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1 Introduction

Beware the person of one ���book model. Thomas Aquinas (almost)

An under-appreciated task in the study of dynamic macroeconomics is model compari-

son. This is especially true for models requiring numerical methods to solve and analyze.

While journals seemingly embrace publications that target specific models, there is much

to be gained by looking formally across models.

One strategy for making comparisons across models is to nest models within a common

framework in which each model of interest is a special case. At this juncture, we could

turn things over to a statistician to test which model within this nesting best fits the data.

This strategy makes the most sense when we could plausibly view one of the models within

the family as being “correctly specified,” given data. But in many cases, we see models as

providing valuable insights even when they are not designed to fit some agreed upon list

of favorite facts. As we explore nonlinear models more fully, this nesting-testing approach

becomes all the more challenging. But even for examples when linearized approximations

work well, the fitting all of some predesignated facts can lead to black box outcomes when

driven by the simplistic ambitions of “full” empirical success. Models end up with multi-

ple pieces often clouding the ability to isolate and understand better particular economic

mechanisms.

In this paper, we develop a framework and diagnostic tools for comparing and contrast-

ing dynamic macroeconomic models. The models that interest us require special attention

relative to most dynamic stochastic equilibrium models because of the important role played

by nonlinearity in the implied dynamic evolution. This nonlinearity has notable implica-

tions for both economic and financial market outcomes. Given these ambitions, our analysis

is explicitly numerical and not limited to “paper and pencil” style analyses. It is necessary

that we solve such models using global solution methods as the competitive equilibrium is

typically characterized by a set of highly nonlinear second-order elliptic partial differential

equations. Moreover, even with the option of numerical solutions, we find it revealing to

explore and compare highly stylized models featuring particular economic mechanisms. In

accompanying notebooks and user-friendly software, we propose and explore quantitative

methods that expose salient features of the macroeconomic and valuation dynamics of the

models we investigate. This essay provides illustrations of possible computations.

While we explore three different classes of a models, a common feature in all of them

is a long-run process altering investment opportunities. Our technologies can be viewed as
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production-based specifications inclusive of long-run risk. Analogous to Bansal and Yaron

(2004), we capture this risk with a continuous-time version of a first-order autoregressive

process. The process is meant to be a simple proxy for uncertainty of such phenomenon as

secular stagnation, technological progress or other forms of long-term uncertainty.

The first class of models is in some sense approximately linear. While including stochas-

tic growth following in the footsteps of Lucas and Prescott (1971) and Brock and Mirman

(1972), these models include single investor type and a single capital stock with a long-

run risk contribution to the investment opportunities. While we provide some sensitivity

analyses that are of interest in their own right, understanding this class of models sets the

stage for our subsequent investigations.

The second class of models considers specifications with two capital stocks differentially

exposed to macroeconomic shocks. Capital movements are sluggish in the sense that there

are adjustment costs in both capital technologies. This class of models extend those of

Eberly and Wang (2009) and Eberly and Wang (2011). We investigate the consequences of

heterogeneous technological exposure to long-run risk in conjunction with motives for diver-

sification. Including production in which the two capital stocks are not perfect substitutes

adds an additional economic channel with interesting nonlinear impacts.

The third class of models, motivated in part by financial crises like 2008, considers two

heterogeneous investor types. These agents can differ in skill, preferences, or contractual

and regulatory constraints. Dynamic trading between these heterogeneous investors induces

potentially dramatic economic and financial market outcomes in some states of the world,

especially those in which constraints are binding. Our exercise is motivated by a substantial

literature with a variety of different modeling ingredients. These include, for instance,

the models in Basak and Cuoco (1998), He and Krishnamurthy (2011), Brunnermeier and

Sannikov (2014), and Gârleanu and Panageas (2015). Recently, several papers have exposed

a more complex representation of the role of financial intermediation than that captured

by the stylized models we consider here. It is not our aim in this essay to survey this

literature. The models we consider, however, do have mechanisms that are of interest to

expose that enhance our understanding of nonlinear linkages between financial markets and

the macroeconomy, even if they miss some of the actual complexities that limit financial

intermediaries or other such specialists.
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2 Investor Preferences

In this essay we use a continuous-time specification of a Kreps and Porteus (1978) utility

recursion as in Duffie and Epstein (1992) in connection with an information structure gen-

erated expressed in terms of a vector standard Brownian motion B
def
“ tBt : t ě 0u of dimen-

sion d. Thus we are imposing “local normality”. While shocks are normally distributed, we

entertain nonlinear transition mechanisms that permit endogenously determined variables

to possess transition probabilities and stationary distributions that are not even approx-

imately normal. In this section, we provide a heuristic link between the continuous-time

and discrete-time representation of preferences since the discrete-time formulation has been

used extensively in the quantitative asset pricing literature. The local normality does al-

low for some simplicity when we study continuous-time limiting economies. We do not

ask the reader to be knowledgeable of the subtleties associated with the continuous-time

mathematics.

2.1 Discrete-time

Continuation values provide a convenient way to specify recursive preferences. With this is

in mind, let V
def
“ tVt : t ě 0u be the continuation utility process where Vt is a date-t utility

index that summarizes current and future prospective contributions to preferences. In

discrete time with a time interval ϵ, we use two CES, homogeneous of degree one recursions

to represent the evolution of continuation values:

Vt “
“

r1 ´ expp´δϵqs pCtq
1´ρ

` expp´δϵqRpVt`ϵ | Ftq
1´ρ

‰

1
1´ρ

RpVt`ϵ | Ftq “
`

E
“

pVt`ϵq
1´γ

| Ft

‰˘

1
1´γ (1)

where Ft is the time-t information set. Notice that the second equation computes a certainty

equivalent with parameter γ. If the continuation utility Vt`ϵ is known at t, then γ has no

impact on the recursion since RpVt`ϵ | Ftq “ Vt`ϵ implying that this contribution is indeed

an adjustment for risk. Taking the two equations together, this is a forward looking-

recursion whereby we start with a terminal specification of the continuation utility and

work backwards. We consider infinite horizon counterparts in our computations. Notice

that this recursive specification is governed by three underlying parameters:

i) δ – the subjective discount rate;
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ii) ρ – the inverse of the intertemporal elasticity of substitution (the “IES”);

iii) γ – the risk aversion.

In some later examples, we will have two investor types with possibly heterogenous speci-

fications of the preference parameters pδ, ρ, γq.

Two benchmark special cases of these preferences are: ρ “ γ and ρ “ 1. When ρ “ γ,

this utility recursion defines preferences that are equivalent to those implied by discounted,

time-separable, power utility. Specifically, when γ “ ρ, by solving the recursions forward,

it follows that:

Vt “

˜

E

«

1

1 ´ expp´δϵq

8
ÿ

j“0

expp´δjϵq pCt`jϵq
1´γ

| Ft

ff¸
1

1´γ

, if ρ “ γ. (2)

Imposing ρ “ 1 implies a unitary IES, and the limiting recursion has a Cobb-Douglas

representation:

Vt “ pCtq
r1´expp´δϵqs

rRpVt`ϵ | Ftqs
expp´δϵq , if ρ “ 1.

Continuation values are only defined up to increasing transformations. Numerical and

conceptual convenience lead us to use pVt “ log Vt. (We will always use the notation “ pX” to

designate the logarithm of a variable X.) The logarithmic counterparts to the underlying

recursions are given by:

pVt “
1

1 ´ ρ
log

”

r1 ´ expp´δϵqs pCtq
1´ρ

` expp´δϵq exp
”

p1 ´ ρqpRppVt`ϵ | Ftq

ıı

pR
´

pVt`ϵ | Ft

¯

“
1

1 ´ γ
log

´

E
”

exprp1 ´ γqpVt`ϵs | Ft

ı¯

. (3)

For this representation, ρ “ γ “ 1 is a relevant benchmark whereby the recursions become:

pVt “ r1 ´ expp´δϵqs logCt ` expp´δϵqpRppVt`ϵ | Ftq

pRppVt`ϵ | Ftq “ ErpVt`ϵ | Fts, (4)

which has discounted logarithmic utility scaled by r1 ´ expp´δϵqs as the solution.

4



2.2 Robustness to model misspecification

The recursive utility representation (1) can also be interpreted through the lens of robust

control theory. To begin with, consider a positive random variable Lt`ϵ with unit condi-

tional expectation — a convenient mathematical device pertinent to models of subjective

beliefs that are distinct from those implied by the data generating process:

E pLt`ϵ | Ftq “ 1.

Think of Lt`ϵ as a relative density (likelihood ratio) that alters the transition probability

from t to t`ϵ. To obtain the implied subjective conditional expectations, multiply the next-

period random variables by Lt`ϵ prior to forming the conditional expectations. For instance,

the implied subjective expectation of next period’s continuation value is EpLt`ϵ
pVt`ϵ | Ftq.

While a subjective belief specification allows for departures from a “rational expecta-

tions” assumption that investors know the data generating process, we use the modeling

approach differently. Suppose that the investor has a benchmark model of the transition

probabilities without full confidence in that specification. This skepticism is expressed by

entertaining other models, with a particular interest in ones that are “statistically close”

to the benchmark model. This approach has antecedents in the robust control literature.1

Formally, solve

min
Lt`ϵě0

EpLt`ϵ|Ftq“1

E
´

Lt`ϵ
pVt`ϵ | Ft

¯

` ξE pLt`ϵ logLt`ϵ | Ftq “ ´ξ logE
„

exp

ˆ

´
1

ξ
pVt`ϵ

˙

| Ft

ȷ

, (5)

which is familiar from applied probability theory. This minimization problem investigates

the expected utility consequences of altering the probability distribution subject to a condi-

tional relative entropy penalty used as a Kullback-Leibler measure of statistical divergence.

The parameter ξ penalizes the search over alternative probabilities. Setting ξ “ 8 imple-

ments expected logarithmic utility. Small values of the penalty imply a large aversion to

uncertainty about the transition probabilities.

The minimizing solution to problem (5) is:

L˚
t`ϵ “

exp
´

´1
ξ

pVt`ϵ

¯

E
”

exp
´

´1
ξ

pVt`ϵ

¯

|Ft

ı (6)

1See, for instance, Jacobson (1973), Whittle (1981), James (1992), and Petersen et al. (2000).
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provided that the denominator is well defined. This formulation gives an example of what

Maccheroni et al. (2006) call variational preferences designed to confront broader notions of

uncertainty other than risk. The implied minimizer is of interest for the reasons articulated

by the robust Bayesian, Good (1952), as a way to assess plausibility. Moreover, the implied

measure of statistical divergence is revealing as a measure of statistical challenges implicit

in the choice of the penalty parameter ξ.

This construction is an alternative interpretation for the large risk aversion often im-

posed in recursive utility models. The mathematical equivalence can be seen by letting

ξ “ 1
γ´1

. The economic interpretation, however, is very different as is the assessment of

what are plausible calibrations.

2.3 Continuous-time limit

To depict the continuous-time counterpart to equation (1), suppose that the continuation

utility evolves as:2

dpVt “ µ̂v,tdt ` σv,t ¨ dBt.

where µ̂v,t is the local mean and |σv,t|
2 is local variance. In positing this evolution we are

using local normality induced by the Brownian increments to deduce the local normality

of the continuation utility increments.

The limiting version of recursion (1) gives the following restriction on pµ̂v,t, |σv,t|
2q:

0 “

ˆ

δ

1 ´ ρ

˙

“

pCt{Vtq
1´ρ

´ 1
‰

` µ̂v,t `

ˆ

1 ´ γ

2

˙

|σv,t|
2. (7)

For the unitary IES case (ρ “ 1), equation (7) becomes:

0 “ δ
´

pCt ´ pVt

¯

` µ̂v,t `

ˆ

1 ´ γ

2

˙

|σv,t|
2 (8)

Equations (7)-(8) provide an expression for the local mean µ̂v,t as a function of pCt ´ pVt and

the local variance |σv,t|
2.3

2Starting with V instead of pV , we would write dVt “ Vtrµv,tdt` σv,t ¨ dBts where µ̂v,t “ µv,t ´ 1
2 |σv,t|

2.
3We find this representation to be both pedagogically revealing with a direct heuristic link to familiar

discrete-time specifications. Continuation values are only well defined up to a strictly increasing transfor-
mation as emphasized by Duffie and Epstein (1992). For mathematical reasons, often a different ordinally
equivalent representation, pVtq

1´γ{p1 ´ γq, is used in many papers constructed to remove the volatility
contribution to the recursion.
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Consider once again the robust interpretation of our recursive preferences and the min-

imization problem (5). This problem has a simplified version in the case of a Brownian

motion information structure. Let L be a positive martingale or likelihood ratio used to

induce an alternative probability distribution. From the Girsanov Theorem, under the

probability measure induced by L, the process B becomes a Brownian motion with a drift

H
def
“ tHt : t ě 0u. Locally, the Brownian increment dBt inherits a drift Htdt. The

evolution of L thus takes the form

dLt “ LtHt ¨ dBt

and in logarithms:

dpLt “ ´
1

2
|Ht|

2dt ` Ht ¨ dBt

where for convenience we normalize L0 “ 1 or equivalently pL0 “ 0. Under the implied

change of probability measure, the drift of pL is ´1
2
|Ht|

2, which is a local measure of

Kullback-Leibler divergence or relative entropy. The continuous-time recursive formula-

tion of (5) then becomes

min
Ht

µ̂v,t ` σv,tHt `
ξ

2
|Ht|

2.

The minimizing Ht is

H˚
t “ ´

1

ξ
σv,t

1 (9)

with a minimized objective given by:

pµv,t ´
1

2ξ
|σv,t|

2.

Comparing this result to the limiting recursion (7), and consistent with our discrete time

discussion of section 2.2, the parameter γ can be viewed as a form of uncertainty aversion,

instead of a measure of risk aversion, implemented by formula: γ ´ 1 “ 1{ξ.

2.4 Stochastic discount factor process

We deduce a representation for the shadow stochastic discount factor (SDF) process in

discrete and continuous time. For economies with a single agent type, this shadow SDF

provides a convenient representation of equilibrium asset prices. In heterogeneous agent

economies with financing frictions, the shadow SDFs are typically not equalized across
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agents types but they can be used to represent commonly traded assets. Moreover, their

differences reflect the absence of full risk sharing induced by market frictions.

Think of the SDF process S as providing a way to depict shadow prices over any

investment horizon. In particular, St`ϵ{St in conjunction with the transition probabilities

associated with an underlying probability measure give date-t prices for a payoff at date

t ` ϵ. Deduce the shadow SDF process by computing the intertemporal marginal rate of

substitution across different possible realized states in the future. By differentiating through

the utility recursion, the evolution over a period of length ϵ, expressed in logarithms, is

pSt`ϵ´ pSt “ ´ϵδ´ρ
´

pCt`ϵ ´ pCt

¯

`p1´γq

”

pVt`ϵ ´ pRppVt`ϵ | Ftq

ı

`pρ´1q

”

pVt`ϵ ´ pRppVt`ϵ | Ftq

ı

.

Of particular interest, the term p1 ´ γqrpVt`ϵ ´ pRppVt`ϵ | Ftqs adjusts for risk or robustness.

Its exponential has conditional expectation equal to unity and is equal to the minimizer

L˚
t`ϵ in (6). Thus, this particular contribution to the SDF induces a change in the prob-

ability distribution motivated explicitly by robustness considerations. More generally, the

difference between pVt`ϵ and its certainty equivalent pRt is forward looking and depends on

the decision maker’s perspective of the future. This contribution vanishes when γ “ ρ.

When ρ “ 1, only the change in measure contribution is forward looking.

Consider next the local evolution of the SDF. Write:

dSt “ ´rtStdt ´ Stπt ¨ dBt

With this representation, rt is the instantaneous risk-free rate and πt is the vector of local

prices of exposure to the Brownian increment dBt, also called “risk prices”. Similarly, write

the local consumption evolutions as:

d pCt “ µ̂c,tdt ` σc,t ¨ dBt.

Then, in terms of the dynamics of pC and pV (above), we have the following riskless rate

and risk prices

rt “ δ ` ρµ̂c,t ´
1

2
|πt|

2
`

pγ ´ 1qpγ ´ ρq

2
|σv,t|

2

πt “ ρσc,t ` pγ ´ ρqσv,t.
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3 Local measures of exposures and prices

In all the models we consider, the logarithms of several quantities of interest will grow

or decay stochastically over time with increments that are stationary Markov processes.

Let M be such a process and xM its logarithm. Restrict the process xM to display linear,

stochastic growth or decay. Write

xMt`ϵ ´ xMt “ ϵµ̂mpXtq ` σmpXtq ¨ pBt`ϵ ´ Btq (10)

where X is an asymptotically stationary Markov process. Examples of such xM processes

in our models are the log SDF pS and log consumption pC.

3.1 Shock elasticities

Shock elasticities are constructed using local changes in the exposure to shocks. For in-

stance, consider a shock, Bϵ ´ B0 that is distributed as a multivariate standard normal.

We introduce a parameterized family of random variables Hϵprq where

logHϵprq “ rνpX0q ¨ pBϵ ´ B0q ´
r2

2
ϵ|νpX0q|

2.

where we normalize the row vector ν so that E r|νpX0q|2s “ 1. In our applications, ν is state

independent and selects one of the components of Bϵ ´ B0. Notice that Hϵprq is positive

and has conditional expectation equal to one. Consider:

d

dr
logE

„ˆ

Mt

M0

˙

Hϵprq | X0

ȷ
ˇ

ˇ

ˇ

ˇ

r“0

“

νpX0q ¨ E
”´

Mt

M0

¯

pBϵ ´ B0q | X0

ı

E
”´

Mt

M0

¯

| X0

ı . (11)

We refer the outcome as a shock elasticity because we differentiate a logarithm with respect

to an argument Hϵprq which is equal to one at r “ 0. This elasticity depends on the state

X0 and horizon t.

In formula (11), notice that the essential input is:

E
”´

Mt

M0

¯

pBϵ ´ B0q | X0

ı

E
”´

Mt

M0

¯

| X0

ı , (12)
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which is a “distorted expectation” of the shock Bϵ ´ B0. When scaled by 1
ϵ
, this has well

defined diffusion limit as ϵ Ó 0. This limit has been characterized in the stochastic process

literature as “Malliavin derivative” and can be computed numerically in a straightforward

way for Markovian economies. See Borovička et al. (2014) for further discussion.

The scaling by Hϵ in formula 11 (or its continuous time limit) has two distinct inter-

pretations depending on the application:

i) it changes the distribution of Bϵ by giving it a conditional mean ϵrνpX0q

ii) it changes the exposure of xMt ´ xM0, and hence Mt{M0, to the shock Bϵ ´B0 through

the addition of rνpX0q ¨ pBϵ ´ B0q.

The first of these interpretations provides a distributional version of an impulse re-

sponse function. It matches exactly for the linear, log-normal model, in which case X is

a multivariate, Gaussian vector autoregression, µ is affine in x, and ν and σm are vec-

tors of constants. Once we include nonlinearities, the state x can matter along with the

time horizon t. See Gallant et al. (1993) and Koop et al. (1996) for related constructs of

nonlinear impulse responses. For intertemporal asset pricing applications, the second inter-

pretation will help us understand shock elasticities as implied compensations for changes

in the exposures. We discuss this asset pricing application next.

3.2 Compensations for exposure to uncertainty

Let pY denote the logarithm of a cash flow process, and let pS denote the equilibrium log

SDF process both of which have stochastic evolutions of the form (10). Compute:

i) exposure elasticity

νpX0q ¨ E
”´

Yt

Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Yt

Y0

¯

| X0

ı ;

ii) value elasticity

νpX0q ¨ E
”´

StYt

S0Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

StYt

S0Y0

¯

| X0

ı ;
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iii) price elasticity (exposure minus value)

νpX0q ¨ E
”´

Yt

Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Yt

Y0

¯

| X0

ı ´

νpX0q ¨ E
”´

StYt

S0Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

StYt

S0Y0

¯

| X0

ı ;

These all have well defined continuous-time limits as ϵ Ó 0. As mentioned above, one can

interpret the price elasticity as the expected excess return required for a marginal increase

in risk exposure to Y .

There is one additional calculation that is also of interest. Suppose thatM “ exppxMq is

a martingale, L. This is of interest when entertain beliefs that differ from the data generat-

ing process and deducing the value contributions. From the Law of Iterated Expectations,

νpX0q ¨ E
”´

Lt

L0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Lt

L0

¯

| X0

ı “

ˆ

1

ϵ

˙

νpX0q ¨ E
„ˆ

Lϵ

L0

˙

pBϵ ´ B0q | X0

ȷ

,

and does not depend on the horizon t. In this circumstance (and perhaps others as well),

we find it revealing to change the date of the Brownian increment by reporting the small

ϵ limit of
1

ϵ
νpX0q ¨ E

„ˆ

Lt

L0

˙

pBt ´ Bt´ϵq | X0

ȷ

(13)

as a term structure of “uncertainty prices.” These prices will be horizon dependent.

4 An initial benchmark economy

For pedagogical purposes, we begin our exposition by focusing on a “representative house-

hold” with recursive preferences in a complete-market production economy featuring long-

run-risk shocks. We may view the economy as a production-based counterpart to that in

the seminal paper by Bansal and Yaron (2004). In part we share a similar ambition to that

of Jermann (1998) in describing a production-based model with asset pricing, but we also

use this class of models as a benchmark for model classes that include heterogeneous capital

or heterogeneous investors. We follow Bansal and Yaron (2004) by focusing on recursive

utility in contrast to Jermann (1998), who features habit persistence preferences.

Since our benchmark model features complete markets, we study the planner problem

to characterize equilibrium quantities and prices in the economy. A decentralized version
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of the model allows for a rich set of assets local spanning of the Brownian increments along

with a riskless security. These local prices are embedded in the stochastic discount factor

evolution.

Even for a models with a single capital stock, the introduction of capital turns out

to be important relative to endowment economies when we change preference parameters.

Much of the asset pricing literature features endowment economies in which changes in

the intertemporal elasticity of substitution (IES) has only pricing impact. As we will

illustrate, in a production economy changing the IES has a substantial impact on the

investment/capital ratio and hence growth in the underlying economy.

4.1 Exogenous stochastic inputs

We presume that there are two underlying exogenous processes that evolve as solutions to

stochastic differential equations

dZ1
t “ ´β1Z

1
t dt `

a

Z2
t σ1 ¨ dBt (14)

dZ2
t “ ´β2pZ2

t ´ 1qdt `
a

Z2
t σ2 ¨ dBt (15)

where β1 ą 0, β2 ą 1
2
|σ2|

2. In addition, σ1, σ2, are d-dimensional vectors of real numbers.

The Z1 process governs the conditional mean of the stochastic component to technology

growth and the process Z2 captures the exogenous component to aggregate stochastic

volatility. Notice that
?
Z2 scales the Brownian increment to both of the processes. The

local variance of the exogenous technology shifter is Z2
t |σ1|

2, and the local variance for the

stochastic volatility process is Z2
t |σ2|2.

The stochastic variance process Z2 is a special case of a Feller square root process. The

exogenous stochastic technology growth process, Z1, is a continuous-time version of an

autoregression with innovations that are conditionally heteroskedastic. The autoregressive

coefficients for discrete-time counterparts are expp´β1q, exp p´β2q. Values of β1 and β2

that are close to zero imply a large amount of persistence. The unconditional mean of Z1

is normalized to be zero, and the unconditional mean of Z2 is normalized to be one. In

what follows, we let

Zt
def
“

«

Z1
t

Z2
t

ff

.
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and

µzpZtq
def
“

«

´β1Z
1
t

´β2pZ
2
t ´ 1q

ff

σz
def
“

a

Z2
t

«

σ1
1

σ2
1

ff

.

4.2 Technology

We use a so-called AK technology with adjustment costs to represent production.4 Let Kt

be the stock of capital, It the investment rate, and Ct the consumption rate at date t. The

technology consists of two equations: an output and a capital evolution equation. Output

is constrained by:

Ct ` It “ αKt, (16)

where α is a fixed productivity parameter. Our capital accumulation equation features

aggregate shocks as follows:

dKt “ Kt

„

Φ

ˆ

It
Kt

˙

` βkZ
1
t ´ ηk

ȷ

dt ` Kt

a

Z2
t σk ¨ dBt, (17)

where ηk embeds an adjustment for depreciation and σk is a d ˆ 1 vector quantifying the

importance of the Brownian motion in generating stochastic returns to investment. The

function Φ, called the installation function by Hayashi (1982), is an increasing and concave

function. A leading example of Φ in our essay is

Φpiq “
1

ϕ
log p1 ` ϕiq . (18)

where i is a stand in for a realization of the investment-capital ratio. The small i quadratic

approximation is:

Φpiq « i ´
ϕ

2
i2

We note this relationship since quadratic specifications are often imposed in the investment

literature.

By design, the technology is homogeneous of degree one in investment, capital and con-

sumption. This model has stochastic shocks that i) alter the physical returns to investment;

ii) shift the conditional mean of that investment; and iii) shift the aggregate volatility of

the technology. For such a stylized model, capital should be interpreted very broadly and

potentially should include human, organizational, and intangible contributions. The shock

4See, e.g., Cox et al. (1985), Merton (1973), Jones and Manuelli (1990) and Brock and Magill (1979).
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to physical returns to investment is sometimes referred to as “capital quality shock” or a

“technology shock.”5

4.3 Value function

Given the homogeneity properties of both preferences and technology, the value function

scales linearly with the capital stock. It will be most convenient to work with the logarithm

of the value function, which we posit takes the following form:

pVt “ pKt ` υpZtq. (19)

We combine the evolutions of υpZtq and pKt to deduce a Hamilton-Jacobi-Bellman equation

for the function υ:

0 “ max
c`i“α

"ˆ

δ

1 ´ ρ

˙

`

c1´ρ exp rpρ ´ 1qυs ´ 1
˘

` Φpiq ` βkz1 ´ ηk ´
1

2
z2|σk|

2

`µz ¨
Bυ

Bz
`
z2
2
trace

"

σz
1 B2υ

BzBz1
σz

*

`
p1 ´ γqz2

2

ˇ

ˇ

ˇ

ˇ

σk ` σz
1 Bυ

Bz

ˇ

ˇ

ˇ

ˇ

2
+

, (20)

where c is the consumption-to-capital ratio and i is the investment-to-capital ratio. The

first-order condition for the optimal consumption-capital ratio, c˚, is:

δ rc˚
pzqs

´ρ exp rpρ ´ 1qυpzqs “ Φ1
rα ´ c˚

pzqs . (21)

Capital provides the sole source of wealth in this economy. Total wealth is given by the

continuation value divided by the marginal utility of consumption, evaluated at equilibrium

outcomes:6
1

δ
rc˚

pzqs
ρ exprp1 ´ ρqυpzqsk.

The implied price of capital is given by Qt “ qpZtq where

qpzq “
1

δ
rc˚

pzqs
ρ exprp1 ´ ρqυpzqs “

1

Φ1 rα ´ c˚pzqs
“ 1 ` ϕi˚pzq. (22)

5Our model is isomorphic to an AK model where productivity (instead of capital Kt) is being hit by
Brownian shocks, and in which adjustment costs also scale up and down with such shock.

6The two recursions in (1) are both homogeneous of degree one. From an infinite-dimensional version
of Euler’s Theorem, the continuation value divided by the marginal utility of consumption is the current
period shadow price of current and future consumption which equals wealth in equilibrium.
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The instantaneous capital return in this economy has an exposure to the vector, dBt, of

Brownian increments given by

a

Z2
t σk `

a

Z2
t

B ln q

Bz1
pZtqσz

where the first term captures the exposure of capital to the Brownian increments and the

second one reflects the exposure of valuation to these same increments.

4.4 Example economies

In contrast to the other economies that we study, this economy can be well approximated by

log-quadratic approximations. We use this as a benchmark to the study of economies that

are more explicitly nonlinear. We imagine a family of economies indexed by pρ, γ, δ, αq. Of

course other parameter sensitivity could also be explored. Our use of a production economy

provides a revealing contrast to the familiar Lucas (1978) endowment economy.

In consumption-based models with endowment specifications, the preference parameter

ρ has a substantial impact on the risk-free rate. In models with production, like the ones

we explore here, changing ρ while holding other parameters of preferences and technology

fixed, has a substantial impact on production and savings. Table 1 gives parameter values

that we hold fixed in these computations, and Table 2 reports the steady state investment-

and consumption-to-output ratios along with the steady state growth rate. The IES has a

dramatic impact on all these average macroeconomic aggregates.

ηk ϕ βk β1 β2 σk σ1 σ2

.04 8 .01 .056 .145
”

.0095 0 0

ı ”

.022 .050 0

ı ”

0 0 .26

ı

Table 1: Parameter values that we hold fixed for the one-capital model. The numbers for β1, σk and σ1
come from Hansen and Sargent (2021), and the numbers for β2 and σ2 come from Schorfheide et al. (2018).
In both cases, we use the medians of their econometric evidence for post war data. When Schorfheide et al.
(2018) fit to a longer time series including the depression, their counterpart to σ2 is about double.
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ρ 0.67 1 1.5

consumption-output ratio 0.012 0.175 0.279

investment-output ratio 0.988 0.825 0.721

steady state growth rate 0.028 0.019 0.013

Table 2: Steady states for alternative specifications of ρ for α “ .092 and δ “ .01. These are computed by
setting shock variances to zero.

To diminish this impact, we change the productivity parameter α to pin down a common

growth rate in consumption. Table 3 reports the results. There is still a noticeable impact

of ρ on investment- and consumption-to-output ratios, but not nearly as dramatic. The

subjective discount rate also impacts these steady states by increasing the consumption-

to-output ratios as also seen by Table 3.

δ “ .01

ρ 0.67 1 1.5

consumption-output ratio 0.071 0.175 0.296

investment-output ratio 0.929 0.825 0.704

productivity pαq 0.082 0.092 0.108

growth rate 0.019 0.019 0.019

δ “ .015

ρ 0.67 1 1.5

consumption-output ratio 0.155 0.242 0.346

investment-output ratio 0.845 0.758 0.654

productivity pαq 0.090 0.100 0.116

growth rate 0.019 0.019 0.019

Table 3: Steady states adjusting the productivity parameter α to match a fixed the growth rate. These
are computed by setting the shock variances to zero.

We next consider shock exposure and shock price elasticities. We focus on the growth-

rate shock. The capital evolution shock is also quantitatively important. In contrast, the

impact of the stochastic volatility shock is quantitatively small.7 Stochastic volatility does

induce state dependence in the other shock elasticities as we will illustrate.

7The quantitative magnitudes could be amplified by pushing the mean reversion parameter β2 even
closer to zero, as is done in calibrations of asset pricing models.
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Consider the shock exposure elasticity, or equivalently the local impulse response func-

tion, for the investment-to-output ratio. Since output is proportional to capital, formula

(22) implies these are also approximately the elasticities for the price of capital (which is

affine in the investment-to-capital ratio). As Figure 1 shows, the responses to a growth rate

shock are positive when ρ ă 1 and negative when ρ ą 1. The elasticities are only modestly

sensitive to changing the risk aversion parameter γ, while they increase notably when the

subjective discount rate δ is increased.

Figure 1: Investment-output ratio exposure elasticities to a growth-rate shock. The elasticities are initial-
ized by setting the stochastic growth rate state to zero.

Finally, we consider both the shock exposure and price elasticities of consumption in

Figure 2. The consumption elasticity to a growth rate shock builds over time, as expected

given investment adjustment costs. The ρ “ 1 elasticities imitate those of an endowment

economy like the Bansal and Yaron (2004) economy (without stochastic volatility). The

risk aversion parameter γ has very little impact on these exposure elasticities, in contrast to

the price elasticities. As revealed by Figure 2, the shock price elasticities are very sensitive,

as expected, to the choice of γ. Recall the robustness interpretation of recursive utility,

where misspecification concerns contribute a martingale component to valuation. This

component comes to dominate as γ becomes larger and this leads to relatively flat shock

price elasticity trajectory.
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Figure 3 shows how the elasticities depend on the initial level of volatility. The key

takeaway is that stochastic volatility provides exogenous fluctuations in risk pricing, in

contrast to some of the more endogenous mechanisms that we explore going forward. In

addition, as is well understood, a shock to exogenous volatility itself is priced under these

preferences, as shown via its shock price elasticity in the right panel.

Figure 2: Exposure and price elasticities for the growth rate shock. Perturbations are relative to the
equilibrium consumption process. The growth and volatility states are set to their medians.

Figure 3: Exposure and price elasticities for γ “ 12, ρ “ 1, and for alternative volatility quantiles.
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4.5 Endogenous fluctuations in valuation

Here we illustrate an endogenous channel induced by ambiguity aversion by building on

ideas from Chen and Epstein (2002), Hansen (2007), Andrei et al. (2019), and, in particular,

Hansen and Sargent (2021). As we will show, this adds a form of state dependence in

valuation. For this illustration we focus exclusively on the case in which ρ “ 1. To feature

the endogenous of fluctuations in valuation, we abstract from exogenous stochastic volatility

in this subsection (by setting σ2 “ 0).

We follow Hansen and Sargent (2022) by considering both model ambiguity and po-

tential model misspecification. Recall that recursive utility provides a direct link to the

latter, an approach that we continue to use here. For model ambiguity, we proceed dif-

ferently. Given a parameterized family of models, the investor is unsure how much weight

should be given to each. For a Bayesian decision maker, this would be addressed with

subjective inputs in the form of a prior. Our investor is unsure which such prior to impose.

Formally, we using a framework for diffusion processes that is consistent with Chen and

Epstein (2002) to entertain a rich family of what Hansen and Sargent (2022) refer to as

“structured” models.

In our application we start with four-dimensional space of unknown parameters in the

drifts of capital K and the growth rate Z1. We modify the evolution of Z1 to be:

dZ1
t “ ψ1 ´ β1Z

1
t ` σ1 ¨ dBt

where the parameter ψ1, which we have taken to be zero so far, allows for a shift in the local

drift dynamics that does not scale with Z1. In the long-term, ψ1 ‰ 0 could induce a nonzero

unconditional mean in Z1 process. The unknown parameters are ηk, βk, ψ1, β1. Recall that

ηk governs depreciation and βk the exposure to long-term growth rate uncertainty. Our

investors take uncertainty in these parameters as a starting point, but they entertain a

so-called time varying parameter perspective without imposing a prior on the form of the

time variation. Instead the parameters are constrained to be in an ambiguity set using a

recursive measure of relative entropy or Kullback-Leibler divergence as described in Hansen

and Sargent (2021). Figure 4 plots two-dimensional projections of the ambiguity set.8 In

effect, this approach entertains misspecification relative to a benchmark in a much more

structured way than that embedded in the robust interpretation of Kreps and Porteus

8We constructed these sets using, in the notation of Hansen and Sargent (2021), q “ 0.3 with ρ1 “ 0

and ρ2 “
q2

2|σ1|2
.
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(1978) utility.

In this recursive formulation of ambiguity aversion, investors minimize the expected

value function increment over the four dimensional set of parameter values, instant-by-

instant. The minimizer over this four-dimensional set will reside somewhere on the bound-

ary and its location will depend on the realized growth-rate state, z1. The problem is made

tractable in part because the minimization problem is quadratic. We also include potential

model misspecification in the same manner as described previously.

We illustrate the nonlinear outcome by reporting the implied uncertainty-adjusted (min-

imizing) drift for the long-run growth process in Figure 5. The downward slope of the line

in the baseline models governs the pull towards zero in the conditional mean dynamics for

Z1. The dashed and dot-dashed curves are the uncertainty-adjusted nonlinear counter-

parts. The dot-dashed curve includes misspecification concerns in addition to parameter

ambiguity. Observe that these curves are flatter for negative growth rates and steeper

for positive growth rates. This is to be expected because investors fear persistence when

growth is sluggish and the lack of persistence when growth is brisk. This outcome emerges

in the computations in part because of how the minimizing choice of β1 over the ambigu-

ity set displayed in Figure 4 of depends on z1. The investor is exploring the other three

parameters as well, and outcome of minimization also impacts Figure 5 and a counterpart

for drift specification for capital.

While the one-capital model without ambiguity concerns can be approximately solved

using log-quadratic approximation, the model with ambiguity requires a global alternative

to capture the potential nonlinearities that are entertained by the decision maker.
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Figure 4: Ambiguity parameter sets constrained by a flow measure of relative entropy developed in Hansen
and Sargent (2021). The plot on the left informs us about the assumed ambiguity in the depreciation
parameter pαq and a constant term pψ1q in the evolution equation for Z1. The plot on the right gives the
assumed ambiguity in the slope coefficients βk for the state Z1

t in the capital evolution and the persistence
parameter in the state evolution pβ1q. The baseline parameters are recorded as dots in the two figures.

Figure 5: Distorted growth rate drift and stationary density for Z1. Black solid: baseline model; red
dashed: γ “ 1; blue dot-dashed: γ “ 12; and gray dashed: Z1 stationary density
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The two forms of uncertainty aversion we consider introduce a composite martingale

component to valuation. We explore its properties by looking at the implied uncertainty

price elasticities using the formula (13). The results are reported in Figure 6. As we have

shown, increasing γ is equivalent to enhancing overall concerns about model misspecifica-

tion. This increases the uncertainty prices. We represent state dependence by exploring not

only the median, but also the 10th and 90th percentiles. While the 90th percentile prices

start higher than the others, this gets reversed as we go out to longer horizons. This reflects

the decrease in persistence in the uncertainty-adjusted probability measure for relatively

high realized values of the growth state Z1
t .

Figure 6: Shock price elasticities for the martingale contribution induced by uncertainty aversion. Black
solid: median of the Z1 stationary distribution; red dashed: .1 decile; and dot-dashed: .9 decile.

In summary, we get movements in asset values induced by changes in what models are

most concerning within the constrained ambiguity set. This fluctuation is induced in large

part by uncertainty in the persistence of the process Z1. In low growth states investors

are concerned about being “stuck in a rut” whereas in good times they worry that brisk
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growth will end soon. This type of mechanism was noted in Hansen (2007) in a distinct but

related modeling framework. That paper uses a different specification of ambiguity aversion

and entertains explicit learning. In the example here, learning is off the table because of

potential time or state variation in parameters. Relatedly, learning about persistence was

also featured in Andrei et al. (2019) as mechanism for fluctuations over time in valuation.

5 Sluggish heterogeneous capital stocks

We now explore two capital models with growth rate uncertainty. Precursors of these

models are the multiple tree models of Cochrane et al. (2008) and Martin (2013). These

models do not entertain capital movements from one production source to another. Here we

follow Eberly and Wang (2009), Eberly and Wang (2012), Hansen et al. (2020), and Kozak

(2022) by allowing capital mobility subject to adjustment costs. In this sense, capital

movements are sluggish. We extend the capital evolution in Eberly and Wang (2009),

Eberly and Wang (2012), and Kozak (2022) by introducing exposures to an exogenously

specified growth rate uncertainty consistent with our previous examples, similar to Hansen

et al. (2020). We allow for the exposure to this uncertainty to be heterogeneous.

Formally, consider a family of models with two capital stocks and adjustment costs.

dKj
t “ Kj

t

«

Φj

˜

Ijt

Kj
t

¸

` βj
kZ

1
t ´ ηj

ff

dt ` Kj
t

a

Z2
t σ

j
k ¨ dBt,

for j “ 1, 2. Suppose that the output equation is now

Ct ` I1t ` I2t “ αKa
t

where aggregate capital is a CES aggregator of the two capital stocks:

Ka
t “

”

p1 ´ ζq
`

K1
t

˘p1´τq
` ζ

`

K2
t

˘p1´τq
ı

1
1´τ

for 0 ď ζ ă 1 and τ ě 0. For characterization and computation, we form two state

variables: one is pYt “ logpK2
t {K1

t q and the other is pKa
t . For this class of models, the value

function has the separable form:

pVt “ pKa
t ` υppYt, Ztq.
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Eberly and Wang (2009), Eberly and Wang (2012), Hansen et al. (2020) and Kozak

(2022) feature the case in which the two capital stocks are perfect substitutes (τ “ 0, ζ “

.5). In the illustrations that follow, we also impose this restriction. Our computational

software allows for production curvature among the two capital stocks and opens the door

to an even richer collection of examples. With perfect substitutability, the deterministic

limit of this model has multiple steady states. This makes locally linear-quadratic approx-

imations inoperative. Even with production curvature, local methods can be unreliable.

Global solutions’ approaches are necessary for this class of examples.

Parameters common across the two capitals

ηk ϕ α, ρ β1 σ1

.04 8 α “ .164, .184, .216 .056
”

.0156 .0156 .050 0

ı

ρ “ .67, 1, 1.5

symmetric asymmetric capital volatilities

β1
k “ .01 β1

k “ 0 σ1
k “

”

.0126 0 0 0

ı

β2
k “ .01 β2

k “ .02 σ2
k “

”

0 .0126 0 0

ı

Table 4: Parameter values for the two capital model. For the two capital model, we include a separate
capital shock for each technology. The coefficients on the two capital stocks are given by the first two
entries of the σ’s. We doubled α for the two capital because Ka

t is the average capital stock for each of the
three specifications of ρ. We scaled down the first two entries of σ1 in order that the overall instantaneous
standard deviation |σ1| remains the same as for the one capital model. We follow Hansen et al. (2020)
and scale up σi

k for i “ 1, 2 in order that consumption volatility remain about the same as for the one-
capital model. The specification “symmetric” presumes symmetric exposure to growth uncertainty, while
the specification “asymmetric” presumes that only the second capital is exposed to growth uncertainty.

We consider two different specification of exposures. One specification is “symmetric.”

While each capital stock has its own shock, the relative importance of long-term uncertainty

to each Kj is the same. The other specification is “asymmetric.” The first capital stock is

not exposed to long-run uncertainty while the second one is. Table 4 gives parameter values

supporting figures that follow along with explanations. For these economies we abstract

from stochastic volatility and parameter ambiguity.
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Figure 7: Stationary densities for the second capital stock as share of total capital. For the “asymmetric”
row, only the second capital stock is exposed to growth-rate uncertainty. Finally, for the “curvature” row,
the τ “ 1 specification assumes a unitary substitution elasticity across the two types of capital, and the
τ “ 2 specification assumes a substitution elasticity equal to 1{2. The results in the third row impose ρ “ 1
and the same exposure to long-term uncertainty for both capital stocks.

We start by reporting stationary densities in Figure 7 for the fraction of the capital that

is allocated to the second technology. Consider first the case of symmetric exposures. We

see some sensitivity to the IES with the plots for ρ “ .67 being more peaked. As Eberly

and Wang (2012) emphasize, increasing risk aversion through changing γ (or increasing

the concern for misspecification) makes diversification all the more attractive giving rise

to densities that are much more sharply peaked. It is noteworthy that when γ “ 1,

the asymmetric parameterization flattens out the allocation densities. But arguably more
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interesting is that for γ “ 12 the second capital stock becomes much less attractive and

even more so as we decrease ρ. The mode of the density is now centered near .2 instead of .5

as investors seek to avoid exposure to long-term uncertainty. For the model specifications

discussed so far, the two capital stocks are perfect substitutes in the production of output.

So far, the only heterogeneity in the capital stock is in the exposure to shocks and

long-term uncertainty. We next illustrate the impact of production function curvature by

making the elasticity of substitution across the two types of capital one pτ “ 1q and one-

half pτ “ 2q. See the third row of Figure 7. This decrease in elatisticity of substitution

in production makes the stationary densities more peaked. This is to be expected given

the more central role both capital stocks in the production of output. We include this

computation as an illustration only, as there are alternative substantive motivations for

multiple capital stocks with differential impacts on production. For example, intangible,

organizational or human capital contribute to production in arguably distinct ways. While

incorporation of these components could lead to even richer models, the force on display

in Figure 7 will still be present.9

Figure 8 plots the shock elasticity or local impulse responses for the aggregate investment-

to-capital ratio. We only depict these for γ “ 12 as the γ “ 1 responses are very similar.

The elasticities for the symmetric case are very similar to those we computed for the one-

capital model. In contrast, for the asymmetric case the responses are more muted consistent

with the flatter densities reported in Figure 7. Figure 9 depicts the shock price elasticities

for the growth shock. We report only the case in which γ “ 12 as the γ “ 1 results are

unsurprisingly small. The price elasticities are very flat reflecting a dominant martingale

component to the SDF. Recall we used robustness concerns to model misspecification as an

important contributor to this martingale. The magnitude of the growth-rate shock price

elasticities are very close to those we reported for the single-capital model. In the asym-

metric case, the prices are significantly smaller because capital is reallocated to reduce the

exposure to growth rate uncertainty.

9See Crouzet et al. (2022) for a recent discussion of modeling and measuring intangible capital.
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Figure 8: Investment-output ratio exposure elasticities for γ “ 12. The reported elasticities condition on
the medians of the state variables.

Figure 9: Consumption price elasticities for γ “ 12. The reported elasticities condition on the medians of
the state variables.

6 Heterogeneous agents and financial frictions

We now explore a different form of heterogeneity. We alter our one-capital baseline model

in Section 4 to include (ex-ante) agent heterogeneity and financial frictions. Agents will be

heterogeneous in both their preferences, productivities, and financial market access. We

think of the baseline economy as one in which multiple economic agents have homogeneous

preferences and homogeneous access to the production technology. In this case, consump-

tion and wealth are proportional over time, making aggregation immediate. This simple

aggregation will not be true in the class of economies that we explore in this section. With

various forms of market impediments, we can no longer focus on the planner problem as has
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been true in our previous examples. Instead we study a competitive equilibrium in which

wealth heterogeneity matters. As in our previous economies, we entertain the possibility

of growth-rate uncertainty in the production technology. We feature model comparisons

within a conveniently nested class of models.

6.1 Environment, equilibrium, and solution overview

There are two agent types in the economy: “experts” and “households”, indexed by e and

h, respectively. Both agents have recursive preferences, but their preference parameters

pδ, γ, ρq can differ. There is a single capital accumulation technology, but the productivity

of this capital stock may differ in the hands of each of the agents, with αe ě αh. Ownership

of the capital trades freely amongst agents, with price Qt that follows endogenous diffusive

dynamics. This price is the analogue of the Qt described previously for the one-agent

economy (see equation (22)).

Several financial instruments also trade: risk-free short term debt at an interest rate

rt, and various financial claims exposed to aggregate risk: (a) derivatives contracts traded

amongst households at vector πh
t per unit of Brownian increment risk exposure and similarly

among experts at a vector of prices πe
t ; and (b) equity contracts issued by experts with

payoff proportional to the return on capital they hold. In some of our economies, experts

face a financial restriction: they must remain exposed to at least a fraction χ of the total

capital they hold. Experts therefore cannot issue unlimited equity nor can they trade freely

in hedging contracts.

Let N j
t be the date-t net worth of type-j agent for j “ h, e. Then,

dN j
t

N j
t

“
`

µj
n,t ´ Cj

t {N j
t

˘

dt ` σj
n,t ¨ dBt, (23)

where the local mean µj
n,t net of consumption and the shock exposure vector σj

n,t are equal

to

µj
n,t “ rt `

QtK
j
t

N j
t

“

µj
R,t ´ rt

‰

` θjt ¨ πt σj
n,t “

QtK
j
t

N j
t

σR,t ` θjt ,

and where Kj
t and θjt denote the chosen capital and hedging positions held by the type-j

agent. A hedging position θjt implies an exposure N j
t θ

j
t ¨dBt to Brownian risk. As capital is

also exposed to Brownian risk, σj
n,t reflects both exposures. When households and experts
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have different productivities, the expected excess return on capital µj
R,t ´rt is type-specific.

The risk exposure vector, σR,t, for capital is common for households and experts and has a

direct contribution from capital accumulation technology and a market value contribution

from the price of capital.

Market incompleteness is encoded via a constraint on the hedging vector θet on experts.

While households are unconstrained, experts have restrictions on their exposure to aggre-

gate risk. Suppose experts choose θet to reduce their exposure to capital risk by a fraction

χt. To achieve this reduction,

θet “ pχt ´ 1q
QtK

e
t

N e
t

σR,t.

Imposing a so-called “skin-in-the-game constraint”: χt ě χ restricts the ability of the

intermediaries to hedge their risk to the capital that they own:

θet P

!

pχt ´ 1q
QtK

e
t

N e
t

σR,t : χt ě χ
)

, (24)

For the purposes of making model comparisons, the structure just described embeds

three types of heterogeneity. First, there is preference heterogeneity. In addition to hetero-

geneous subjective discounting, we allow for γh ą γe, which can reflect either an enhanced

aversion to risk on the part of households or less confidence in the under probability model.

Second, we allow for experts to use capital in a more productive than households (αe ě αh.)

Finally, we entertain a skin-in-the-game type restriction on experts limiting how much of

the capital risk exposure they can offset in financial markets as captured by (24). These

alternative forms of heterogeneity open the door to making revealing comparisons across

alternative model specifications.10

Our definition of a competitive equilibrium is standard: it is a set of price processes

(Q, π, π, r) and allocation processes pCe, Ch, N e, Nh, Ke, Kh, χ, θe, θhq, such that agents

10For some our specifications, we alter the utility recursion (8) to be

0 “

ˆ

δ ` λ

1 ´ ρ

˙

“

pCt{Vtq
1´ρ ´ 1

‰

` µ̂v,t `

ˆ

1 ´ γ

2

˙

|σv,t|
2

for λ ě 0. In addition, we follow Gârleanu and Panageas (2015) by introducing an adjustment to the net
worth evolution involving λ to ensure a stationary wealth distribution. Gârleanu and Panageas (2015)
interpret λ as a exponentially distributed death probability with decay rate λ induced by a Poisson process
with a constant arrival rate. This rationale precludes a bequest motive, but upon death net-worth is
redistributed to newborn agents. The death risk is treated differently in the preference than the other
risks. See their Appendix D for an elaboration.
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solve their constrained optimization problems, taking price processes as given, and all

markets — the goods market, the market for capital, and the market for aggregate risk —

clear. By Walras’ law, the risk-free debt market will also clear.

We look for a Markovian equilibrium in which the wealth distribution, the aggregate

stock of capital, as well as the driving processes Z1, Z2 are state variables. Given the

homogeneity properties of our model, (i) the wealth distribution can be summarized by the

experts’ wealth share Wt
def
“ N e

t {
`

N e
t ` Nh

t

˘

, and (ii) all growing processes scale with Kt,

which means that Xt
1 def

“ pWt, Z
1
t , Z

2
t q can serve as a state vector for our economy. While

pZ1, Z2q are specified exogenously, the wealth share W evolves endogenously.

The log continuation value of each type-j agent takes the additively separable form,

analogous to the value function for benchmark economy given by (19):

pV j
t “ pN j

t ` υjpXtq

where pN j “ logN j. We construct a Hamilton-Jacobi-Bellman equation analogous to that

given in (20) for the social planner in the benchmark economy. The homogeneity properties

of our model allow us to derive agents’ optimal consumption and portfolio choices as a

function of υj. For instance, the optimal consumption-wealth ratio for each agent type is

cjpxq “ δ1{ρ exp
“

p1 ´ 1{ρqυjpxq
‰

,

and their portfolio choice solves a familiar problem that includes both a mean-variance and

a hedging component:

max
!

µj
n ´

1

2
γ|σj

n|
2

loooooomoooooon

mean-variance

` p1 ´ γqσj
n

1
σx

Bυj

Bx
looooooooomooooooooon

hedging

)

, (25)

subject to the portfolio constraints where µj
n and σj

n depend on the portfolio weight vector

θj. The outcome of this portfolio problem is a set of Euler equations (when constraints are

non-binding) and inequalities (when constraints are binding). For instance, households will

hold strictly positive amounts of capital if and only if their expected excess return µh
R,t´rt is

sufficiently high to match the market compensation they could otherwise obtain. Similarly,

experts have an incentive to issue as much equity as possible (and their financial constraint

will then bind) when their expected return on capital µe
R,t ´ rt is greater than the market

compensation πt ¨σR,t they need to pay. Their issuance constraint does not bind otherwise.
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Since experts are more productive than households, it is efficient for them to hold all

the capital in the economy and exhaust their equity-issuance capacity. In fact, one can

show that whenever households hold positive amounts of capital, experts’ equity issuance

constraint must bind.

The consumption and portfolio choice of the various agent types leads to endogenous

dynamics for the experts’ wealth share Wt; its drift rate depends on the consumption-

to-wealth ratio of households relative to that of experts, on experts’ leverage and their

expected excess return on capital relative to its required market compensation and finally

the differential aggregate risk exposure between household and experts. The diffusion

coefficient of Wt only depends on this latter force. The wealth share dynamics depend on

asset prices, which themselves depend on wealth share dynamics — generating a two-way

feedback loop that amplifies capital return volatility (Brunnermeier and Sannikov, 2014).

The remainder of this section explores this heterogeneous agent model in a series of

“model comparisons,” offering some general takeaways. We begin by discussing outcomes

that both unite and distinguish these models (Section 6.2). We next highlight new ways in

which auxiliary shocks to growth and volatility interact with heterogeneity and financial

frictions (Section 6.3). Finally, we provide some discussion of the extant literature.

6.2 Properties of heterogeneous-agent models

We begin by highlighting some general properties of our heterogeneous-agent economies.

First, many of the models we consider are united by the fact that they generate high and

counter-cyclical risk prices. Second, among these models, we distinguish those that allow

“deleveraging” from those that do not—this demarcation represents a significant divide in

the nature of model dynamics. Third, we further illustrate the difference between the type

of “smooth deleveraging” associated to frictionless models versus the rapid deleveraging in

models with frictions. To simplify our exposition, in this section we shut down all auxiliary

shocks besides the TFP shock (i.e., set σ1 “ σ2 “ 0), so thatWt is the unique state variable.

Risk prices and the wealth distribution. In heterogeneous-agent models, amplified

and time-varying risk premia emerge naturally from a risk concentration mechanism. To

see this, focus on the risk prices πe of a log utility expert (γe “ ρe “ 1), which are

πe “
χκ

w
σR, where

$

&

%

χ
def
“ equity retained by experts

κ
def
“ experts’ share of capital.

(26)
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Experts each hold χκ fraction of the aggregate risk in the economy, through their capital

holdings and equity retention. Because they only hold wealth share w, χκ{w is their

exposure per unit of wealth. In this section, experts are either more productive or more

risk-tolerant than households, which leads them to take leverage χκ ą w and amplifies

their risk prices. Other things equal, expert leverage raises risk prices πe above those in

the corresponding representative-agent economy.

Figure 10: Expert risk prices πe in four illustrative models. Model 1 χ “ 1, αh “ ´8, and γe “ γh “ 2
(Basak and Cuoco, 1998). Model 2 has χ “ 0.2, αh “ ´8, and γe “ γh “ 2 (He and Krishnamurthy,
2013). Model 3 has χ “ 1, αh “ 0.075 ă αe, and γe “ γh “ 2 (Brunnermeier and Sannikov, 2014). Model
4 has χ “ 0, and heterogeneous risk aversions γe “ 2 ă γh “ 12 (Gârleanu and Panageas, 2015). All
other parameters are from the calibration in Table 1, with the Z state variables shut down. In addition,
we pick subjective discount rates and the OLG structure to keep the stationary distributions in reasonable
locations. Models 1-3 assume δe “ 0.015 ą δh “ 0.01; Model 4 assumes δe “ δh “ 0.01. Models 3-4
assume an OLG structure with death rate λ “ 0.02 and newborn expert population share 0.01 and 0.10,
respectively.

Countercyclical risk prices emerge naturally from shifts in the wealth distribution, even

without auxiliary shocks or recursive preferences.To visualize this pervasive feature, we plot
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expert risk prices for four different types of heterogeneous-agent models are displayed in

Figure 10, all of which show πe decreasing in w. These four economies roughly correspond

to the models of Basak and Cuoco (1998), He and Krishnamurthy (2013), Brunnermeier

and Sannikov (2014), and Gârleanu and Panageas (2015).

Deleveraging mechanics. Models at the top and bottom of Figure 10 differ in important

ways. In the top row, as w Ñ 0 risk prices explode to infinity; the bottom row features

bounded risk prices. The discrepancy is fundamentally tied to the amount of deleveraging.

Deleveraging refers to experts’ decrease in their share of aggregate risk exposure χκ as their

net worth share w declines. We classify models into one of two categories:

ND (“No Deleveraging”): As w Ñ 0, χκ Ñ constant C P p0, 1s.

D (“Deleveraging”): As w Ñ 0, χκ{w Ñ constant C P p1,8q.

In models of class ND, such as Basak and Cuoco (1998) and He and Krishnamurthy (2013),

experts hold a positive fraction of aggregate risk, even as they hold a vanishing amount of

wealth. We capture this in our framework via αh “ ´8 (infinitely-unproductive house-

holds) and χ ą 0 (limited equity issuance). In models of class D, such as Brunnermeier

and Sannikov (2014) or Gârleanu and Panageas (2015), experts hold a vanishing amount of

aggregate risk, since they deleverage as their wealth declines. In our framework, this will

naturally occur if either αh is large enough or χ “ 0.

Since experts in a ND economy asymptotically hold unbounded amount of risk per

unit of wealth, they demand unbounded risk prices πe Ñ `8 as w Ñ 0 (see top panels of

Figure 10). High risk prices allow experts to earn high profits and naturally recapitalize

their balance sheets, which manifests itself via the drift in the wealth share, i.e., µw Ñ `8

as w Ñ 0. Instead, the volatility σw stays bounded, since in the limit experts are too poor

to substantially influence capital price volatility. This phenomenon — the drift becoming

infinitely large relative to the volatility — gives rise to what researchers have called fast

recoveries.

By contrast, experts in a D economy can delever and require bounded risk prices πe (see

bottom panels of Figure 10). This translates into state dynamics with µw Ñ 0 and σw Ñ 0

as w Ñ 0. In some sense, as experts become poor and delever, the economy converges to

a representative-agent economy solely populated by households. Unlike class ND, since

experts do not recapitalize their balance sheets with unbounded profits, models of class D

feature slow recoveries.
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In the appendix, we formalize the distinction between ND and D economies by analyz-

ing the tail of the ergodic wealth distribution. We prove that models in class D generally

feature more mass in low-w states, reflecting slower recoveries. We also provide a formula

for the tail thickness, in terms of the various parameters, which guides us on which features

tend to make recoveries slower or faster.

Figure 11: Shock elasticities of expert wealth share Wt to a TFP shock in four illustrative economies. The
models and parameters are the same as in Figure 10.

Since expert wealth share Wt is the unique state variable in the example economies of

this section, recoveries can be understood through the impulse response function of Wt: a

steep impulse response indicates fast recovery after a TFP shock. Figure 11 displays these

impulse responses (calculated via shock exposure elasticities) for the same 4 economies as

in Figure 10. Recoveries from crisis are fast in class-ND economies (top two panels), un-

derstood via the steep impulse responses at low wealth percentiles. Interestingly, recoveries

are also fast in a class-D economy resembling Brunnermeier and Sannikov (2014) (bottom
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left panel)—this is due to parameter choices that prevent mass from building up at low

values of w, as we will demonstrate shortly. By contrast, recoveries from crisis are slow in a

class-D economy resembling Gârleanu and Panageas (2015), understood via the relatively

flatter responses at low wealth percentiles.

In summary, economies that do not allow deleveraging in crisis (class ND) allow faster

recoveries than economies with some deleveraging (class D). The difference in recovery

speed is encoded in the left tail of the stationary wealth distribution.

Frictions versus frictionless economies. It may be surprising that economies can

be classified into these two groups, irrespective of auxiliary features. In particular, class

D features models with and without financial frictions. As we will show, an important

difference between these models is whether deleveraging occurs smoothly or not.

We compare two models: experts could be more productive managers of capital or they

could simply be more risk-tolerant. For expositional clarity, we name these models F (for

“frictions”) and RA (for “risk aversion”):

F: χ “ 1, ´8 ă αh ă αe, γe “ γh

RA: χ “ 0, ´8 ă αh “ αe, γe ă γh.

The models closest to this comparison are Brunnermeier and Sannikov (2014) (F) versus

Gârleanu and Panageas (2015) (RA). As we have already shown, these models share several

properties, like countercyclical risk prices and the possibility of thicker lower tails for the

wealth distribution.

In both economies, experts hold a disproportionate fraction of aggregate risk, either

because they are more productive at doing so, or because they are more tolerant of it.

Households in economy F will enter the market and directly manage capital only after

expert wealth has deteriorated sufficiently. At that point, households’ expected excess

returns on capital management are high enough to compensate them for its inherent risks.

Households in economy RA, instead, will always hold a non-zero fraction of the aggregate

risk.11 This distinction is shown in Figure 12, which plots the endogenous distribution of

11Both models feature regions where κ P p0, 1q, but the heterogeneous productivity model showcases a
large part of the state space where experts hold the entire capital stock. To understand this, consider the
Merton portfolio σnj

“
µR,j´r
γj |σR|

for agent j. With higher productivity, experts obtain a discretely larger

expected return on capital than households (µR,e ą µR,h), so it is possible for households’ desired capital
holdings to be negative (K˚

h ă 0), leaving them on their no-shorting constraint. If experts and households
faced the same returns (µR,e “ µR,h) but their risk aversions differed (γe ă γh), experts and households
would both hold positive quantities of capital but at different scales (K˚

e ą K˚
h ą 0).
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capital risk χκ as a function of state variable w.12 Furthermore, the risk distribution χκ

features smoother dynamics in economy RA relative to economy F.

Figure 12: Experts’ risk share χκ in two illustrative models with deleveraging. The two models correspond
to Models 3 and 4 in Figure 10.

Reflecting these smoother risk-sharing dynamics, risk compensations and asset prices

are “smoother” in economy RA relative to economy F. Look back at the bottom panels of

Figure 10, which are exactly these two models. Economy F features a discontinuous jump

in expert risk prices at the moment households begin participating, whereas economy RA

features more gradual risk price dynamics.

In this sense, frictional economies like F feature greater crisis-type nonlinearities than

frictionless economies like RA. Sudden deleveraging and a jump in risk compensation in F

contrasts with smooth deleveraging and smooth risk compensation in RA.

Occasionally-binding constraints? Next, we show how preference heterogeneity fun-

damentally determines the binding/non-binding nature of constraints. Given the nesting

structure of our model, this is simple to investigate by interacting preference heterogeneity

with different values of the equity-retention constraint. Assume that experts face the equity-

issuance friction χt ě χ P p0, 1q. One might expect such constraints to be occasionally-

binding, as in He and Krishnamurthy (2013). Surprisingly, when experts and households

have identical risk aversions, this is generally not the case.

Indeed, the appendix shows that, when γe “ γh, experts’ optimal risk retention χ takes

12In model RA, because productivities are equal, households can equivalently hold capital or experts’
outside equity. Experts’ equity-retention χ and experts’ capital share κ only appear multiplicatively as χκ
in equilibrium equations.
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the form

χ “ maxpχ,wq. (27)

Furthermore, we prove that a large variety of parameter constellations imply Wt ď χ

almost-surely in the ergodic distribution, so that χ is at its constrained level χ. Formula

(27) and the conclusion that χt “ χ almost-surely are very generally true as long as risk

aversions are homogeneous.13

The connection between risk-aversion heterogeneity and binding nature of constraints is

displayed in Figure 13. When agents have identical levels of risk-aversion (left panel), the

stationary distribution lives completely in the region where χ “ χ. When households are

more risk-averse than experts (right panel), this is no longer true. The equity constraint can

be occasionally-binding or even almost always-binding, as this particular example shows.

This phenomenon arises because risk-tolerant experts retain more risk than their wealth

(i.e. χ ą w), so the unconstrained region remains “stochastic” (in the sense that σw ‰ 0

even when χ ą χ). This is de facto what occurs in the occasionally-binding equilibrium

of He and Krishnamurthy (2013): their “Parameter Assumption 1” forces households to

always invest a fixed positive fraction of their wealth in risk-free assets, which makes them

act more risk-averse than experts.

Does this distinction matter? Figure 14 shows how the equity constraint binding or not

strongly affects the nonlinearity in experts’ TFP risk prices.

On one hand, our results here provide a partial justification for the procedure, performed

by a majority of DSGE models with financial frictions, that consists in log-linearizing

equilibrium equations assuming constraints are always binding. On the other hand, this

exercise illustrates that some models with occasionally-binding risk-sharing constraints may

be standing on, perhaps hidden, assumptions about risk aversion heterogeneity.

13Our result is analogous to Corollary 1 in Gârleanu and Panageas (2015)—generalized to an economy
with additional exogenous state variables (x̂), financial frictions (χ ą 0), and productivity heterogeneity
(αe ě αh)—in which a homogeneous risk aversion economy has deterministic wealth share evolution. The
key intuition is that agents with identical risk aversion make the same portfolio choices in the absence
of financial frictions, and this is robust to heterogeneity in the IES 1{ρ and the discount rate δ. Thus,
when experts and households are both unconstrained, their wealth exposure to aggregate shocks σnj is
identical, so Brownian shocks do not alter the relative expert-household net worth. This feature allows
us to characterize binding constraints based on the drift µw only at the point where the constraint “just
binds”, i.e., w “ χ. As long as supx̂ µwpχ, x̂q ă 0, where x̂ is the set of exogenous state variables, then
equilibrium features an always-binding equity constraint.
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Figure 13: Expert equity retention χ in two models resembling He and Krishnamurthy (2013). The left
panel has identical preferences (γe “ γh “ 2; this is Model 2 in Figure 10); the right panel has more-risk-
tolerant experts (γe “ 2 ă γh “ 12; this is a blend of Models 2 and 4 in Figure 10).

Figure 14: Expert TFP risk prices πe in the same two economies as Figure 13

6.3 Frictions and auxiliary shocks

We reintroduce shocks to the TFP growth rate Z1
t and TFP variance Z2

t . How do hetero-

geneous agents perceive these auxiliary shocks? How do these shocks magnify or dampen

the effects of financial frictions?

Figure 15 compares experts’ growth risk prices in three models with frictions (these

are Models 1-3 in Figure 10; roughly speaking, these correspond to Basak and Cuoco

(1998), He and Krishnamurthy (2013), and Brunnermeier and Sannikov (2014)) and one

frictionless representative agent model. Surprisingly, growth risk prices are identical in all

models. (Although not shown, this equalization holds for all levels of the wealth share
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w, and households’ growth risk prices are also equalized to experts’.) This irrelevance

of frictions on growth risk pricing is formalized in the appendix, which proves that when

agents share identical risk aversions, unitary IES, and the shocks to K, Z1, and Z2 are

mutually uncorrelated, we have that growth risk prices are independent of W .14

Figure 15: Expert risk prices πe for the growth shock, in the three-dimensional versions of Models 1-3
described in Figure 10, along with a representative agent model in the fourth panel. Stationary densities
for Z2

t are in the background. For the plots, Z1
t “ 0 and Wt is equal to its 10th percentile. All other

parameters are from the calibration in Table 1, with the Z state variables reintroduced.

Intuitively, under unitary IES, exogenous growth shocks do not directly affect the capital

stock or the price of capital in the short-run, so their only risk is to agents’ investment

opportunity sets, in particular the risk-free rate. Since all agents have equal unrestricted

access to the risk-free rate, this risk is perfectly shared between experts and households.

By contrast, volatility risk pricing is altered by frictions. Figure 16 shows how, in

models with frictions, experts’ volatility risk prices are generally non-monotonic in the

level of volatility. Moderate levels of volatility are feared most by experts. One explanation

is that a scenario with very high volatility increases experts’ risk compensation so much

14The sharp result of Figure ?? is more-or-less similar numerically even with non-unitary IES.
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Figure 16: Expert risk prices πe for the volatility shock, in the three-dimensional versions of Models 1-3
described in Figure 10, along with a representative agent model in the fourth panel. Stationary densities
for Z2

t are in the background. For the plots, Z1
t “ 0 and Wt is equal to its 10th percentile. All other

parameters are from the calibration in Table 1, with the Z state variables reintroduced.

that that it is less feared. In some model calibrations, we have even found that models

with frictions can generate positive volatility risk prices when their relative wealth is low

enough, implying experts become fond of volatility shocks.15 Given the intriguing influence

of frictions on volatility risk pricing, we think it will be productive for future research to

investigate volatility shocks in more detail.

Quantitatively, the biggest impact of introducing the auxiliary shocks to Z is found

in TFP risk pricing and the stationary wealth distribution. Figure 17 shows experts’

TFP risk prices for these same four models. These risk prices are significantly higher in

general than those depicted in Figure 10 for in the one-dimensional versions of these models.

15Although we have not proven it, we conjecture this occurs because experts’ TFP risk price is strongly
decreasing and convex in w (recall Figure 10). Jensen’s inequality, coupled with this convexity, then
suggests that a positive volatility shock benefits experts. This effect can outweigh the standard volatility
aversion inherent in these preferences. Opening a volatility market might be counterproductive in this
situation, as experts might be led to speculate when w is low, and households would gladly take the other
side of this trade given they continue to have negative volatility risk prices in those calibrations.
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Figure 17: Expert risk prices πe for the TFP shock, in the three-dimensional versions of Models 1-3
described in Figure 10, along with a representative agent model in the fourth panel. Stationary densities
for Wt are in the background. For the plots, Z1

t “ 0 and Z2
t “ 1. All other parameters are from the

calibration in Table 1, with the Z state variables reintroduced.

Moreover, the locations and dispersions in the stationary distributions are dramatically

affected. This illustrates how matching larger magnitudes of risk pricing in “normal times”

when constraints are less binding can produce a tension by reducing the probability of

severe nonlinear crises.

6.4 Discussion of related literature

The models we have explored in this section highlight the role of ex-ante agent hetero-

geneity and risk-sharing. The literature studying this class of models is voluminous, and

we do not attempt to survey all of it here. However, we will comment briefly on which

existing mechanisms we have covered and which we have not, along with what we see as

the challenges for future research in this area.

As mentioned above, the models closest to ours include Basak and Cuoco (1998), He and

Krishnamurthy (2011, 2013, 2019), Brunnermeier and Sannikov (2014, 2016), and Gârleanu
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and Panageas (2015). All of these are models where pricing dynamics become interesting

either because risk-sharing is constrained or because of the trading dynamics induced by

attempts to share risks. Our framework essentially nests these models, pairing them with

a more setup with long-run uncertainty in the macroeconomic growth.

These core frameworks have been extended to think about a variety of substantive is-

sues. While our framework does not nest these extensions, we collect some of them here

to illustrate the wide range of possibilities: capital requirements and leverage restrictions

(Phelan, 2016, Klimenko et al., 2016); margin constraints (Gromb and Vayanos, 2002,

Garleanu and Pedersen, 2011); shadow banking (Moreira and Savov, 2017); liquidity pre-

mia and monetary policy (Drechsler et al., 2018); unconventional monetary policy (Silva,

2016); international capital flows (Brunnermeier and Sannikov, 2015); the link between

idiosyncratic and aggregate risk-sharing (Di Tella, 2017, 2019); financial innovation driven

boom-bust cycles (Khorrami, 2020); and entry into the intermediation sector (Haddad,

2014, Khorrami, 2021). While we work in continuous time, related issues have been ex-

plored in discrete-time frameworks (Gertler and Karadi, 2011, Gertler and Kiyotaki, 2010,

Mendoza, 2010, Bianchi, 2011, Gertler and Kiyotaki, 2015, Christiano et al., 2014).

While this class of models is rich enough to have have some interesting insights, there

are reasons to expand their scope. First, financial crises are often more sudden and extreme

than the models we explore here would predict. Second, large booms in credit and asset

prices have some predictive power for a subsequent bust and financial crisis. Modeling

additional amplification mechanisms like bank runs is one way to generate more realistically

extreme crises (Mendo, 2018, Krishnamurthy and Li, 2021). Modeling investor “sentiment,”

both via non-rational beliefs (Maxted, 2023, Krishnamurthy and Li, 2021) and rational fear

(Khorrami and Mendo, 2023), are extensions that can generate crisis predictability.

As an intriguing analogy to our long-run uncertainty framework, Maxted (2023) con-

siders extrapolative sentiment as the belief in a persistent stochastic growth rate that, in

fact, does not exist. We could capture such impacts in our framework by supposing that

the state variable Z1 is “only in the heads of the investors and households” and not in the

actual dynamic evolution. We can analyze such a model in same manner as we currently do

by including the Z1 dynamics in the model solution, but omitting it from the simulations,

stationary distributions, and elasticity computations. In this way, there is a wedge between

beliefs and the actual data generation. We find this alternative perspective on long-term

risk to be intriguing; but as we have seen in Section 4.5, an alternative to subjective belief

models are ones that acknowledge the measurement challenge of identifying a long-run risk
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component in data. This challenge seems pertinent not only to econometricians but also

economic agents.16

The class of models we explored, by design, nests alternative forms of heterogeneity,

albeit a rather stark form with two types of investors. For all of the alternatives we

investigate, a natural question is “who are the so-called experts?” Should we identify

them with insiders at productive firms, or managers of banks, or specialist investors more

broadly? The answers to these questions influences the type of market frictions that are

reasonable to consider, as well as the calibrations one should adopt.

One related empirical literature explores intermediary asset pricing implications by

seeking to identify new pricing factors. Models of the type featured here, when applied

to financial intermediaries, highlight forms of state dependence in valuation that could be

important. Exposures and market compensations fluctuate as functions of state variables,

which suggest a more dynamic approach to empirical investigation. But research on actual

market frictions leads to a more nuanced and complex characterization of the actual na-

ture of such frictions and to heterogeneity within the financial sector that is captured by

purposefully simplified models we consider here. Nevertheless, we expect some of the forces

captured by these models to be pertinent in understanding more generally the impact of

heterogeneity in investor types on macroeconomic and financial outcomes. By opening the

door to model comparisons, we understand better the similarities and differences among

models with alternative forms of heterogeneity.

7 Conclusions

Our essay explores alternative macro-finance models, including many with explicit nonlin-

earities. The models are highly stylized and perhaps best thought of a devices to engage

in “quantitative story telling.” The models are not designed to provide fully comprehen-

sive accounting of empirical facts, but rather they offer characterizations of alternative

mechanisms for linkages between financial markets and the macroeconomy. We feature

model comparisons rather than deep probes into one specific mechanism. While the latter

is clearly valuable, we also believe in value of making model comparisons, something that

is less common in journal publication. In effect, we are engaged in “quantitative story

telling with multiple stories.” In this sense, we share a common ambition with Dou et al.

(2020), although the class of models we feature is different as are the tools we use. Re-

16See Hansen (2014) and Chen et al. (2022) and for related discussions.
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lated ambitions are also reflected in the comprehensive Macro Model Data Base (MMB,

https://www.macromodelbase.com), although many the models we entertain require spe-

cial computational challenges because of their nonlinear structure. Moreover, our essay

focuses on the substantive comparisons.

Computational methods are required to support this type of analyses. As will be ex-

plained in a computational appendix, this is a nontrivial component to our investigation.

In each model, we must solve for agents’ continuation values, in some cases jointly with

asset prices or endogenous risk-sharing constraints. These functions solve systems of highly

nonlinear PDEs. Depending on the model, we use either finite-difference based methods

or, for larger state spaces, a deep Galerkin method-policy improvement algorithm, incorpo-

rating neural net approximations. See Achdou et al. (2022) and d’Avernas et al. (2022) for

some additional macro applications of implicit finite-difference schemes for PDEs, based

on the seminal work of Barles and Souganidis (1991). See Al-Aradi et al. (2022), Duarte

et al. (2023), Gopalakrishna (2022), and Barnett et al. (2023) for recent developments and

discussions of deep neural network methods as an alternative designed to accommodate

higher dimensional state spaces.
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