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1 Introduction

Beware the person of one ���book model. Thomas Aquinas (almost)

An under-appreciated task in the study of dynamic macroeconomics is model compari-

son. This is especially true for models requiring numerical methods to solve and analyze.

While journals seemingly embrace publications that target specific models, there is much

to be gained by looking formally across models.

One strategy for making comparisons across models is to nest models within a common

framework in which each model of interest is a special case. At this juncture, we could

turn things over to a statistician to test which model within this nesting best fits the data.

This strategy makes the most sense when we could plausibly view one of the models within

the family as being “correctly specified,” given data. But in many cases, we see models as

providing valuable insights even when they are not designed to fit some agreed upon list

of favorite facts. As we explore nonlinear models more fully, this nesting-testing approach

becomes all the more challenging. But even for examples when linearized approximations

work well, the fitting all or some predesignated facts can lead to black box outcomes when

driven by the simplistic ambitions of “full” empirical success. Models end up with multi-

ple pieces often clouding the ability to isolate and understand better particular economic

mechanisms.

In this paper, we develop a framework and diagnostic tools for comparing and contrast-

ing dynamic macroeconomic models. The models that interest us require special attention

relative to most dynamic stochastic equilibrium models because of the important role played

by nonlinearity in the implied dynamic evolution. This nonlinearity has notable implica-

tions for both economic and financial market outcomes. Given these ambitions, our analysis

is explicitly numerical and not limited to “paper and pencil” style analyses. It is necessary

that we solve such models using global solution methods as the competitive equilibrium is

typically characterized by a set of highly nonlinear second-order elliptic partial differential

equations. Moreover, even with the option of numerical solutions, we find it revealing to

explore and compare highly stylized models featuring particular economic mechanisms. In

accompanying notebooks and user-friendly software, we propose and explore quantitative

methods that expose salient features of the macroeconomic and valuation dynamics of the

models we investigate. This essay provides illustrations of possible computations.

While we explore two different classes of models, a common feature in all of them is

a long-run process altering investment opportunities. Our technologies can be viewed as
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production-based specifications inclusive of long-run risk. Analogous to Bansal and Yaron

(2004), we capture this risk with a continuous-time version of a first-order autoregressive

process. The process is meant to be a simple proxy for uncertainty of such phenomenon as

secular stagnation, technological progress or other forms of long-term uncertainty.

The first class of models have no market frictions. While including stochastic growth

following in the footsteps of Lucas and Prescott (1971) and Brock and Mirman (1972), these

models include single investor type and we start by consider a model with single capital

stock with a long-run risk contribution to the investment opportunities. While we provide

some sensitivity analyses that are of interest in their own right, understanding these initial

models sets the stage for our subsequent investigations.

We give two extensions, one in which the representative or stand-in investor has concerns

about model ambiguity captured by uncertainty in growth rate persistence along with

overall model misspecification concerns. The other extension considers specifications with

two capital stocks differentially exposed to macroeconomic shocks. Capital movements are

sluggish in the sense that there are adjustment costs in both capital technologies. This

class of models extend those of Eberly and Wang (2009) and Eberly and Wang (2011). We

investigate the consequences of heterogeneous technological exposure to long-run risk in

conjunction with motives for diversification. Including production in which the two capital

stocks are not perfect substitutes adds an additional economic channel with interesting

nonlinear impacts.

The second class of models, motivated in part by financial crises like 2008, considers two

heterogeneous investor types. These agents can differ in skill, preferences, or contractual

and regulatory constraints. Dynamic trading between these heterogeneous investors induces

potentially dramatic economic and financial market outcomes in some states of the world,

especially those in which constraints are binding. Our exercise is motivated by a substantial

literature with a variety of different modeling ingredients. These include, for instance,

the models in Basak and Cuoco (1998), He and Krishnamurthy (2011), Brunnermeier and

Sannikov (2014), and Gârleanu and Panageas (2015). Recently, several papers have exposed

a more complex representation of the role of financial intermediation than that captured by

the stylized models we consider here. It is not our aim in this essay to survey this literature.

The models we consider, however, do have mechanisms that enhance our understanding

of nonlinear linkages between financial markets and the macroeconomy, even if they miss

some of the actual complexities that limit financial intermediaries or other such specialists.
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2 Investor Preferences

In this essay we use a continuous-time specification of a Kreps and Porteus (1978) utility

recursion as in Duffie and Epstein (1992) in connection with an information structure gen-

erated expressed in terms of a vector standard Brownian motion B
def
“ tBt : t ě 0u of dimen-

sion d. Thus we are imposing “local normality”. While shocks are normally distributed, we

entertain nonlinear transition mechanisms that permit endogenously determined variables

to possess transition probabilities and stationary distributions that are not even approx-

imately normal. In this section, we provide a heuristic link between the continuous-time

and discrete-time representation of preferences since the discrete-time formulation has been

used extensively in the quantitative asset pricing literature. The local normality does al-

low for some simplicity when we study continuous-time limiting economies. We do not

ask the reader to be knowledgeable of the subtleties associated with the continuous-time

mathematics.

2.1 Discrete-time

Continuation values provide a convenient way to specify recursive preferences. With this is

in mind, let V
def
“ tVt : t ě 0u be the continuation utility process where Vt is a date-t utility

index that summarizes current and future prospective contributions to preferences. In

discrete time with a time interval ϵ, we use two CES, homogeneous of degree one recursions

to represent the evolution of continuation values:

Vt “
“

r1 ´ expp´δϵqs pCtq
1´ρ

` expp´δϵqRpVt`ϵ | Ftq
1´ρ

‰

1
1´ρ

RpVt`ϵ | Ftq “
`

E
“

pVt`ϵq
1´γ

| Ft

‰˘

1
1´γ (1)

where Ft is the time-t information set. Notice that the second equation computes a certainty

equivalent with parameter γ. If the continuation utility Vt`ϵ is known at t, then γ has no

impact on the recursion since RpVt`ϵ | Ftq “ Vt`ϵ implying that this contribution is indeed

an adjustment for risk. Taking the two equations together, this is a forward looking-

recursion whereby we start with a terminal specification of the continuation utility and

work backwards. We consider infinite horizon counterparts in our computations. Notice

that this recursive specification is governed by three underlying parameters:

i) δ – the subjective discount rate;
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ii) ρ – the inverse of the intertemporal elasticity of substitution (the “IES”);

iii) γ – the risk aversion.

In some later examples, we will have two investor types with possibly heterogenous speci-

fications of the preference parameters pδ, ρ, γq.

Two special cases of these preferences are: ρ “ γ and ρ “ 1. When ρ “ γ, this

utility recursion defines preferences that are equivalent to those implied by discounted,

time-separable, power utility. Specifically, when γ “ ρ, by solving the recursion forward, it

follows that:

Vt “

˜

E

«

1

1 ´ expp´δϵq

8
ÿ

j“0

expp´δjϵq pCt`jϵq
1´γ

| Ft

ff¸
1

1´γ

, if ρ “ γ. (2)

Imposing ρ “ 1 implies a unitary IES, and the limiting recursion has a Cobb-Douglas

representation:

Vt “ pCtq
r1´expp´δϵqs

rRpVt`ϵ | Ftqs
expp´δϵq , if ρ “ 1.

Continuation values are only defined up to increasing transformations. Numerical and

conceptual convenience lead us to use pVt “ log Vt. (We will always use the notation “ pX” to

designate the logarithm of a variable X.) The logarithmic counterparts to the underlying

recursions are given by:

pVt “
1

1 ´ ρ
log

”

r1 ´ expp´δϵqs pCtq
1´ρ

` expp´δϵq exp
”

p1 ´ ρqpRppVt`ϵ | Ftq

ıı

pR
´

pVt`ϵ | Ft

¯

“
1

1 ´ γ
log

´

E
”

exprp1 ´ γqpVt`ϵs | Ft

ı¯

. (3)

For this representation, ρ “ γ “ 1 is a relevant benchmark whereby the recursions become:

pVt “ r1 ´ expp´δϵqs logCt ` expp´δϵqpRppVt`ϵ | Ftq

pRppVt`ϵ | Ftq “ ErpVt`ϵ | Fts, (4)

which has discounted logarithmic utility scaled by r1 ´ expp´δϵqs as the solution.
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2.2 Robustness to model misspecification

Our motivation so far for the recursive utility formulation relies of uncertainty aversion

as applying to risk, a situation in which investors have complete confidence in their prob-

ability assignments. In many applications, this narrow notion of uncertainty seems like

a strain. This especially could be a concern when considering uncertainty in long-term

macroeconomic growth rates. See, for instance, discussions in Hansen (2007) and Chen

et al. (2024). Concerns about ambiguity as to which among a family of potential models is

one that governs data generation or concerns about potential model misspecification may

come into play as reflecting broader notions of uncertainty concerns.1 We now show how

to reinterpret the recursive utility formulation (1) as a preference for robustness to model

uncertainty. Later in this essay, we also consider implications of aversion to ambiguity over

how to weight alternative models. See Section 4.5.

Using the lens of robust control theory, consider a positive random variable Lt`ϵ with

unit conditional expectation — a convenient mathematical device pertinent to models of

subjective beliefs that are distinct from those implied by the data generating process:

E pLt`ϵ | Ftq “ 1.

Think of Lt`ϵ as a relative density (likelihood ratio) that alters the transition probability

from t to t`ϵ. To obtain the implied subjective conditional expectations, multiply the next-

period random variables by Lt`ϵ prior to forming the conditional expectations. For instance,

the implied subjective expectation of next period’s continuation value is EpLt`ϵ
pVt`ϵ | Ftq.

While a subjective belief specification allows for departures from a “rational expecta-

tions” assumption that investors know the data generating process, we use the modeling

approach differently. Suppose that the investor has a benchmark model of the transition

probabilities without full confidence in that specification. This skepticism is expressed by

entertaining other models, with a particular interest in ones that are “statistically close”

to the benchmark model. This approach has antecedents in the robust control literature.2

Formally, solve

min
Lt`ϵě0

EpLt`ϵ|Ftq“1

E
´

Lt`ϵ
pVt`ϵ | Ft

¯

` ξE pLt`ϵ logLt`ϵ | Ftq “ ´ξ logE
„

exp

ˆ

´
1

ξ
pVt`ϵ

˙

| Ft

ȷ

, (5)

1See Hansen and Sargent (2023) and Cerreia-Vioglio et al. (2024) for some recent discussions of axiomatic
rationales.

2See, for instance, Jacobson (1973), Whittle (1981), James (1992), and Petersen et al. (2000).
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which is familiar from applied probability theory. This minimization problem investigates

the expected utility consequences of altering the probability distribution subject to a condi-

tional relative entropy penalty used as a Kullback-Leibler measure of statistical divergence.

The parameter ξ penalizes the search over alternative probabilities. Setting ξ “ 8 imple-

ments expected logarithmic utility. Small values of the penalty imply a large aversion to

uncertainty about the transition probabilities.

The minimizing solution to problem (5) is:

L˚
t`ϵ “

exp
´

´1
ξ

pVt`ϵ

¯

E
”

exp
´

´1
ξ

pVt`ϵ

¯

|Ft

ı , (6)

provided that the denominator is well defined. This formulation gives an example of what

Maccheroni et al. (2006) call variational preferences designed to confront broader notions of

uncertainty other than risk. The minimizing probability displays what is called exponential

tilting as the probabilities and slanted towards more adverse continuation values in an

exponential manner. The implied minimizer is also of interest for the reasons articulated

by the robust Bayesian, Good (1952), as a way to assess plausibility. Also, the implied

measure of statistical divergence is revealing as a measure of statistical challenges implicit

in the choice of the penalty parameter ξ.

This construction is an alternative interpretation for the large risk aversion often im-

posed in recursive utility models. The mathematical equivalence can be seen by letting

ξ “ 1
γ´1

. The economic interpretation, however, is very different as is the assessment of

what are plausible calibrations of the uncertainty adjustment in the utility recursion.

2.3 Continuous-time limit

To depict the continuous-time counterpart to equation (1), suppose that the continuation

utility evolves as:3

dpVt “ µ̂v,tdt ` σv,t ¨ dBt.

where µ̂v,t is the local mean and |σv,t|
2 is local variance. In positing this evolution we are

using local normality induced by the Brownian increments to deduce the local normality

of the continuation utility increments.

3Starting with V instead of pV , we would write dVt “ Vtrµv,tdt` σv,t ¨ dBts where µ̂v,t “ µv,t ´ 1
2 |σv,t|

2.
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The limiting version of recursion (1) gives the following restriction on pµ̂v,t, |σv,t|
2q:

0 “

ˆ

δ

1 ´ ρ

˙

“

pCt{Vtq
1´ρ

´ 1
‰

` µ̂v,t `

ˆ

1 ´ γ

2

˙

|σv,t|
2. (7)

For the unitary IES case (ρ “ 1), equation (7) becomes:

0 “ δ
´

pCt ´ pVt

¯

` µ̂v,t `

ˆ

1 ´ γ

2

˙

|σv,t|
2 (8)

Equations (7)-(8) provide an expression for the local mean µ̂v,t as a function of pCt ´ pVt and

the local variance |σv,t|
2.4

Consider once again the robust interpretation of our recursive preferences and the min-

imization problem (5). This problem has a simplified version in the case of a Brownian

motion information structure. Let L be a positive martingale or likelihood ratio used to

induce an alternative probability distribution. From the Girsanov Theorem, under the

probability measure induced by L, the process B becomes a Brownian motion with a drift

H
def
“ tHt : t ě 0u. Locally, the Brownian increment dBt inherits a drift Htdt. The

evolution of L thus takes the form

dLt “ LtHt ¨ dBt

and in logarithms:

dpLt “ ´
1

2
|Ht|

2dt ` Ht ¨ dBt

with normalization L0 “ 1 or equivalently pL0 “ 0. Under the implied change of probability

measure, the drift of pL is ´1
2
|Ht|

2 — a local measure of Kullback-Leibler divergence or

relative entropy. The continuous-time formulation of (5) then becomes

min
Ht

µ̂v,t ` σv,tHt `
ξ

2
|Ht|

2.

4We find this representation to be both pedagogically revealing with a direct heuristic link to familiar
discrete-time specifications. Continuation values are only well defined up to a strictly increasing transfor-
mation as emphasized by Duffie and Epstein (1992). For mathematical reasons, often a different ordinally
equivalent representation, pVtq

1´γ{p1 ´ γq, is used in many papers constructed to remove the volatility
contribution to the recursion.
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The minimizing Ht is

H˚
t “ ´

1

ξ
σv,t

1 (9)

with a minimized objective given by:

pµv,t ´
1

2ξ
|σv,t|

2. (10)

The netative of local exposure vector, σv,t, of the continuation value to Brownian risk de-

termines the direction of the drift adjustment to the stochastic state evolution. Comparing

this result to the limiting recursion (7), the parameter γ can be viewed as a form of un-

certainty aversion, instead of a measure of risk aversion, when using γ ´ 1 “ 1{ξ. Not

suprisingly, this agrees with our discrete-time discussion of section 2.2.

2.4 Stochastic discount factor process

We deduce a representation for the shadow stochastic discount factor (SDF) process in

discrete and continuous time. For economies with a single agent type, this shadow SDF

provides a convenient representation of equilibrium asset prices. In heterogeneous agent

economies with financing frictions, the shadow SDFs are typically not equalized across

agents types but they can be used to represent commonly traded assets. Moreover, their

differences reflect the absence of full risk sharing induced by market frictions.

Think of the SDF process S as providing a way to depict shadow prices over any

investment horizon. In particular, St`ϵ{St in conjunction with the transition probabilities

associated with an underlying probability measure give date-t prices for a payoff at date

t ` ϵ. Deduce the shadow SDF process by computing the intertemporal marginal rate of

substitution across different possible realized states in the future. By differentiating through

the utility recursion, the evolution over a period of length ϵ, expressed in logarithms, is

pSt`ϵ´ pSt “ ´ϵδ´ρ
´

pCt`ϵ ´ pCt

¯

`p1´γq

”

pVt`ϵ ´ pRppVt`ϵ | Ftq

ı

`pρ´1q

”

pVt`ϵ ´ pRppVt`ϵ | Ftq

ı

.

Of particular interest, the term p1´γqrpVt`ϵ´ pRppVt`ϵ | Ftqs adjusts for risk or robustness. Its

exponential has conditional expectation equal to unity and is equal to the minimizer L˚
t`ϵ

in (6). Thus, this particular contribution to the SDF induces a change in the probability

distribution motivated explicitly by robustness considerations. More generally, the differ-

ence between pVt`ϵ and its certainty equivalent pRt is forward looking and depends on the
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decision maker’s perspective of the future. This contribution vanishes when γ “ ρ. When

ρ “ 1, only the contribution captured by the change in probability measure is forward

looking.

Consider next the local evolution of the SDF. Write:

dSt “ ´rtStdt ´ Stπt ¨ dBt

With this representation, rt is the instantaneous risk-free rate and πt is the vector of local

prices of exposure to the Brownian increment dBt, also called “risk prices”. Similarly, write

the local consumption evolutions as:

d pCt “ µ̂c,tdt ` σc,t ¨ dBt.

Then, in terms of the dynamics of pC and pV (above), we have the following riskless rate

and risk prices

rt “ δ ` ρµ̂c,t ´
1

2
|πt|

2
`

pγ ´ 1qpγ ´ ρq

2
|σv,t|

2

πt “ ρσc,t ` p1 ´ ρqσv,t ` pγ ´ 1qσv,t.

Notice that the third contribution to the “risk-price vector” is negative of the robustness

adjustment, H˚
t , to the drift of the vector Brownian motion as depicted in formula (9).

The second contribution vanishes when the intertemporal elasticity, 1
ρ
is unity.

3 Local measures of exposures and prices

In all the models we consider, the logarithms of several quantities of interest will grow

or decay stochastically over time with increments that are stationary Markov processes.

Let M be such a process and xM its logarithm. Restrict the process xM to display linear,

stochastic growth or decay. Write

xMt`ϵ ´ xMt “ ϵµ̂mpXtq ` σmpXtq ¨ pBt`ϵ ´ Btq (11)

where X is an asymptotically stationary Markov process. Examples of such xM processes

in our models are the log SDF pS and log consumption pC.
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3.1 Shock elasticities

Shock elasticities are constructed using local changes in the exposure to shocks. For in-

stance, consider a shock, Bϵ ´ B0 that is distributed as a multivariate standard normal.

We introduce a parameterized family of random variables Hϵprq where

logHϵprq “ rνpX0q ¨ pBϵ ´ B0q ´
r2

2
ϵ|νpX0q|

2.

where we normalize the row vector ν so that E r|νpX0q|2s “ 1. In our applications, ν is state

independent and selects one of the components of Bϵ ´ B0. Notice that Hϵprq is positive

and has conditional expectation equal to one. Consider:

d

dr
logE

„ˆ

Mt

M0

˙

Hϵprq | X0

ȷ
ˇ

ˇ

ˇ

ˇ

r“0

“

νpX0q ¨ E
”´

Mt

M0

¯

pBϵ ´ B0q | X0

ı

E
”´

Mt

M0

¯

| X0

ı . (12)

We refer to the outcome as a shock elasticity because we differentiate a logarithm with

respect to an argument Hϵprq which is equal to one at r “ 0. This elasticity depends on the

state X0 and horizon t. When scaled by 1
ϵ
, it has a well defined limit as ϵ declines to zero.

In formula (12), notice that the essential input is:

E
”´

Mt

M0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Mt

M0

¯

| X0

ı . (13)

The numerator is vector of conditional regression coefficients of Mt

M0
onto Bϵ ´B0 since the

regressors have a conditional covariance matrix that scales an identity matrix by ϵ. In the

language of empirical macroeconomics, these vectors are conditional counterparts to local

projections.5 The denominator of (13) is included because of our interest in characterization

involving M instead of xM as is often done by empirical macroeconomists and because

we are interested in measuring elasticities. The continuous-time limits can be computed

5The continuous-time limits are related to constructs from stochastic process theory. The Haussmann-
Clark-Ocone formula gives continuous time, moving-average representations of general processes con-
structed from underlying Brownian motion information structures. The counterparts to moving-average
coefficients are stochastic and interpreted as conditional expectations of so-called Malliavin derivatives.
The limiting version of numerator (13) can be viewed as an approximation to the coefficient on dB0 in
such a representation. These types of computations also play an important role in characterizing derivative
claims pricing. See Fournié et al. (1999). Borovička et al. (2014) for a more complete development and
discussion of the connections to various continuous-time representations.

10



numerically in a straightforward way for the Markovian economies of the type we consider

here. See Borovička et al. (2014) for further discussion.

The scaling by Hϵ in formula (12) (or its continuous-time limit) has two distinct inter-

pretations depending on the application:

i) it changes the distribution of Bϵ by giving it a conditional mean ϵrνpX0q

ii) it changes the exposure of xMt ´ xM0, and hence Mt{M0, to the shock Bϵ ´B0 through

the addition of rνpX0q ¨ pBϵ ´ B0q.

The first of these interpretations provides a distributional version of an impulse response

function. It matches exactly for the linear, log-normal model, in which case X is a mul-

tivariate, Gaussian vector autoregression, that is when µ is affine in x, and ν and σm are

vectors of constants. Once we include nonlinearities, the state x can matter along with the

time horizon t. See Gallant et al. (1993) and Koop et al. (1996) for related constructs of

nonlinear impulse responses. For intertemporal asset pricing applications, the second inter-

pretation will help us understand shock elasticities as implied compensations for changes

in the exposures. We discuss this asset pricing application next.

3.2 Compensations for exposure to uncertainty

Let pY denote the logarithm of a cash flow process, and let pS denote the equilibrium log

SDF process both of which have stochastic evolutions of the form (11). Compute:

i) exposure elasticity

νpX0q ¨ E
”´

Yt

Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Yt

Y0

¯

| X0

ı ;

ii) value elasticity

νpX0q ¨ E
”´

StYt

S0Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

StYt

S0Y0

¯

| X0

ı ;

iii) price elasticity (exposure minus value)

νpX0q ¨ E
”´

Yt

Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Yt

Y0

¯

| X0

ı ´

νpX0q ¨ E
”´

StYt

S0Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

StYt

S0Y0

¯

| X0

ı ;
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These all have well defined continuous-time limits as ϵ Ó 0. As mentioned above, one can

interpret the price elasticity as the expected excess return required for a marginal increase

in risk exposure to Y .

There is one additional calculation of interest. Suppose that L “ exppxMq is a mar-

tingale. This is of interest when we entertain beliefs that differ from the data generating

process and study their value contribution. From the Law of Iterated Expectations,

νpX0q ¨ E
”´

Lt

L0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Lt

L0

¯

| X0

ı “

ˆ

1

ϵ

˙

νpX0q ¨ E
„ˆ

Lϵ

L0

˙

pBϵ ´ B0q | X0

ȷ

,

and does not depend on the horizon t. In this circumstance (and perhaps others as well),

we find it revealing to change the date of the Brownian increment by reporting the small

ϵ limit of
1

ϵ
E

„ˆ

Lt

L0

˙

νpXt´ϵq ¨ pBt ´ Bt´ϵq | X0

ȷ

(14)

as a term structure of “uncertainty prices.” These prices will be horizon dependent.

4 Economies with a representative investor

For pedagogical purposes, we begin our exposition by focusing on a “representative in-

vestor” with recursive preferences in a complete-market production economy featuring

long-run-risk shocks. We may view the economy as a production-based counterpart to

that in the seminal paper by Bansal and Yaron (2004). In part we share a similar ambition

to that of Jermann (1998) in describing a production-based model with asset pricing, but we

also use this class of models as a benchmark for model classes that include heterogeneous

capital or heterogeneous investors. We follow Bansal and Yaron (2004) by focusing on

recursive utility in contrast to Jermann (1998), who features habit persistence preferences.

Since our benchmark model features complete markets, we study the planner problem

to characterize equilibrium quantities and prices in the economy. A decentralized version of

the model allows for a rich set of assets locally spanning the Brownian increments along with

a riskless security. Risk prices are embedded in the stochastic discount factor evolution.

Even for a model with a single capital stock, the introduction of production and in-

vestment turns out to be important relative to endowment economies when we change

preference parameters. Much of the asset pricing literature features endowment economies
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in which changes in the intertemporal elasticity of substitution (IES) have only a pricing

impact. As we will illustrate, in a production economy changing the IES has a substantial

impact on the investment/capital ratio and hence growth in the underlying economy.

4.1 Exogenous stochastic inputs

We presume that there are two underlying exogenous processes that evolve as solutions to

stochastic differential equations

dZ1
t “ ´β1Z

1
t dt `

a

Z2
t σ1 ¨ dBt (15)

dZ2
t “ ´β2pZ2

t ´ µ2qdt `
a

Z2
t σ2 ¨ dBt (16)

where β1 ą 0, β2 ą 1
2
|σ2|2, and µ2 ą 0. In addition, σ1, σ2, are d-dimensional vectors of

real numbers. The Z1 process governs the conditional mean of the stochastic component

to technology growth and the process Z2 captures the exogenous component to aggregate

stochastic volatility. Notice that
?
Z2 scales the Brownian increment to both of the pro-

cesses. The local variance of the exogenous technology shifter is Z2
t |σ1|2, and the local

variance for the stochastic volatility process is Z2
t |σ2|2.

The stochastic variance process Z2 is a special case of a Feller square root process. The

exogenous stochastic technology growth process, Z1, is a continuous-time version of an

autoregression with innovations that are conditionally heteroskedastic. The autoregressive

coefficients for discrete-time counterparts are expp´β1q, exp p´β2q. Values of β1 and β2

that are close to zero imply a large amount of persistence. The unconditional mean of Z1

is normalized to be zero, and the unconditional mean of Z2 in a stochastic steady state is

µ2. In what follows, we let

Zt
def
“

«

Z1
t

Z2
t

ff

µzpZtq
def
“

«

´β1Z
1
t

´β2pZ2
t ´ µ2q

ff

σz
def
“

a

Z2
t

«

σ1
1

σ2
1

ff

.

4.2 Technology

We use a so-called AK technology with adjustment costs to represent production.6 Let Kt

be the stock of capital, It the investment rate, and Ct the consumption rate at date t. The

technology consists of two equations: an output and a capital evolution equation. Output

6See, e.g., Cox et al. (1985), Merton (1973), Jones and Manuelli (1990) and Brock and Magill (1979).
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is constrained by:

Ct ` It “ αKt, (17)

where α is a fixed productivity parameter. Our capital accumulation equation features

aggregate shocks as follows:

dKt “ Kt

„

Φ

ˆ

It
Kt

˙

` βkZ
1
t ´ ηk

ȷ

dt ` Kt

a

Z2
t σk ¨ dBt, (18)

where ηk embeds an adjustment for depreciation and σk is a d ˆ 1 vector quantifying the

importance of the Brownian motion in generating stochastic returns to investment. The

function Φ, called the installation function by Hayashi (1982), is an increasing and concave

function. A leading example of Φ in our essay is

Φpiq “
1

ϕ
log p1 ` ϕiq . (19)

where i is a stand-in for a realization of the investment-capital ratio. The small i quadratic

approximation is:

Φpiq « i ´
ϕ

2
i2

We note this relationship since quadratic specifications are often imposed in the investment

literature.

By design, the technology is homogeneous of degree one in investment, capital and con-

sumption. This model has stochastic shocks that i) alter the physical returns to investment;

ii) shift the conditional mean of that investment; and iii) shift the aggregate volatility of

the technology. For such a stylized model, capital should be interpreted very broadly and

potentially should include human, organizational, and intangible contributions. The shock

to physical returns to investment is sometimes referred to as a “capital quality shock” or a

“technology shock.”7

4.3 Value function

Given the homogeneity properties of both preferences and technology, the value function

scales linearly with the capital stock. It will be most convenient to work with the logarithm

7Our model is isomorphic to an AK model where productivity (instead of capital Kt) is being hit by
Brownian shocks, and in which adjustment costs also scale up and down with such shock.
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of the value function, which we posit takes the following form:

pVt “ pKt ` υpZtq. (20)

We combine the evolutions of υpZtq and pKt to deduce a Hamilton-Jacobi-Bellman equation

for the function υ:

0 “ max
c`i“α

"ˆ

δ

1 ´ ρ

˙

`

c1´ρ exp rpρ ´ 1qυs ´ 1
˘

` Φpiq ` βkz1 ´ ηk ´
1

2
z2|σk|

2

`µz ¨
Bυ

Bz
`
z2
2
trace

"

σz
1 B2υ

BzBz1
σz

*

`
p1 ´ γqz2

2

ˇ

ˇ

ˇ

ˇ

σk ` σz
1 Bυ

Bz

ˇ

ˇ

ˇ

ˇ

2
+

, (21)

where c is the consumption-to-capital ratio and i is the investment-to-capital ratio. The

first-order condition for the optimal consumption-capital ratio, c˚, is:

δ rc˚
pzqs

´ρ exp rpρ ´ 1qυpzqs “ Φ1
rα ´ c˚

pzqs . (22)

Capital provides the sole source of wealth in this economy. Total wealth is given by the

continuation value divided by the marginal utility of consumption, evaluated at equilibrium

outcomes:8
1

δ
rc˚

pzqs
ρ exprp1 ´ ρqυpzqsk.

The implied price of capital is given by Qt “ qpZtq where

qpzq “
1

δ
rc˚

pzqs
ρ exprp1 ´ ρqυpzqs “

1

Φ1 rα ´ c˚pzqs
“ 1 ` ϕi˚pzq. (23)

The instantaneous capital return in this economy has an exposure to the vector, dBt, of

Brownian increments given by

σr,t “
a

Z2
t σk `

a

Z2
t

B ln q

Bz1
pZtqσz

where the first term captures the exposure of capital to the Brownian increments and the

second one reflects the exposure of valuation to these same increments.

8The two recursions in (1) are both homogeneous of degree one. From an infinite-dimensional version
of Euler’s Theorem, the continuation value divided by the marginal utility of consumption is the current
period shadow price of current and future consumption which equals wealth in equilibrium.
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4.4 Single capital stock economies

In contrast to the other economies that we study, this economy can be well approximated by

log-quadratic approximations. We use this as a benchmark to the study of economies that

are more explicitly nonlinear. We imagine a family of economies indexed by pρ, γ, δ, αq. Of

course other parameter sensitivity could also be explored. Our use of a production economy

provides a revealing contrast to the familiar Lucas (1978) endowment economy.

In consumption-based models with endowment specifications, the preference parameter

ρ has a substantial impact on the risk-free rate. In models with production, like the ones

we explore here, changing ρ while holding other parameters of preferences and technology

fixed, has a substantial impact on production and savings. Table 1 gives parameter values

that we hold fixed in these computations, and Table 2 reports the steady state investment-

and consumption-to-output ratios along with the steady state growth rate. The IES has a

dramatic impact on all these average macroeconomic aggregates.

ηk ϕ βk β1 β2 µ2

.04 8 .04 .056 .194 6.3 ˆ 10´6

Upper triangular Lower triangular

σk
?
12r.92 .40 0s

?
12r1 0 0s

σ1
?
12r0 5.7 0s

?
12r2.3 5.2 0s

σ2
?
12r0 0 .00031s

Table 1: Parameter values that we hold fixed for the one-capital model. The numbers for ηk, ϕ, β1, σk

and σ1 are such that, when multiplied by stochastic volatility, they match the parameters from Hansen
and Sargent (2021). In particular, the constant Z2 which scales our σk to match HS 2020 is 7.6 ˆ 10´6.
This is the 67th percentile of our Z2 distribution. While Hansen and Sargent (2021) use a lower triangular
representation for the two-by-two right block of r

σk
σ1

s , we use an observationally equivalent upper triangular
representation for most of the results. Both versions are listed here. Finally, the numbers for β2 and σ2

come from Schorfheide et al. (2018), but they are adjusted for approximation purposes as described in
Appendix A. In both cases, we use the medians of their econometric evidence as input into our analysis.
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ρ 0.67 1 1.5

consumption-output ratio 0.012 0.175 0.279

investment-output ratio 0.988 0.825 0.721

steady state growth rate 0.028 0.019 0.013

Table 2: Steady states for alternative specifications of ρ for α “ .092 and δ “ .01. These are computed by
setting shock variances to zero.

To diminish this impact, we change the productivity parameter α to pin down a common

growth rate in consumption. Table 3 reports the results. There is still a noticeable impact

of ρ on investment- and consumption-to-output ratios, but not nearly as dramatic. The

subjective discount rate also impacts these steady states by increasing the consumption-

to-output ratios as also seen by Table 3.

δ “ .01

ρ 0.67 1 1.5

consumption-output ratio 0.071 0.175 0.296

investment-output ratio 0.929 0.825 0.704

productivity pαq 0.082 0.092 0.108

growth rate 0.019 0.019 0.019

δ “ .015

ρ 0.67 1 1.5

consumption-output ratio 0.155 0.242 0.346

investment-output ratio 0.845 0.758 0.654

productivity pαq 0.090 0.100 0.116

growth rate 0.019 0.019 0.019

Table 3: Steady states adjusting the productivity parameter α to match a specific growth rate. These are
computed by setting the shock variances to zero.

We next consider shock exposure and shock price elasticities. We focus on the growth-

rate shock. The capital evolution shock is also quantitatively important. In contrast, the

impact of the stochastic volatility shock is quantitatively small.9 Stochastic volatility does

induce state dependence in the other shock elasticities as we will illustrate.

9The quantitative magnitudes could be amplified by pushing the mean reversion parameter β2 even
closer to zero, as is done in calibrations of asset pricing models.
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Consider the shock exposure elasticity, or equivalently the local impulse response func-

tion, for the investment-to-output ratio. Since output is proportional to capital, formula

(23) implies these are also approximately the elasticities for the price of capital (which is

affine in the investment-to-capital ratio). As Figure 1 shows, the responses to a growth rate

shock are positive when ρ ă 1 and negative when ρ ą 1. The elasticities are only modestly

sensitive to changing the risk aversion parameter γ, while they increase notably when the

subjective discount rate δ is increased.

Figure 1: Investment-output ratio exposure elasticities to a growth-rate shock. The elasticities are initial-
ized by setting the stochastic growth rate state to zero.

Finally, we consider both the shock exposure and price elasticities of consumption in

Figure 2. The consumption elasticity to a growth rate shock builds over time, as expected

given investment adjustment costs. The ρ “ 1 elasticities imitate those of an endowment

economy like the Bansal and Yaron (2004) economy (without stochastic volatility). The

risk aversion parameter γ has very little impact on these exposure elasticities, in contrast to

the price elasticities. As revealed by Figure 2, the shock price elasticities are very sensitive,

as expected, to the choice of γ. Recall the robustness interpretation of recursive utility,

where misspecification concerns contribute a martingale component to valuation. This

component comes to dominate as γ becomes larger and this leads to a relatively flat shock
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price elasticity trajectory.

Figure 3 shows how the elasticities depend on the initial level of volatility. The key

takeaway is that stochastic volatility provides exogenous fluctuations in risk pricing, in

contrast to some of the more endogenous mechanisms that we explore going forward. In

addition, as is well understood, a shock to exogenous volatility itself is priced under these

preferences, as shown via its shock price elasticity in the right panel.

Figure 2: Exposure and price elasticities for the growth rate shock. Perturbations are relative to the
equilibrium consumption process. The growth and volatility states are set to their medians.

Figure 3: Shock exposure and price elasticities for γ “ 8, ρ “ 1, and for alternative volatility quantiles.
The shock elasticities apply to the growth-rate shock.
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4.5 Endogenous fluctuations in valuation

Here we illustrate an endogenous channel induced by ambiguity aversion by building on

ideas from Chen and Epstein (2002), Hansen (2007), Andrei et al. (2019), and, in particular,

Hansen and Sargent (2021). As we will show, this adds a form of state dependence in

valuation. For this illustration we focus exclusively on the case in which ρ “ 1. To

feature the endogeneity of fluctuations in valuation, we abstract from exogenously specified

stochastic volatility in this subsection (by setting σ2 “ 0). In addition, we impose that

σk “

”

.0087 0.0038 0
ı

σ1 “

”

0 .055 0
ı

We follow Hansen and Sargent (2022) by considering both model ambiguity and poten-

tial model misspecification. Recall that recursive utility provides a direct link to the latter,

an approach that we continue to use here. For model ambiguity, we proceed differently.

Given a parameterized family of models, the investor is unsure how much weight should be

given to each. For a Bayesian decision maker, this would be addressed with subjective in-

puts in the form of a prior. Our investor is unsure which such prior to impose. Formally, we

use a framework for diffusion processes that is consistent with Chen and Epstein (2002) to

entertain a rich family of what Hansen and Sargent (2022) refer to as “structured” models.

In our application we start with a four-dimensional space of unknown parameters in the

drifts of capital K and the growth rate Z1. We modify the evolution of Z1 to be:

dZ1
t “

`

ψ1 ´ β1Z
1
t

˘

dt ` σ1 ¨ dBt

where the parameter ψ1, which we have taken to be zero so far, allows for a shift in the local

drift dynamics that does not scale with Z1. In the long-term, ψ1 ‰ 0 could induce a nonzero

unconditional mean in Z1 process. The unknown parameters are ηk, βk, ψ1, β1. Recall that

ηk governs depreciation and βk the exposure to long-term growth rate uncertainty. Our

investors take uncertainty in these parameters as a starting point, but they entertain a

so-called time varying parameter perspective without imposing a prior on the form of the

time variation. Instead, the parameters are constrained to be in an ambiguity set using a

recursive measure of relative entropy or Kullback-Leibler divergence as described in Hansen

and Sargent (2021).

We consider two specifications. One limits the ambiguity to be over the two slope
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parameters, pβk, β1q, and the other also includes the constant terms, pηk, ϕ1q. Figure 4

plots both the two-dimensional and four-dimensional ambiguity sets. By construction, the

projection of the slope coefficients for the four-dimensional set is contained within the two-

dimensional ambiguity set as depicted in the right panel of Figure 4.10 By design, this

approach entertains misspecification relative to a benchmark in a much more structured

way than that embedded in the robust interpretation of Kreps and Porteus (1978) utility.

Recall that in the standard continuous-time recursive formulation of dynamic program-

ming, the decision-maker maximizes the expected value-function increment by choice of a

control. In our recursive formulation of ambiguity, algorithmically a fictitious second-agent

minimizes the expected value function increment over the respective sets of parameter val-

ues, instant-by-instant. The minimizer will reside somewhere on the boundary and its

location will depend on the realized growth-rate state, z1. The problem is made tractable

in part because the minimization problem is quadratic. We also include potential model

misspecification in the same manner as described previously. As we have shown, γ “ 1

abstracts from misspecification concerns while larger values of γ enhance these concerns.

We illustrate the nonlinear outcome by reporting the implied uncertainty-adjusted (min-

imizing) drift for the long-run growth process in Figure 5. The downward slope of the line

in the baseline model governs the pull towards zero in the conditional mean dynamics for

Z1. The dashed and dot-dashed curves are the uncertainty-adjusted nonlinear counter-

parts. The dot-dashed curve includes misspecification concerns in addition to parameter

ambiguity. The left panel shows implications when the ambiguity consideration is limited

to the slope coefficients while the right panel illustrates outcomes when the ambiguity is

four-dimensional.

Observe that these curves are flatter for negative growth rates and steeper for positive

growth rates. This is to be expected because investors fear persistence when growth is

sluggish and the lack of persistence when growth is brisk. This outcome emerges in the

computations in part because of how the minimizing choice of β1 over the ambiguity set

displayed in Figure 4 depends on Z1. The investor is exploring the other parameters as

well, and the outcome of minimization also impacts a counterpart for drift specification for

capital.

While the one-capital model without ambiguity concerns can be approximately solved

using log-quadratic specification, the model with ambiguity requires a global alternative to

10We constructed these sets using, in the notation of Hansen and Sargent (2021), q “ 0.2 with ρ1 “ 0

and ρ2 “
q2

|σ1|2
for the two parameter case, and ρ2 “

q2

2|σ1|2
for the four parameter case.
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capture the potential nonlinearities that are entertained by the decision maker.

Figure 4: Ambiguity parameter sets constrained by a flow measure of relative entropy developed in Hansen
and Sargent (2021). The left panel of the plot depicts the ambiguity in the slope coefficients for the state
Z1
t in the capital evolution and the state evolution. The blue region plots two-dimensional ambiguity set

and red region gives two-dimensional projection for the four-dimensional ambiguity set. The red region in
the right panel gives the two-dimensional projection of the constant terms in the capital and state evolution
for the four parameter ambiguity set. Baseline values for the four parameters are recorded as black dots.

Figure 5: Uncertainty-adjusted growth rate drift and baseline stationary density for Z1. The left panel
explores ambiguity over slope parameters only and the right panel includes the constant terms as well.
Black solid: baseline model; red dashed: γ “ 1; blue dot-dashed: γ “ 3 for the left panel and γ “ 4 for
the right panel. The lower value of γ in the left panel relative to the right panel is imposed to so that
the magnitudes of the misspecification adjustments are approximately the same. The gray dashed curve
depicts the stationary density for Z1 stationary density.

The two forms of uncertainty aversion we consider introduce a composite martingale

component to valuation. We explore its properties by looking at the implied uncertainty

price elasticities using the formula (14). The results are reported in Figure 6. We represent
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state dependence by exploring not only the median, but also the 10th and 90th percentiles.

While the 90th percentile prices start higher than the others, this gets reversed as we go

out to longer horizons. This reflects the decrease in persistence in the uncertainty-adjusted

probability measure for relatively high realized values of the growth state Z1
t . As is evident

from the right column in Figure 6, misspecification concerns contribute to the asymmetry

in the responses in an important way. This is particularly true for the two-dimensional

specification of ambiguity aversion.

Figure 6: Shock price elasticities for the martingale contribution induced by uncertainty aversion. Black
solid: median of the Z1 stationary distribution; red dashed: .1 decile; and dot-dashed: .9 decile. The top
row gives results for γ “ 1 (left panel) and γ “ 3 (right panel) when the ambiguity set is two dimensional.
The bottom row gives results for γ “ 1 (left panel) and γ “ 4 (right panel) for the four dimensional
ambiguity set.

In summary, we induce changes in asset values by investors’ altering their perspectives

on what models are most concerning within the constrained ambiguity set. These fluctua-

tions prevail in large part because of uncertainty in the persistence of the process Z1. In

low growth states investors are concerned about being “stuck in a rut” whereas in good

times they worry that “brisk growth” will end soon. This type of mechanism was noted in

Hansen (2007) in a distinct but related modeling framework. That paper uses a different

specification of ambiguity aversion and entertains explicit learning. In the example here,

learning is off the table because of potential time or state variation in parameters. Relat-

edly, learning about persistence was also featured in Andrei et al. (2019) as a mechanism
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for fluctuations over time in valuation.

4.6 Sluggish heterogeneous capital stocks

We now explore two capital models with growth rate uncertainty. Precursors of these

models are the multiple tree models of Cochrane et al. (2008) and Martin (2013). These

models do not entertain capital movements from one production source to another. Here we

follow Eberly and Wang (2009), Eberly and Wang (2012), Hansen et al. (2020), and Kozak

(2022) by allowing capital mobility subject to adjustment costs. In this sense, capital

movements are sluggish. We extend the capital evolution in Eberly and Wang (2009),

Eberly and Wang (2012), and Kozak (2022) by introducing exposures to an exogenously

specified growth rate uncertainty consistent with our previous examples, similar to Hansen

et al. (2020). We allow for the exposure to this uncertainty to be heterogeneous.

Formally, consider a family of models with two capital stocks and adjustment costs.

dKj
t “ Kj

t

«

Φj

˜

Ijt

Kj
t

¸

` βj
kZ

1
t ´ ηj

ff

dt ` Kj
t

a

Z2
t σ

j
k ¨ dBt,

for j “ 1, 2. Suppose that the output equation is now

Ct ` I1t ` I2t “ αKa
t

where aggregate capital is a CES aggregator of the two capital stocks:

Ka
t “

”

p1 ´ ζq
`

K1
t

˘p1´τq
` ζ

`

K2
t

˘p1´τq
ı

1
1´τ

for 0 ď ζ ă 1 and τ ě 0. For characterization and computation, we form two state

variables: one is pYt “ logpK2
t {K1

t q and the other is pKa
t . For this class of models, the value

function has the separable form:

pVt “ pKa
t ` υppYt, Ztq.

Eberly and Wang (2009), Eberly and Wang (2012), Hansen et al. (2020) and Kozak

(2022) feature the case in which the two capital stocks are perfect substitutes (τ “ 0, ζ “

.5). In the illustrations that follow, we also impose this restriction as a featured special case.

Our computational software allows for production curvature among the two capital stocks,
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and as we will illustrate, this opens the door to an even richer collection of examples.

With perfect substitutability, the deterministic limit of this model has a continuum of

steady states. This makes locally linear-quadratic approximations inoperative. Even with

production curvature, local methods can be unreliable. Thus we find global solutions’

approaches to be important for this class of examples.

Parameters common across the two capitals

ηk ϕ α, ρ β1 β2 σ1, σ2

.04 8
α “ .16 .18 .22

ρ “ .67 1 1.5

.056 0.194
σ1 “

?
12

”

0 0 5.7 0

ı

σ2 “
?
12

”

0 0 0 .00031

ı

symmetric asymmetric capital volatilities

β1
k “ .04 β1

k “ 0 σ1
k “

?
12

”

?
2p.92q 0 .4 0

ı

β2
k “ .04 β2

k “ .08 σ2
k “

?
12

”

0
?
2p.92q .4 0

ı

Table 4: Parameter values for the two capital model. We include a separate capital shock for each tech-
nology. The coefficients on the two capital stocks are given by the first two entries of the σ’s. We doubled
α for the two capital because Ka

t is the average capital stock for each of the three specifications of ρ.
To maintain comparability with the single capital model, we scale the first two entries of σ1

k and σ2
k by?

2, since a fictitious social planner can now diversify across the two capital shocks. The specification
“symmetric” presumes symmetric exposure to growth uncertainty, while the specification “asymmetric”
presumes that only the second capital is exposed to growth uncertainty.

The parameter values that we use in this section are recorded in Table 4. We consider

two different specifications of the exposures. One specification is “symmetric.” While each

capital stock has its own shock, the relative importance of long-term uncertainty to each

Kj is the same. The other specification is “asymmetric.” The first capital stock is not

exposed to long-run uncertainty while the second one is. Table 4 gives some additional

explanations and details. For these economies, we abstract from parameter ambiguity.
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Figure 7: Stationary densities for the second capital stock as share of total capital. For the “asymmetric”
row, only the second capital stock is exposed to growth-rate uncertainty. Finally, for the “curvature” row,
the τ “ 1 specification assumes a unitary substitution elasticity across the two types of capital, and the
τ “ 2 specification assumes a substitution elasticity equal to 1{2. The results in the third row impose ρ “ 1
and the same exposure to long-term uncertainty for both capital stocks.

We start by reporting stationary densities in Figure 7 for the fraction of the capital that

is allocated to the second technology. Initially, consider the case of symmetric exposures.

We see some sensitivity to the IES with the plots for ρ “ .67 being more peaked. As Eberly

and Wang (2012) emphasize, increasing risk aversion through changing γ (or increasing

the concern for misspecification) makes diversification all the more attractive giving rise

to densities that are much more sharply peaked. It is noteworthy that when γ “ 1,
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the asymmetric parameterization flattens out the allocation densities. But arguably more

interesting is that for γ “ 8 the second capital stock becomes much less attractive and even

more so as we decrease ρ. The mode of the density is now centered near .2 instead of .5

as investors seek to avoid exposure to long-term uncertainty. For the model specifications

discussed so far, the two capital stocks are perfect substitutes in the production of output.

So far, the only heterogeneity in the capital stock is in the exposure to shocks and

long-term uncertainty. We next illustrate the impact of production function curvature by

making the elasticity of substitution across the two types of capital one pτ “ 1q and one-

half pτ “ 2q. See the third row of Figure 7. This decrease in elatisticity of substitution in

production makes the stationary densities more peaked. This is to be expected given the

more central role played by both capital stocks in the production of output. We include

this computation as an illustration only, as there are alternative substantive motivations for

multiple capital stocks with differential impacts on production. For example, intangible,

organizational or human capital contribute to production in arguably distinct ways. While

incorporation of these components could lead to even richer models, the force on display

in Figure 7 will still be present.11

Figure 8 plots the shock elasticity or local impulse responses for the aggregate investment-

to-capital ratio. We only depict these for γ “ 12 as the γ “ 1 responses are very similar.

The elasticities for the symmetric case are very similar to those we computed for the one-

capital model. In contrast, for the asymmetric case the responses are more muted consistent

with the flatter densities reported in Figure 7. Figure 9 depicts the shock price elasticities

for the growth shock. We report only the case in which γ “ 12 as the γ “ 1 results are

unsurprisingly small. The price elasticities are very flat reflecting a dominant martingale

component to the SDF. Recall we used robustness concerns to model misspecification as an

important contributor to this martingale. The magnitude of the growth-rate shock price

elasticities are very close to those we reported for the single-capital model. In the asym-

metric case, the prices are significantly smaller because capital is reallocated to reduce the

exposure to growth rate uncertainty.

11See Crouzet et al. (2022) for a recent discussion of modeling and measuring intangible capital.
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Figure 8: Investment-output ratio exposure elasticities for growth-rate shock when γ “ 8. The reported
elasticities condition on the medians of the state variables.

Figure 9: Consumption price elasticities for the growth-rate shock when γ “ 8. The reported elasticities
condition on the medians of the state variables.

5 Heterogeneous agents and financial frictions

We now explore a different form of heterogeneity. We alter our one-capital baseline model

in Section 4 to include (ex-ante) agent heterogeneity and financial frictions. Agents will be

heterogeneous in both their preferences, productivities, and financial market access. We

think of the baseline economy as one in which multiple economic agents have homogeneous

preferences and homogeneous access to the production technology. In this case, consump-

tion and wealth are proportional over time, making aggregation immediate. This simple

aggregation will not be true in the class of economies that we explore in this section. With

various forms of market impediments, we can no longer focus on the planner problem as has
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been true in our previous examples. Instead we study a competitive equilibrium in which

wealth heterogeneity matters. As in our previous economies, we entertain the possibility

of growth-rate uncertainty in the production technology. We feature model comparisons

within a conveniently nested class of models.

5.1 Environment, equilibrium, and solution overview

There are two agent types in the economy: “experts” and “households”, indexed by e and

h, respectively. Both agents have recursive preferences, but their preference parameters

pδ, γ, ρq can differ. There is a single capital accumulation technology, but the productivity

of this capital stock may differ in the hands of each of the agents, with αe ě αh. Capital

trades freely amongst agents, with price Qt that follows endogenous diffusive dynamics.

Several financial instruments also trade: risk-free short term debt at an interest rate

rt, and various financial claims exposed to aggregate risk: (a) derivatives contracts traded

amongst households at vector πt per unit of Brownian increment risk exposure; and (b)

equity contracts issued by experts with payoff proportional to the return on capital they

hold. In some of our economies, experts face a financial restriction: they must remain

exposed to at least a fraction χ of the total capital they hold. Experts therefore cannot

issue unlimited equity nor can they trade freely in hedging contracts.

Let N j
t be the date-t net worth of type-j agent for j “ h, e. Then,

dN j
t

N j
t

“
`

µj
n,t ´ Cj

t {N j
t

˘

dt ` σj
n,t ¨ dBt, (24)

where the local mean µj
n,t net of consumption and the shock exposure vector σj

n,t are

µj
n,t “ rt `

QtK
j
t

N j
t

“

µj
R,t ´ rt

‰

` θjt ¨ πt σj
n,t “

QtK
j
t

N j
t

σR,t ` θjt ,

and where Kj
t and θjt denote the capital and hedging positions chosen by the type-j agent.

A hedging position θjt implies an exposure N j
t θ

j
t ¨ dBt to Brownian risk. As capital is also

exposed to Brownian risk, σj
n,t reflects both exposures. Due to productivity differences, the

expected excess return on capital µj
R,t ´ rt is type-specific (see Online Appendix B for the

expression for µj
R,t). The risk exposure vector, σR,t, for capital is common for households

and experts and has a direct contribution from capital-quality shocks and a contribution

from the market price Qt of capital.
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Market incompleteness is encoded via a constraint on the hedging vector θet of experts.

While households are unconstrained, experts have restrictions on their exposure to aggre-

gate risk. Suppose experts choose θet to reduce their exposure to capital risk by a fraction

χt. To achieve this reduction,

θet “ pχt ´ 1q
QtK

e
t

N e
t

σR,t.

Imposing a so-called “skin-in-the-game constraint”: χt ě χ restricts the ability of the

experts to hedge their risk to the capital that they own:

θet P

!

pχt ´ 1q
QtK

e
t

N e
t

σR,t : χt ě χ
)

, (25)

Notice that even in the limit, relaxing this constraint still limits the type of hedging that

can be done by experts, since the portfolio weights remain constrained to be proportional

to σR,t. For the purpose of making model comparisons, the structure just described em-

beds three types of heterogeneity. First, there is preference heterogeneity. In addition to

heterogeneous subjective discounting, we allow for γh ě γe, which can reflect either an

enhanced aversion to risk on the part of households or less confidence in the probability

model. Second, we allow for experts to use capital more productively than households

(αe ě αh). Finally, we entertain heterogeneity in financial market access: the skin-in-the-

game restriction (25) limits experts’ ability to offset their capital risk exposure via equity

issuance. These alternative forms of heterogeneity allow revealing comparisons across al-

ternative model specifications.

Our definition of a competitive equilibrium is standard: it is a set of price processes

(Q, π, r) and allocation processes pCe, Ch, N e, Nh, Ke, Kh, χ, θe, θhq, such that agents solve

their constrained optimization problems, taking price processes as given, and all markets—

the goods market, the market for capital, and the market for derivatives (which are in zero

net supply)—clear. By Walras’ law, the risk-free debt market will also clear.

We look for a Markovian equilibrium in which the state variables are the wealth distri-

bution, the aggregate stock of capital, as well as the driving processes Z1, Z2. Given the

homogeneity properties of our model, (i) the wealth distribution can be summarized by the

experts’ wealth share Wt
def
“ N e

t {
`

N e
t ` Nh

t

˘

, and (ii) all growing processes scale with Kt,

which means that Xt
1 def

“ pWt, Z
1
t , Z

2
t q can serve as a state vector for our economy. While

pZ1, Z2q are specified exogenously, the wealth share W evolves endogenously.
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The log continuation value of each type-j agent takes the additively separable form,

analogous to the value function for benchmark economy given by (20):

pV j
t “ pN j

t ` υjpXtq,

where pN j “ logN j. We construct a Hamilton-Jacobi-Bellman equation analogous to that

given in (21) for the social planner in the benchmark economy. (See Online Appendix B for

these HJB equations.) The homogeneity properties of our model allow us to derive agents’

optimal consumption and portfolio choices as a function of υj. For instance, the optimal

consumption-wealth ratio for each agent type is

cjpxq “ δ1{ρ exp
“

p1 ´ 1{ρqυjpxq
‰

,

and their portfolio choice solves a familiar problem that includes both a mean-variance and

a hedging component:

max
Kj ,θj

!

µj
n ´

1

2
γj|σ

j
n|

2

looooooomooooooon

mean-variance

` p1 ´ γjqpσxσ
j
nq ¨

Bυj

Bx
looooooooooomooooooooooon

hedging

)

. (26)

The outcome of this portfolio problem is a set of Euler equations (when constraints are

non-binding) and inequalities (when constraints are binding). For instance, households will

hold strictly positive amounts of capital if and only if their expected excess return µh
R,t ´ rt

is sufficiently high to match the market compensation they could otherwise obtain through

derivatives markets. Similarly, experts have an incentive to issue as much equity as possible

(and their financial constraint will then bind) when their expected return on capital µe
R,t´rt

is greater than the market compensation πt ¨σR,t they need to pay to holders of their equity.

Their issuance constraint does not bind otherwise. Since experts are more productive than

households, it is efficient for them to hold all the capital in the economy and exhaust their

equity-issuance capacity. In fact, one can show that whenever households hold positive

amounts of capital, experts’ equity issuance constraint must be binding.

The consumption and portfolio choice of the various agent types leads to endogenous

dynamics for the experts’ wealth share Wt; its drift rate depends on the consumption-

to-wealth ratio of households relative to that of experts, on experts’ leverage and their

expected excess return on capital relative to its required market compensation and finally

the differential aggregate risk exposure between households and experts. The diffusion
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coefficient of Wt only depends on this latter force. The wealth share dynamics depend on

asset prices, which themselves depend on wealth share dynamics—generating a two-way

feedback loop that amplifies capital return volatility (Brunnermeier and Sannikov, 2014).

While this section only provides an overview of the model solution, its full details are

contained in Online Appendix B.

The remainder of this section explores this heterogeneous agent model in a series of

“model comparisons,” offering some general takeaways. In Section 5.2, we specify four

different economic environments that differ in terms of market opportunities and produc-

tivities of the two agent types. Section 5.3 then explores parameter sensitivity within each

of these environments to help elucidate the economic forces at work. Section 5.4 then makes

comparisons across environments by discussing outcomes that both unite and distinguish

these models. Finally, we provide some discussion of the extant literature.

5.2 Alternative economic environments

We explore four different types of economic environments. These are motivated by some

prior contributions, but they differ in the actual modeling inputs, including a stochastic

technology that includes long-run risk. The first environment is motivated by the Basak

and Cuoco (1998) model (specification RF for “risk-free”) in which households can only

engage in risk-free exchange in security markets in an environment extended to include

long-term uncertainty. Production is done by experts. The second setup allows for unre-

stricted trade in the equity market, but this remains a “partial risk sharing” environment

(specification PR) since our model accommodates a three-dimensional specification of the

Brownian motion. In the case of only a single shock, our risk-sharing limitation becomes

inconsequential, making this setup very similar to that of Dumas et al. (2000) and Gârleanu

and Panageas (2015).12 Our third setup adds a skin-in-the-game constraint on the produc-

tive experts along the lines of He and Krishnamurthy (2013), enforced by setting 0 ă χ ă 1

on the productive experts (specification SG for “skin-in-the-game”). Finally, motivated by

Brunnermeier and Sannikov (2014), we also allow households to be productive, but less

12Gârleanu and Panageas (2015) impose exponentially distributed death probabilities in conjunction
with an exogenous allocation of agent types at birth. The finite life feature enhances the subjective
discounting and pulls the expert wealth fraction towards a pre-specified level interpreted as the wealth
fraction of experts at birth. See Appendix D of Gârleanu and Panageas (2015) for an elaboration. Under
our reinterpretation of risk aversion, the death probabilities are known with full confidence in contrast
to the uncertainty induced by the vector Brownian motion. By design, this finite life feature ensures a
stationary wealth distribution. In the reported examples we do not impose this finite-life aspect, although
our computer code and the full model details in Online Appendix B accommodate it.
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so than experts (specification IP for “inefficient production”). Here, experts do not trade

equity claims (so the skin-in-the-game constraint is maximally tight). The specifications

for these four environments are summarized in Table 5.

In the reported examples ρh “ ρe “ 1, and δh “ .01. Furthermore, experts will always

be less patient than households, in order to accommodate a stationary wealth distribution.

Sensitivity to these choices are also interesting and straightforward to explore. When we

explore sensitivity to γe, we shall refer to this as “expert risk aversion,” but as we have

argued previously, this could equivalently be interpreted as a lack of confidence in the

stochastic specification. Specifically, when γe ă γh, experts are more confident in the

stochasic specifications of technology than households.

economy pneumonic household productivity market access risk aversion

RF “risk-free” αh “ ´8 χ “ 1 γe ď γh

PR “partial risk-sharing” αh “ ´8 χ “ 0 γe ď γh

SG “skin-in-the-game” αh “ ´8 0 ă χ ă 1 γe ď γh

IP “inefficient production” ´8 ă αh ă αe χ “ 1 γe “ γh

Table 5: Parameters settings for the four different economic environments. We use the capital accumulation
parameters and the parameters governing the exogenous stochastic dynamics given in Table 1.

5.3 Comparisons within each economic environment

We explore the implications of altering the expert risk aversion or the household productiv-

ity through four economic environments. Heterogeneity in risk preferences and productivity

are two of the key channels to modulate risk price dynamics in this class of models.

5.3.1 Environment RF

We first consider an economic environment in which experts and households only trade a

risk-free asset. We explore the pricing implications of the shadow price for return-on-capital

shocks σR ¨ dB. This is the risk price that would clear a stock market populated only by

experts. The results are reported in Figure 10. A key force in all the models we explore is

the importance of expert wealth: when w falls, risk prices rise, potentially dramatically.13

In this particular environment, experts must directly absorb all risks, and so their demand

for risk compensation rises when w falls. The effect of γe depicts a tension between the

13See Section 2.3 of Panageas (2020) for a derivation of this “countercyclical risk price” property in a
class of one-shock heterogeneous-agent models.
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level and variability of risk prices. When we increase γe, we see an upward shift in risk

price levels; at the same time, the state dependence in these prices is pushed further into

the left tail of the stationary distribution. Intuitively, experts accumulate more wealth

for precautionary reasons as γe increases. (These plots hold fixed household risk aversion

γh “ 8, but there is little sensitivity to this choice because households can only trade in a

risk-free security market.) In this environment and the following ones, stochastic volatility

contributes importantly to the risk compensations, as is evident by comparing the .1 and

.9 percentiles of Z2 in Figure 10.

Figure 10: Equity return risk prices for the experts in environment RF. The prices are expressed as
functions of the relative wealth of experts for alternative specifications of expert risk aversion. Household
risk aversion is set at γh “ 8. The subjective discount rates are δe “ .0115 and δh “ .01. Stationary
densities for the expert wealth share are in the background. For the plots, Z1

t “ 0 and Z2
t is set to either

the tenth percentile (blue) or the ninetieth percentile (red).

5.3.2 Environment PR

We next consider an environment in which there is frictionless trading in the equity claim.

In this case we explore implications for both the equity risk price and the equity retention by

the experts. The results are displayed in Figure 11. Given that households now have access

to equity, its risk price has very limited sensitivity to γe. In contrast, the stationary density

for experts’ relative wealth is sensitive to γe. For instance, wealth is very concentrated at

zero when γe “ 6. Indeed, as γe approaches γh, the only prominent heterogeneity remaining

is experts higher consumption rate due to their larger subjective discounting, δe ą δh, which

tends to erode experts’ relative wealth.

With the homothetic preferences we feature, risk-taking is typically monotonic in wealth,
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Figure 11: Equity return risk prices (top row) and expert equity retention (bottom row) for environment
PR. The objects of interest are expressed as functions of the relative wealth of experts for alternative
specifications of expert risk aversion. Household risk aversion is set at γh “ 8. The subjective discount
rates are δe “ .0115 and δh “ .01. Stationary densities for the expert wealth share are in the background.
The axis of the stationary density for γe “ 5 is scaled down twenty times relative to γe “ 3, 4. For the
plots, Z1

t “ 0 and Z2
t is set to either the tenth percentile (blue) or the ninetieth percentile (red). The

equity retention is not sensitive to changes in stochastic volatility.

because absolute risk aversion is decreasing with wealth. In contrast to this conventional

result, Figure 11 shows that, particularly when γe is small relative to γh, the equity reten-

tion χ by experts is not monotonic in their relative wealth. Moreover, χ exceeds one for

some values of w, more prominently when γe is particularly small. Why does this occur?

In this PR environment, risk sharing is limited, and the two agents only trade equity

returns. A key force at play in the equity retention figures is households’ desire to hedge

long-term uncertainty induced by stochastic growth Z1. Since we have imposed a unitary

EIS, the Brownian exposure of the return-on-equity is σR,t “
a

Z2
t σk in this environment.

The composite shock σk ¨dBt not only has a direct contribution to the stochastic evolution of

capital dKt, but it also alters the long-term growth prospects through dZ1
t (i.e., growth and

capital-quality shocks are correlated). Households, being more risk averse than experts, are

more concerned about this growth uncertainty. Absent direct integrated hedging markets,
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households use capital to obtain partial insurance against growth-rate fluctuations from

experts leading them to short expert equity for some realizations of the relative wealth

share.14 This same mechanism plays a central role in the determination of a non-degenerate

stationary distribution for W . Typically, complete-markets models with heterogeneous

preferences would, except in knife-edge cases, feature degenerate stationary distributions

at w “ 0 or w “ 1; here, a broad range of preference parameters can produce non-degenerate

wealth distributions.15

5.3.3 Environment SG

We next explore the impact of adding a skin-in-the-game constraint requiring χ ě χ “ .2.

This constraint binds for low values of the expert wealth share, and is “occasionally binding”

in dynamic simulations. We report results in Figure 12. Increasing γe expands the region in

which the constraint binds. Figure 12 also illustrates the connection between the binding

equity constraint and the nonlinear dependence of experts’ equity risk price on w; this

extreme nonlinearity is why researchers sometimes refer to binding equity constraints as

“financial crises.”16

The occasionally-binding phenomenon on display in Figure 12 arises because less averse

experts retain more risk than their wealth (i.e. χ ą w), so the unconstrained region remains

“stochastic” (in the sense that σw ‰ 0 even when χ ą χ). This is essentially what drives the

occasionally-binding equilibrium of He and Krishnamurthy (2013): they restrict households

to always invest a fixed positive fraction of their wealth in risk-free assets, which makes

them act more risk-averse than experts (see their Parameter Assumption 1). In fact, we

prove for a very general set of cases that the skin-in-the-game constraint is either always-

binding or never-binding when risk aversions are equalized. In this sense, heterogeneous

risk-preferences are critical to occasionally binding skin-in-the-game constraints.17

14As further confirmation of this mechanism, unreported results for γe “ 2 and γh “ 8 show that
households’ shadow risk prices for exposure to the growth rate shock range between .25 and .31 when
evaluated at the medians of the exogenous state variables, whereas experts’ shadow growth risk price
ranges between .09 and .15. Risk-aversion heterogeneity is critical to this discrepancy in growth risk prices.

15We include the dependence between the direct shock to the capital evolution and the shock to exogenous
changes in growth-rate opportunities in our examples because of the empirical calibration reported in
Hansen and Sargent (2022). Absent this correlation, χ is monotone increasing in the expert wealth share,
and the stationary distribution becomes a point mass at either w “ 0 or w “ 1 (depending on the
parameters δe, δh, γe, γh).

16Note that in this environment, the potentially-binding constraint implies we must distinguish experts’
and households’ shadow risk prices for equity exposure. When χ ą χ the two agree; but when χ “ χ, the
two diverge. We are plotting experts’ shadow risk price.

17See Online Appendix B (Proposition B.3) for analysis of the case when γe “ γh. For a large set of
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On one hand, our results here provide a partial justification for the procedure, performed

by many DSGE models with financial frictions, that consists in log-linearizing equilibrium

equations assuming constraints are always binding. On the other hand, this exercise illus-

trates that some models with occasionally-binding risk-sharing constraints may be standing

on, perhaps hidden, assumptions about risk aversion heterogeneity.

Figure 12: Expert equity return risk prices (top row) and expert equity retention (bottom row) for environ-
ment SG. The objects of interest are expressed as functions of the relative wealth of experts for alternative
specifications of expert risk aversion. Household risk aversion is set at γh “ 8. The subjective discount
rates are δe “ .0115 and δh “ .01. Stationary densities for the expert wealth share are in the background.
The axis of the stationary density for γe “ 5 is scaled down eight times relative to γe “ 3, 4. For the plots,
Z1
t “ 0 and Z2

t is set to either the tenth percentile (blue) or the ninetieth percentile (red).

5.3.4 Environment IP

Finally, we explore an environment in which households sometimes engage in production

even though experts are more skilled at it. To isolate the role of productive heterogeneity,

we eliminate risk aversion heterogeneity here. In financial markets, households and experts

trade in a risk-free security, but there is no trade in equities as enforced by setting χ “ 1.

parameters, either χt “ χ for all t or χt ą χ for all t, almost surely.
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When both agents manage capital, however, they face the same exposure to stochastic

capital evolution along with growth-rate risk. For computational reasons, we eliminate

stochastic volatility for this environment and set Z2 equal to mean, µ2, under the stationary

distribution.

In Figure 13, we plot experts’ shadow capital risk price and their capital share. For low

values of the wealth share, households are active producers even though they have lower

productivity. In this region, experts demand high shadow compensations for exposure to

capital evolution uncertainty. Increasing household productivity increases the likelihood of

inefficient household production but decreases the shadow risk price conditional on ineffi-

ciency.

Figure 13: Expert’s risk prices (top row) and expert capital share for environment IP. The objects of are
interest are expressed as functions of the relative wealth of experts. Household and expert risk aversion
are the same, γh “ γe “ 2. The subjective discount rates are δe “ .03 and δh “ .01. Stationary densities
for the expert wealth share are in the background. For the plots, Z1

t “ 0.

5.4 Comparisons across environments

In this subsection we note some interesting comparisons that emerge when we look across

environments. Of course, such comparisons may well be sensitive particular parameter
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configurations. Our computational methods allow for more comprehensive comparisons

done in thoughtful ways.

5.4.1 Deleveraging

Among the four economic environments, we distinguish those that allow “deleveraging”

from those that do not—this demarcation represents a significant divide in the nature of

model dynamics.

To explore deleveraging, we consider how the “risk share” of experts behaves relative

to their wealth share. The expert risk share is given by the product χκ where χ is equity

retention fraction and κ is the fraction of capital held by experts. We think of deleveraging

occurring when χκ falls. This is a reasonable definition to consider, since χκ falling entails

either experts selling capital or issuing additional equity.18

By this definition, environments RF and SG do not allow deleveraging. In both cases,

all capital is held by experts (κ “ 1) and a financial constraint prevents χ from ever falling

to zero. Thus, χκ is bounded away from zero for RF and SG. This feature implies that as

the wealth share of experts declines to zero, experts risk exposure per unit of their wealth

grows without bound, which in turn implies experts require unbounded risk compensation

as w Ñ 0. See Figures 10 and 12. High risk prices allow experts to earn high profits and

recapitalize their balance sheets.

Environments PR and IP do allow deleveraging. In PR, while all capital is held by

experts (κ “ 1), there is no constraint on equity issuance (so χ can fall). In IP, experts can

deleverage by directly selling capital to households (so κ can fall). Whether through χ or

κ, these two environments feature χκ tending to zero at the same rate as w Ñ 0. Due to

deleveraging, experts’ risk prices remain bounded even as w Ñ 0; see Figures 11 and 13.

Online Appendix B.9 conducts a formal asymptotic analysis as w Ñ 0. We show

analytically how the deleveraging behavior of χκ, through its effect on equilibrium risk

compensations, governs the tail shape of the stationary wealth distribution. Looking back

at Figures 10-13, one can see how the models with deleveraging can permit substantially

more mass near w “ 0.

18In all models we explore, it is true that expert leverage rises as their wealth falls. However, we refer to
deleveraging as the active decision to reduce risk exposure (χκ) given leverage has risen. Thus, the models
that we dub “deleveraging” will have more muted leverage dynamics.
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5.4.2 Relative wealth dynamics

In Figure 14 we report the elasticities for experts’ wealth share Wt to an initial capital

exposure shock. We document the differential nature of the responses depending on the

initial relative wealth position which demonstrates a form of nonlinearity. With the excep-

tion of environment IP, the responses are very flat suggesting that the shocks have a very

persistent impact on the wealth distribution. When we condition on the median wealth

share, the responses are lower than when we initialize W0 at lower percentiles. This is evi-

dence of some reversion in these nonlinear settings since “escapes” become more likely with

enhanced volatility. Initializing at even smaller quantities than we report will reveal more

decay in the elasticities as there will eventually be pull away from the w “ 0 boundary.19

Recall that in environments RF and IP, households only trade in risk-free securities.

In environment IP, however, households obtain risk exposure from directly holding capital,

in contrast to environments RF. As is evident from the top row of the figures, the shock

responses are initially much larger with notable reversion to zero for IP environment than

for the others. This decay in the shock elasticities to zero, as we increase the horizon,

is much more substantial for the low quantiles than for the median of the relative expert

share of the wealth distribution.

5.4.3 Uncertainty prices

Households and experts share risk in environments PR and SG, but they do not engage

in full risk-sharing. Thus we expect differences in the implied shadow prices for experts

and households. Recall that these uncertainty prices use the interpretation of recursive

preferences as “aversion to model mispecification.”20 Figure 15 explores differences in the

implied uncertainty shadow prices for growth-rate shocks for the two agent types. First

19The finite-life imposition as described in footnote 12 would provide an additional mechanism for re-
version away from the boundaries of the wealth distribution.

20In environments like RF and SG, limited expert deleveraging creates an asymptote for local “risk
pricing” at w “ 0. While the shadow stochastic discount factors play a role in representing intertemporal
budget constraints, they may only determine what Hugonnier (2012) refers to as fundamental prices. Since
equilibrium wealths are constrained to be positive at all dates, Hugonnier’s insightful paper notes the
possibility of bubbles, i.e., equilibrium security prices above their fundamental values. He characterizes the
bubbles in terms of local martingales that fail to be global martingales in the stochastic discount factor
processes. From a numerical perspective, this can potentially create subtle issues in computing shock price
elasticities that need to be examined on a case-by-case basis, including the proper treatment of boundary
conditions. That being said, this subsection studies the uncertainty prices to growth rate shocks, as opposed
to shocks hitting the level of capital. Since local uncertainty prices for these shocks do not feature such an
asymptote at w “ 0, we conjecture such local martingale issues are not critical to the calculations here.
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Figure 14: Relative wealth response elasticities to an initial period capital shock for the four environments.
We use γe “ 4 and δe “ 0.0115 for environments RF, PR, and SG. For environment IP, we set γe “ 2,
δe “ 0.03 and αh “ .08. For all environments, γh “ 8 and δh “ 0.01. We restrict the initial exogenous
state variables to be at their medians. The blue curve gives elasticities when W is initialized at the .05
percentile of the relative wealth distribution, the red curve at the .1 percentile, and the green curve at the
median.

of all, we see sizable shadow compensation for exposure to growth rate uncertainty. In

addition, the significant difference between experts’ and households’ shadow prices reflects

the preference inequality γh ą γe along with the incomplete risk sharing. Third, by looking

at the differences within each of the four panels, we see the impact of the initial stochastic

volatility. Finally, while the shadow price differences are very different between households

and experts, the differences across environments are quite modest.21

21We found little sensitivity of the uncertainty price shock to the initial wealth share for these calculations.
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Figure 15: Uncertainty price elasticities for a growth-rate shock for environments PR and SG. We use risk
aversions γe “ 4 and γh “ 8 for both models. We initialize W and Z1 at their medians. The blue curve
gives elasticities when Z2 is initialized at the .1 percentile of its distribution, the red curve at the median,
and the green curve at the .9 percentile.

5.5 Discussion of related literature

The models we have explored in this section highlight the role of ex-ante agent hetero-

geneity and risk-sharing. The literature studying this class of models is voluminous, and

we do not attempt to survey all of it here. However, we will comment briefly on which

existing mechanisms we have covered and which we have not, along with what we see as

the challenges for future research in this area.

As mentioned above, the models closest to ours include Basak and Cuoco (1998), He and

Krishnamurthy (2011, 2013, 2019), Brunnermeier and Sannikov (2014, 2016), and Gârleanu

and Panageas (2015). All of these are models where pricing dynamics become interesting

either because risk-sharing is constrained or because of the trading dynamics induced by

attempts to share risks. Our framework essentially nests these models, pairing them with

a setup that features long-run uncertainty in the macroeconomic growth.

42



These core frameworks have been extended to think about a variety of substantive is-

sues. While our framework does not nest these extensions, we collect some of them here

to illustrate the wide range of possibilities: capital requirements and leverage restrictions

(Phelan, 2016, Klimenko et al., 2016); margin constraints (Gromb and Vayanos, 2002,

Garleanu and Pedersen, 2011); shadow banking (Moreira and Savov, 2017); liquidity pre-

mia and monetary policy (Drechsler et al., 2018); unconventional monetary policy (Silva,

2016); international capital flows (Brunnermeier and Sannikov, 2015); the link between

idiosyncratic and aggregate risk-sharing (Di Tella, 2017, 2019); financial innovation driven

boom-bust cycles (Khorrami, 2020); and entry into the intermediation sector (Haddad,

2014, Khorrami, 2021). While we work in continuous time, related issues have been ex-

plored in discrete-time frameworks (Gertler and Karadi, 2011, Gertler and Kiyotaki, 2010,

Mendoza, 2010, Bianchi, 2011, Gertler and Kiyotaki, 2015, Christiano et al., 2014).

While this class of models is rich enough to feature some interesting insights, there are

reasons to expand their scope. First, financial crises are often more sudden and extreme

than the models we explore here would predict. Second, large booms in credit and asset

prices have some predictive power for a subsequent bust and financial crisis. Modeling

additional amplification mechanisms like bank runs is one way to generate more realistically

extreme crises (Mendo, 2018, Krishnamurthy and Li, 2021). Modeling investor “sentiment,”

both via non-rational beliefs (Maxted, 2024, Krishnamurthy and Li, 2021) and rational fear

(Khorrami and Mendo, 2023), are extensions that can generate crisis predictability.

As an intriguing analogy to our long-run uncertainty framework, Maxted (2024) con-

siders extrapolative sentiment as the belief in a persistent stochastic growth rate that, in

fact, does not exist. We could capture such impacts in our framework by supposing that

the state variable Z1 is “only in the heads of the investors and households” and not in the

actual dynamic evolution. We can analyze such a model in same manner as we currently do

by including the Z1 dynamics in the model solution, but omitting it from the simulations,

stationary distributions, and elasticity computations. In this way, there is a wedge between

beliefs and the actual data generation. We find this alternative perspective on long-term

risk to be intriguing; but as we have seen in Section 4.5, an alternative to subjective belief

models are ones that acknowledge the measurement challenge of identifying a long-run risk

component in data. This challenge seems pertinent not only to econometricians but also

economic agents.22

The class of models we explored, by design, nests alternative forms of heterogeneity,

22See Hansen (2014) and Chen et al. (2024) for related discussions.
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albeit a rather stark form with two types of investors. For all of the alternatives we

investigate, a natural question is “who are the so-called experts?” Should we identify

them with insiders at productive firms, or managers of banks, or specialist investors more

broadly? The answers to these questions influences the type of market frictions that are

reasonable to consider, as well as the calibrations one should adopt.

One related empirical literature explores intermediary asset pricing implications by

seeking to identify new pricing factors. Models of the type featured here, when applied

to financial intermediaries, highlight forms of state dependence in valuation that could be

important. Exposures and market compensations fluctuate as functions of state variables,

suggesting a more dynamic approach to empirical investigation.

6 Conclusions

Our essay explores alternative macro-finance models, including many with explicit nonlin-

earities. The models are highly stylized and perhaps best thought of a devices to engage

in “quantitative story telling.” The models are not designed to provide fully comprehen-

sive accounting of empirical facts, but rather they offer characterizations of alternative

mechanisms for linkages between financial markets and the macroeconomy. We feature

model comparisons rather than deep probes into one specific mechanism. While the latter

is clearly valuable, we also believe in value of making model comparisons, something that

is less common in journal publication. In effect, we are engaged in “quantitative story

telling with multiple stories.” In this sense, we share a common ambition with Dou et al.

(2020), although the class of models we feature is different as are the tools we use. Re-

lated ambitions are also reflected in the comprehensive Macro Model Data Base (MMB,

https://www.macromodelbase.com), although many the models we entertain require spe-

cial computational challenges because of their nonlinear structure. Moreover, our essay

focuses on the substantive comparisons.

Computational methods are required to support this type of analyses. As we explain in

our Online Appendix C, this is a nontrivial component to our investigation. In each model,

we must solve for agents’ continuation values, in some cases jointly with asset prices or

endogenous risk-sharing constraints. These functions solve systems of highly nonlinear

PDEs. Depending on the model, we use either finite-difference based methods or, for larger

state spaces, a deep Galerkin method-policy improvement algorithm, incorporating neu-

ral net approximations. See Achdou et al. (2022) and d’Avernas et al. (2022) for some
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additional macro applications of implicit finite-difference schemes for PDEs, based on the

seminal work of Barles and Souganidis (1991). See Al-Aradi et al. (2022), Duarte et al.

(2023), Gopalakrishna (2022), and Barnett et al. (2023) for recent developments and dis-

cussions of deep neural network methods as an alternative designed to accommodate higher

dimensional state spaces.
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A Stochastic volatility calibration

Recall the volatility process:

dZ2
t “ ´β2pZ

2
t ´ µ2

zq `
a

Z2
t σ2dBt

Remember that Z2 has a stationary gamma distribution. Construct the corresponding

stationary density for pZ2 def
“ logZ2 using the change of variables formula. Denote the

outcome as:

q̂pẑ;µ2
z, |σ2|

2
q.

Schorfheide et al. (2018) estimated a process for the counterpart to this process with a

different stochastic specification. Their process expressed in logarithms is:

log pZ2
t “ 2 log ς ` H2

t

where

dH2
t “ ´β2H

2
t dt ` 2σ̂2dBt.

In Table 3 of their paper, they provide estimates based on both post war and a longer

historical time series. The coefficient β2 is very similar but their estimate of |σ̂2| is much

larger for the longer time series. We take the following numbers from their Table 3 and

input into our calibration of stochastic volatility:

β2 “ log .984

|σ̂2| “ 2 ˆ
?
.0054,

ς “ .0022

where the time units are months. The stationary distribution for the Schorfheide et al.

(2018) model for pZ is normal with mean 2 log ς and variance

|σ̂2|2

2β2

We denote the distribution as q.

To use the Schorfheide et al. estimates for our analysis, we approximate the stationary
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densities by solving numerically

min
µ2
z ,|σ2|2

ż

ẑ

“

log q̂pẑ;µ2
z, |σ2|

2
q ´ log qpẑq

‰

q̂pẑ;µ2
z, |σ2|

2
qdẑ.

The resulting minimizers are

µ2
z “ 6.3 ˆ 10´6

|σ2| “ 0.00031.

Figure 16: This figure shows two densities for Z2: the one estimated by Schorfheide et al. (2018), q, and
the best fitting one constructed from our minimization problem, q̂.
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Gârleanu, Nicolae and Stavros Panageas. 2015. Young, old, conservative, and bold: The im-
plications of heterogeneity and finite lives for asset pricing. Journal of Political Economy
123 (3):670–685.

Garleanu, Nicolae and Lasse Heje Pedersen. 2011. Margin-based asset pricing and devia-
tions from the law of one price. The Review of Financial Studies 24 (6):1980–2022.

Gertler, Mark and Peter Karadi. 2011. A model of unconventional monetary policy. Journal
of monetary Economics 58 (1):17–34.

Gertler, Mark and Nobuhiro Kiyotaki. 2010. Financial intermediation and credit policy in
business cycle analysis. In Handbook of monetary economics, vol. 3, 547–599. Elsevier.

———. 2015. Banking, liquidity, and bank runs in an infinite horizon economy. The
American Economic Review 105 (7):2011–43.

Good, Irving J. 1952. Rational Decisions. Journal of the Royal Statistical Society. Series
B (Methodological) 14.

Gopalakrishna, Goutham. 2022. A Macro-Finance Model with Realistic Crisis Dynamics.
Unpublished working paper.

Gromb, Denis and Dimitri Vayanos. 2002. Equilibrium and welfare in markets with finan-
cially constrained arbitrageurs. Journal of Financial Economics 66 (2-3):361–407.

Haddad, Valentin. 2014. Concentrated ownership and equilibrium asset prices. Princeton
University.
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