW̃t,

where W̃ is a Brownian motion under P̃ and α̃t is another adapted process. Compute

Lt(Xt+∆) = log(Eν
t [exp(

∫ t+∆

t
(αs +

1
2
|νs|2)ds)])−

∫ t+∆

t
αsds

L̃t(Xt+∆) = log(Ẽν
t [exp(

∫ t+∆

t
(α̃s +

1
2
|νs|2)ds)])−

∫ t+∆

t
α̃sds,

where Eν and Ẽν are alternative expectation operators. Dividing both metrics by ∆ and taking
∆→ 0, and using L’Hôpital’s rule, yields

lim
∆→0

∆−1Lt(Xt+∆) = αt +
1
2
|νt|2 − αt =

1
2
|νt|2 = α̃t +

1
2
|νt|2 − α̃t = lim

∆→0
∆−1 L̃t(Xt+∆)

Thus, the two metrics coincide locally.
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B Heterogeneity and aggregation
In reality, survey data do not contain a single measure of beliefs, but rather an entire cross-section.
A common practice is to compute summary statistics like the cross-sectional average belief about
an asset return. If we use such an average belief, then whose marginal utility are we bounding via
Lemma 1?

Suppose there are i ∈ {1, . . . , N} individuals making return forecasts. All the analysis from the
previous sections goes through, i-by-i. In particular, each of their beliefs can be characterized by a
P-martingale Bi

t, and each of them have a marginal utility process S̃i
t. Assuming perfect risk-sharing

for the shocks that are spanned by asset payoffs, we can treat S̃i
t as the projection of true individual

marginal utility onto the return space. In that case, we have the generalization of formula (5) to

St = S̃i
tB

i
t, ∀i. (B.1)

Following the permanent-transitory factorization arguments as above, we then also have the gener-
alization of formula (8),

Ht = H̃i
tB

i
t, ∀i, (B.2)

where H̃i is the permanent component of S̃i, i.e., H̃i is a martingale under P̃i. All agents share the
same transitory component G̃i = G.

Averaging beliefs amounts to the following aggregation procedure. Consider B defined by

Bt+1

Bt
:=

1
N

N

∑
i=1

Bi
t+1

Bi
t

. (B.3)

Then, M is a P-martingale as in the initial analysis. Computing the cross-sectional average belief is
equivalent to using M:

1
N

N

∑
i=1

Ẽi
t[Xt+1] =

1
N

N

∑
i=1

Et[
Bi

t+1

Bi
t

Xt+1] = Et[
Bt+1

Bt
Xt+1] =: Ẽt[Xt+1].

In that case, to satisfy the original relation (8), we must define

S̃t :=
1
N

N

∑
i=1

(Bi
t

Bt

)
S̃i

t. (B.4)

and

H̃t :=
1
N

N

∑
i=1

(Bi
t

Bt

)
H̃i

t. (B.5)

One can think of S̃ and H̃ as the “aggregated marginal utility” and its permanent component, and
equations (B.4)-(B.5) shows that these are really belief-weighted-averages of individual variables.
Furthermore, it is straightforward to check that H̃ is a P̃-martingale, where P̃ is defined via M (i.e.,
through the averaging procedure). With this definition, the same bounds on S̃ and H̃ hold as the
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previous analysis (e.g., Lemma 1 and subsequent results), i.e., we have

L̃t

(
1
N

N

∑
i=1

(Bi
t+1/Bi

t

Bt+1/Bt

) S̃i
t+1

S̃i
t︸ ︷︷ ︸

=S̃t+1/S̃t

)
≥ 1

N

N

∑
i=1

Ẽi
t︸ ︷︷ ︸

:=Ẽt

[
log Rt+1 − log R f

t
]

(B.6)

L̃t

(
1
N

N

∑
i=1

(Bi
t+1/Bi

t

Bt+1/Bt

) H̃i
t+1

H̃i
t︸ ︷︷ ︸

=H̃t+1/H̃t

)
≥ 1

N

N

∑
i=1

Ẽi
t︸ ︷︷ ︸

:=Ẽt

[
log Rt+1 − log R∞

t+1
]

(B.7)

Bounds (B.6)-(B.7) show that we may average the survey expected returns, but we must interpret
this average belief as a lower bound on the volatility of belief-weighted-averages of individual-level
variables like S̃i and H̃i. Interpreting the bounds introduces some nuances in a heterogeneous-agent
world.22

22An alternative to averaging is to simply use the entire cross-section of the survey. In particular, the
following individual-specific bounds hold:

L̃i
t

( S̃i
t+1

S̃i
t

)
≥ Ẽi

t
[

log Rt+1 − log R f
t
]

(B.8)

L̃i
t

( H̃i
t+1

H̃i
t

)
≥ Ẽi

t
[

log Rt+1 − log R∞
t+1
]
, (B.9)

where L̃i
t is defined analogously to L̃t. One can measure the right-hand-side via an individual-specific survey

response. If an analogous version of UEI holds for S̃i
t+1/S̃i

t and H̃i
t+1/H̃i

t, then these bounds in conjunction
with (13) and (15) can be used to compare the marginal utility and belief distortion volatilities for a cross-section
of investors.
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C More details on data

C.1 Yield data
Figure C.1 displays the very tight relationship between the three data sources I use for par yields.
The actual yield series I use takes the FRED yields, then fills any missing values with GSW yields,
then fills the remaining missing values with the CRSP yields.

Figure C.2 displays par and zero-coupon bond (ZCB) yields. Some results (Table 2) use sepa-
rately par and ZCB yields as proxies for long-term bond expected returns, because par yields are
available for a longer history (and importantly contain more of the period before 1980 when yields
were not secularly declining).

Figure C.1: Actual par yields from the three data sources used in the paper. Yields are annualized and in
continuously compounded units (the par yields are converted to cc from coupon-equivalent units).

C.2 Bond survey interpolation and bootstrapping
To transform the BCFF survey data (which contains one-year forecasts of 6-month, 1-year, 2-year,
5-year, 10-year, and 30-year par yields) into a full zero-coupon yield curve forecast, I (i) interpolate
the par forecasts and then (ii) “bootstrap” a zero-coupon forecast curve.

The interpolation step is a combination of linear interpolation (for maturities ≤ 5 years) and a
fitted Nelson-Siegel model (for maturities > 5 years). The Nelson-Siegel model says that the cc par
yields of maturity n should take the form

y(n) = β0 + β1
1− exp(−nθ)

nθ
+ β2

[1− exp(−nθ)

nθ
− exp(−nθ)

]
. (C.1)

The parameters (β0, β1, β2, θ) in equation (C.1) are estimated at every date (thus time-varying) to
fit the 2-year, 5-year, 10-year, and 30-year par yield forecasts. I estimate this model by computing
the fitting three model-implied slopes: between n = 5 and n = 2; between n = 10 and n = 5;
and between n = 30 and n = 10. I compute these three slopes both model and survey, after first
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Figure C.2: Actual par and zero-coupon yields from GSW. Yields are annualized and in continuously com-
pounded units (the par yields are converted to cc from coupon-equivalent units).

Figure C.3: BCFF consensus expectations of one-year ahead par yields (“raw”, solid lines) as well as values
from a Nelson-Siegel model fitted to the one-year ahead forecasts (dotted lines). All yield expectations are
converted from coupon-equivalent to continuously compounded units.

converting the survey yield forecasts to cc units. Since the slopes difference out β0, this procedure
estimates (β1, β2, θ) to fit these three slopes. I weight the three slopes by the number of maturity
years enveloped in the two maturities (i.e., weights of 3, 5, and 20). I then finally pick β0 to match
exactly the 30-year forecast level, since the long-maturity bonds are the most important in my
analysis. Figure C.3 displays the resulting Nelson-Siegel fit to the key par yield forecasts. Figure C.4
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Figure C.4: BCFF consensus expectations of the one-year par yield curve (constructed via linear interpolation
of different maturities versus interpolation via fitting a Nelson-Siegel model). All yield expectations are
converted from coupon-equivalent to continuously compounded units.

contrasts the Nelson-Siegel fit to a linear interpolation in January of each year: the key distinction
is the introduction of concavity at the long end, which is typically a feature of the yield curve.

Next, I bootstrap the zero-coupon forecasts as follows. A par yield Yp
N (in coupon-equivalent

units) is the yield such that an N-year bond paying that yield as its semi-annual coupon would
trade at par, i.e.,

1 =
Yp

N
2

2N−1

∑
n=1

exp
(
− n

2
yn/2

)
+
(

1 +
Yp

N
2

)
exp

(
− NyN

)
, (C.2)

where yj is the cc zero-coupon yield for maturity j. Thus, one can think of these par yields as the
relevant discount rate for a coupon bond. One can solve for the implied N-period zero-coupon yield
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as

yN = − 1
N

log

[
1− Yp

N
2 ∑2N−1

n=1 exp
(
− n

2 yn/2
)

1 + Yp
N
2

]
(C.3)

I recursively obtain (yn/2)
60
n=1 in this way. The only nuance is that I treat Yp

N as the par yield forecast
and obtain the zero-coupon yield forecast yN , which effectively ignores the nonlinearities in this
transformation.

Figure C.5: BCFF consensus expectations of the one-year ahead par yield curve (constructed via fitting a
Nelson-Siegel model) and the one-year ahead zero-coupon yield curve (constructed via boostrapping from
the Nelson-Siegel par yield curve expectation). All yield expectations are converted from coupon-equivalent
to continuously compounded units.

Figure C.5 shows yield curve forecasts (par vs zero-coupon) at the same January dates as above.
Notice that the zero-coupon yield forecasts are higher than the par forecasts, mainly because zero-
coupon bonds have higher durations due to their absence of coupons. Finally, Figure C.6 displays
yield forecast time series and shows how the various transformations affect these forecasts. The left
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panel shows linearly interpolated par forecasts. The middle panel shows the Nelson-Siegel fitted
par forecasts. The right panel shows the bootstrapped zero-coupon yield forecasts.

Figure C.6: BCFF consensus expectations of the one-year ahead yield curve. The first panel displays expec-
tations of the par yield curve, constructed by linearly interpolating between maturities. The second panel
displays expectations of the par yield curve, constructed by fitting Nelson-Siegel model to the expectations.
The third panel displays expectations of the zero-coupon yield curve, constructed by bootstrapping from
the Nelson-Siegel par curve. All yield expectations are converted from coupon-equivalent to continuously
compounded units.

C.3 Fitted volatility forecast
To construct subjective expected log returns, I need to perform a variance adjustment to the surveys,
which contain expected arithmetic returns. My starting point is the CFO survey, whose participants
report a 90th and 10th percentile for the future stock return. From these answers, Nagel and Xu
(2022) construct an implied forecast one-year-ahead market return variance. This is plotted in Figure
C.7 in the dotted blue line. To apply this variance correction further back in time, I also fit a model by
regressing CFO forecast variance onto the contemporaneous squared VIX, its one-month lag, and its
trailing 12-month average value. In an alternative specification, I also include the contemporaneous
squared SVIX. These fitted values are also displayed in Figure C.7.
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Figure C.7: Fitted volatility from a regression of CFO’s subjective variance forecasts on the squared VIX (and
lags) and squared SVIX.

C.4 Growth-optimal portfolio and objective variance
To construct a proxy for the growth-optimal portfolio, I consider a time-varying mix between the
stock market and risk-free rate (i.e., market timing). The growth-optimal problem in this context is

max
θt

Et
[

log(θtRm
t+∆ + (1− θt)R f

t )
]

(C.4)

for some re-investment time interval ∆. (Note also that R f
t here denotes the risk-free rate between t

and t+∆.) Using the lognormal approximation (or second-order approximation to the log), problem
(C.4) becomes

max
θt

Et
[
θtRm

t+∆ + (1− θt)R f
t
]
− 1

2
θ2

t Vart
[
Rm

t+∆
]
, (C.5)

which has the standard mean-variance optimal solution

θ∗t =
Et
[
Rm

t+∆ − R f
t
]

Vart
[
Rm

t+∆

] (C.6)

Implementation of (C.6) requires proxies for the objective conditional expected excess return and
objective conditional variance.

I make one of three sets of assumptions, detailed below.
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C.4.1 Benchmark assumptions: market as growth-optimal

First, one can use the theory from Martin (2017) to construct expected stock returns with option-
implied variance (SVIX). In particular, assume (c.f., equation 15 of Martin, 2017)

Et[Rm
t+∆ − R f

t ] = R f
t SVIX2

t × ∆, (C.7)

where SVIX2
t represents the squared SVIX with the same horizon as the period length.

Assume further that risk-neutral and objective conditional variances coincide, which would arise
in conditionally log-normal environments, so that (c.f., equation 13 of Martin, 2017)

Vart[Rm
t+∆] = (R f

t )
2SVIX2

t × ∆. (C.8)

Under (C.7)-(C.8), we have θ∗t = 1/R f
t ≈ 1, so that the market is approximately growth-optimal as

is effectively assumed in Table 4.

C.4.2 Volatility-managed portfolios

Second, I refrain from assuming excess returns are predictable (as this is a notoriously difficult
exercise), but I do allow for predictable volatility. To implement this in a data-driven way, I run a
forecasting model for monthly realized variance. Here, the idea is closer to the “volatility-managed
portfolios” model of Moreira and Muir (2017), where higher variance forecasts signal an optimal
deleveraging from the stock market.

Let vt := 252 ×
( 1

Nm
∑Nm

i=1(Rm
t−i/252)

2 − ( 1
Nm

∑Nm
i=1 Rm

t−i/252)
2) denote the trailing month realized

variance (annualized) constructed from daily returns (Nm is the number of trading days in the
month; I use Nm = 21). I propose an AR(1) for monthly variance:

vt+1/12 = ν + $vt + εt+1/12. (C.9)

Estimating this model on the aggregate stock market realized variance from 1926:08–2024:05 deliv-
ers ν̂ = 0.013, $̂ = 0.532, and an R-squared of 0.2827.23 Using the one-month variance forecasts
V̂art[Rm

t+1/12] =
1
12

(
ν̂ + $̂vt

)
in conjunction with an unconditional estimate (i.e., time-series average)

for expected excess monthly returns Ê[Rm − R f ], I then construct θ∗t from (C.6), i.e.,

θ∗t =
Ê[Rm − R f ]

ν̂ + $̂vt
. (C.10)

When piecing together these monthly investment weights, I form an annual return via

R∗t+1 =
11

∏
i=0

(
θ∗t+i/12Rm

t+(i+1)/12 + (1− θ∗t+i/12)R f
t+i/12

)
(C.11)

I construct this alternative growth-optimal proxy.

23I have also run several alternative specifications and found trivial gains in forecasting power. I have
augmented the regression with more lags of monthly realized variance. I have tried adding last-month
squared-VIX as a regressor. And I have run a GARCH(1,1) model on the monthly demeaned returns. At
most, the R-squared rises by 0.01, so I stick with the simple AR(1) model (C.9).
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C.4.3 No market timing

Third, I assume that neither returns nor variances are predictable. This leads to

θ∗t =
Ê[Rm − R f ]

V̂ar[Rm]
, (C.12)

which is an optimal portfolio that has no “market timing” (i.e., no time-variation in the weights)
but does embed a leverage adjustment.
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