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Abstract

This supplemental appendix covers calculations for the heterogeneous-agent model

from Section 5, as well as the computational methods used throughout the paper. The

GitHub Repository can be found at https://github.com/lphansen/comparing dsge.
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B Calculations for heterogeneous-agent model

We develop the theoretical model calculations used in the model with agent heterogeneity.

B.1 Setup and HJB equations

For each agent type with discount rate δ, inverse IES ρ, and risk aversion γ, their HJB

equation is given by

0 “ max
´ δ

1 ´ ρ

¯”´ c

exppυq

¯1´ρ

´ 1
ı

` µn ´ c ´
1

2
|σn|

2
` µx ¨ Bxυ `

1 ´ γ

2
|σn|

2

`p1 ´ γqσn ¨ σ1
xBxυ `

1

2
tr pσ1

xBxx1υσxq `
1 ´ γ

2
|σ1

xBxυ|
2

(B.1)

Maximizing over consumption c delivers the following consumption-wealth ratios:

cepxq “ δ1{ρe
e exp

ˆˆ

1 ´
1

ρe

˙

υe
pxq

˙

chpxq “ δ
1{ρh
h exp

ˆˆ

1 ´
1

ρh

˙

υh
pxq

˙

Next, note that the expert and household expected return-on-capital are given by

µe
R “

αe ´ i˚

Qt

` µq ` Φpi˚
q ` βkz1 ´ ηk `

?
z2σk ¨ σq (B.2)

µh
R “

αh ´ i˚

Qt

` µq ` Φpi˚
q ` βkz1 ´ ηk `

?
z2σk ¨ σq (B.3)

The only difference is the type-specific productivity αj. The investment-to-capital ratio i˚

only shows up in agents’ HJBs through µj
R and it does so symmetrically. Thus, maximizing

over i˚ delivers

i˚
pxq “ pΦ1

q
´1

ˆ

1

qpxq

˙

“
qpxq ´ 1

ϕ
,

where the explicit form of i˚ uses our specification of the installation function Φpxq “

ϕ´1 logp1 ` ϕiq.

Finally, notice that the capital holding Kj and derivatives positions θj only show up

in the HJB equation through the net worth drift and diffusion terms pµn, σnq, leading to

problem (26). Households maximize the portfolio problem (26) over all possible choices of
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their risk exposure vector σh
n,t “

QtKh
t

Nh
t
σR,t ` θht by choice of Kh

t ě 0 and θht P R3, while

experts maximize (26)) over all possible choices of σe
n,t “

QtKe
t

Ne
t
σR,t ` θet “ χt

QtKe
t

Ne
t
σR,t such

that Ke
t ě 0 and χt ě χ. In the next subsections, we will solve these portfolio choice

problems.

In this appendix, we will sometimes work with the risk premium “wedges” ∆e and ∆h,

which are defined as the agent-specific gap between capital returns and market returns:

∆e def
“ χ´1

`

µe
R ´ r ´ π ¨ σR

˘

(B.4)

∆h def
“ µh

R ´ r ´ π ¨ σR (B.5)

We will also write households’ and experts’ shadow risk prices by πh and πe, respectively.

Because households face complete markets, πh “ π (i.e., their shadow risk price equals the

traded risk price). Because experts face incomplete markets, πe ‰ π generally speaking.

B.2 Household portfolio choice

The necessary conditions for optimality for households can be summarized as follows:

µh
R ´ r ` p1 ´ γhqpσxσRq ¨ Bxυ

h
ď γhσR ¨ σh

n

πh
` p1 ´ γhqσ1

xBxυ
h

“ γhσ
h
n.

Combining these equations, we have households’ Euler equation,

$

&

%

µh
R ´ r ď πh ¨ σR, if Kh “ 0

µh
R ´ r “ πh ¨ σR, if Kh ą 0.

(B.6)

In other words, when households’ expected capital return is below what they can earn with

exposure to aggregate risk via futures contracts, they do not hold any capital. When they

do hold capital, the expected return on such capital is equal to compensation for aggregate

risk (via πh ¨ σR). Households’ optimal risk allocations are given by

σh
n “

QKh

Nh
σR ` θh “

πh

γh
`

1 ´ γh
γh

σ1
xBxυ

h (B.7)
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B.3 Expert portfolio choice

Experts’ portfolio choice is similar. Their first-order conditions

µe
R ´ r ´ p1 ´ χqπh

¨ σR ` χp1 ´ γeqpσxσRq ¨ Bxυ
e

“ γeχσR ¨ σe
n

πh
¨ σR ` p1 ´ γeqpσxσRq ¨ Bxυ

e
ď γeσR ¨ σe

n,

can be combined to yield an Euler equation:

$

&

%

πh ¨ σR ď µe
R ´ r, if χ “ χ

πh ¨ σR “ µe
R ´ r, if χ ą χ.

(B.8)

In other words, if the risk-premium πh
t ¨ σR,t required to be paid to the market for issuing

equity is lower than the expected excess return that experts earn on their capital, they will

issue as much equity as they can, and bounce against their skin-in-the-game constraint χ.

Experts’ optimal leverage is given by

χQKe

N e
“

1

γe|σR|2

”

∆e
` πh

¨ σR ` p1 ´ γeqpσxσRq ¨ Bxυ
e
ı

, (B.9)

and because they take all aggregate risks in equal proportions, σe
n “

χQKe

Ne σR. The “wedge”

∆e
t is the incremental risk premium attained by experts, per unit of equity investment. To

see that ∆e represents an incremental private risk premium for experts, use the definition

of ∆e and experts’ Euler equation to obtain the following equation: µe
R ´ r “ χpπh ¨ σR `

∆eq ` p1´χqπh ¨ σR. In particular, χpπh ¨ σR `∆eq represents the experts’ excess return to

“inside equity” whereas p1´χqπh ¨σR represents the excess return to “outside equity” held

by households. These sum to the excess return on assets, and ∆e can thus be interpreted

as the bonus return per unit of inside equity, of which there are χ units.

B.4 Equilibrium capital and risk distribution

Define expert’s capital share

κ
def
“

Ke

K
, (B.10)

which fully summarizes the capital distribution. The Euler equations (B.6) and (B.8) can be

used to determine κ and equity-retention share χ. Since households are less productive, it

is often efficient for experts to manage all capital (κ “ 1) and exhaust their equity-issuance
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capacity (χ “ χ). Thus, the solutions for κ and χ describe the nature of occasionally-

binding constraints in this model.

Lemma B.1. The equilibrium expert capital share κt and equity retention χt satisfy the

following complementary slackness conditions:

0 “ minp1 ´ κt,´∆h
t q (B.11)

0 “ minpχt ´ χ,∆e
t q. (B.12)

When households hold capital (κt ă 1), experts are equity-issuance constrained (χt “ χ).

Lemma B.1 also shows how ∆e and ∆h play the roles of a Lagrange multipliers on equity-

issuance and shorting constraints: ∆e measures the shadow value of loosening the equity-

issuance constraint (decreasing χ), whereas ´∆h measures the shadow value of allowing

households to short some of the capital stock.

Proof of Lemma B.1. Begin with Euler equations (B.6) and (B.8), use the definitions of

∆h and ∆e in (B.4)-(B.5), and use the definition of κ to immediately obtain (B.11)-(B.12).

To verify the claim that κ ă 1 implies χ “ χ, use the definitions of µe
R and µh

R which differ

only in their dividend yields pαe´i˚q{Q and pαh´i˚q{Q. Therefore, χ∆e “ ∆h`µe
R´µh

R “

∆h `pαe ´αhq{Q. If κ ă 1, then ∆h “ 0 by (B.11). If ∆h “ 0, then ∆e ą 0 by the previous

result, which implies χ “ χ by (B.12).

B.5 Price of capital

The goods market clearing condition can be written

αeK
e
t ` αhK

h
t “ Ce

t ` Ch
t ` Iet ` Iht .

In other words, aggregate consumption plus aggregate investments by households and ex-

perts must equal aggregate output. Dividing the equation above by aggregate wealth QtKt

in the economy, and remembering the definition of κ “ Ke{K, we obtain

p1 ´ wqch ` wce `
i˚ pqq

q
“

p1 ´ κqαh ` καe

q
(B.13)

Equation (B.13) relates q and κ to the state variables, conditional on knowing the wealth-

normalized value functions υh and υe. One can show that this equation in q has a unique
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positive root. We also notice that in the unitary IES case, when all the capital in the

economy is held by experts (i.e. κ “ 1), the price of capital is invariant to the driving

processes (z1, z2), and simply equal to the ratio of the dividend yield αe ´ i˚pqq divided by

the wealth-weighted average rate of time preference wδe ` p1 ´ wqδh. With our functional

form assumed for the installation function Φ, we obtain the following price of capital:

q “
p1 ´ κqαh ` καe ` 1{ϕ

p1 ´ wqδ
1{ρh
h exp

``

1 ´ 1
ρh

˘

υh
˘

` wδ
1{ρe
e exp

``

1 ´ 1
ρe

˘

υe
˘

` 1{ϕ
(B.14)

B.6 Law of motion of K, W , and Q

Because experts and households utilize a common investment rate i˚pqq, aggregate capital

dynamics are particularly simple:

dKt

Kt

“ µK,tdt ` σK,t ¨ dBt (B.15)

µK,t
.
“ βkZ

1
t ` Φri˚

pQtqs ´ ηk (B.16)

σK,t
.
“
a

Z2
t σk (B.17)

The law of motion of the wealth distribution W is derived below. Note in deriving

these equations, we are allowing for an overlapping generations (OLG) structure with a

birth/death rate of λd and a fraction ν of newborns exogenously designated experts. Dying

agent wealth is automatically redistributed to newborns on a per-capita basis.

Lemma B.2. The drift µw,t and diffusion σw,t of the wealth share Wt are given by

µw,t “ Wtp1 ´ Wtq

”

cht ´ cet `
χtκt

Wt

∆e
t

ı

` σw,t ¨ pπh
t ´ σR,tq ` λdpν ´ Wtq (B.18)

σw,t “ pχtκt ´ WtqσR,t. (B.19)

Proof of Lemma B.2. Combine agents’ dynamic budget constraints with their portfolio

choices to obtain the evolution of aggregate households’ and aggregate experts’ wealth

Nh
t and N e

t :

dNh
t

Nh
t

“

”

rt ´ ch ´ λd ` σh
n,t ¨ πh

t `
1 ´ κt

1 ´ Wt

∆h
t `

p1 ´ νqλd

1 ´ Wt

ı

dt ` σh
n,t ¨ dBt (B.20)

dN e
t

N e
t

“

”

rt ´ ce ´ λd ` σe
n,t ¨ πh

t `
χtκt

Wt

∆e
t `

νλd

Wt

ı

dt ` σe
n,t ¨ dBt, (B.21)
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and where

σh
n “

1 ´ χκ

1 ´ w
σR (B.22)

σe
n “

χκ

w
σR. (B.23)

The terms containing λd represent contributions from OLG. The key observation in obtain-

ing the risk exposures (e.g., terms involving χκ and 1´χκ) is that experts hold χκ fraction

of total capital risk in the economy (after equity-issuance), so households must hold the

balance 1 ´ χκ by market clearing. The terms involving ∆h and ∆e come from recalling

their definitions along with that of κ and w; e.g., households earn excess return ∆h on their

capital holdings, which equal 1´κ
1´w

per unit of their net worth.

By Itô’s formula, the wealth share Wt “
Ne

t

Ne
t `Nh

t
evolves as

dWt “ Wtp1´Wtq

˜

dN e
t

N e
t

´
dNh

t

Nh
t

¸

´Wtp1´Wtq

˜

Wt
drN e

t s

pN e
t q

2 ´p1´Wtq
drNh

t s
`

Nh
t

˘2`p1´2Wtq
drN e

t , N
h
t s

N e
t N

h
t

¸

Using (B.20)-(B.21) and (B.22)-(B.23), and making several simplifications, the result is

µw “ wp1 ´ wq

”

ch ´ ce `
χκ

w
∆e

´
1 ´ κ

1 ´ w
∆h

ı

` pχκ ´ wqσR ¨ pπh
´ σRq ` λdpν ´ wq

(B.24)

σw “ pχκ ´ wqσR. (B.25)

The result of Lemma B.2 is obtained by using Lemma B.1 to get p1 ´ κq∆h “ 0.

Finally, by Itô’s formula, the drift and diffusion coefficients of Qt are

µq “ µx ¨ Bx log q `
1

2

“

tr pσ1
xBxx1 logpqqσxq ` |σ1

xBx log q|
2
‰

(B.26)

σq “ σ1
xBx log q. (B.27)

On the other hand, σx depends on σq, constituting a two-way feedback loop. We can solve

this loop by substituting the expression for σx into the formula for σq, using σR “
?
z2σk`σq

to obtain:

σq “
pχκ ´ wq pBw log qq

?
z2σk ` σ1

zBz log q

1 ´ pχκ ´ wqBw log q
, (B.28)
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where recall z
def
“ pz1, z2q

1 and σz “
?
z2pσ1, σ2q1. Conditional on knowing χ and κ, if we

know the price function q across the state space, we know the capital price volatility vector

σq, as well as the wealth share volatility vector σw. Note that this generates capital return

volatility equal to

σR “

?
z2σk ` σ1

zBz log q

1 ´ pχκ ´ wqBw log q
. (B.29)

B.7 Equilibrium risk-free rate and risk prices

We solve for the risk-free rate r as well as the households’ and experts’ risk-prices πh, πe.

To do this, we use the fact that QtKt “ Nh
t ` N e

t , which we time-differentiate. Using the

dynamic evolution equations for Nh and N e in (B.20) and (B.21), and for K in (B.15), by

equating the drift terms we obtain:

r ` p1 ´ wq

´

σh
n ¨ πh

`
1 ´ κ

1 ´ w
∆h

´ ch
¯

` w
´

σe
n ¨ πh

`
χκ

w
∆e

´ ce
¯

“ µq ` µK ` σK ¨ σq

(B.30)

By equating the diffusion terms:

p1 ´ wqσh
n ` wσe

n “ σR. (B.31)

To solve for r, substitute (B.31) into (B.30), use the result from Lemma B.1 that p1´κq∆h “

0, and rearrange:

r “ µq ` µK ` σK ¨ σq ´ σR ¨ πh
` wce ` p1 ´ wqch ´ χκ∆e (B.32)

To solve for πh, substitute optimal exposure σh
n from (B.7) with its equilibrium value from

(B.22) to obtain:

πh
“ γh

1 ´ χκ

1 ´ w
σR ` pγh ´ 1qσ1

xBxυ
h. (B.33)

Since experts face incomplete markets, there is in theory an infinite number of stochastic

discount factors that can price claims for which the expert is marginal. We thus focus on

the marginal utility of consumption process, which for any agent with recursive preferences
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takes the following form (see for example Duffie and Epstein (1992)):

St “ exp

„
ż t

0

ˆˆ

ρ ´ γ

1 ´ ρ

˙

δ1{ρ exp

ˆˆ

1 ´
1

ρ

˙

υs

˙

´ δ

ˆ

1 ´ γ

1 ´ ρ

˙˙

ds

ȷ

N´γ
t exp pp1 ´ γqυtq

In the case of time- and state-separability (i.e. when ρ “ γ), we obtain the familiar formula

St{S0 “ e´δt pCt{C0q
´γ. Remember that we have for households and experts:

dN j
t

N j
t

“
`

µj
n,t ´ cjt

˘

dt ` σj
n,t ¨ dBt

This leads to the key equation defining the vector of shadow risk prices faced by an investor:

dSj
t

Sj
t

´ Et

«

dSj
t

Sj
t

ff

“ ´
“

γjσ
j
n,t ` pγj ´ 1qσj

υ,t

‰

¨ dBt
def
“ ´πj

t ¨ dBt (B.34)

In the above, the kth coordinate of πj
t is the expected excess return investor j gets paid per

unit of risk exposure to the kth shock of Bt. Substituting formula (B.23) for σe
n into (B.34),

we have

πe
“ γe

χκ

w
σR ` pγe ´ 1qσ1

xBxυ
e (B.35)

This means that experts’ equilibrium expected excess return compensation is equal to:

πe
¨ σR “ γe

χκ

w
|σR|

2
` pγe ´ 1q pσxσRq ¨ Bxυ

e

“ ∆e
` πh

¨ σR,

where πh is the vector of aggregate risk prices faced by households.1

1Note that we could follow these same steps for households but would obtain an equivalent result to our
equilibrium risk price vector. Substitute formula (B.22) for σh

n into the shadow risk-price definition (B.34)
to get

πh “ γh
1 ´ χκ

1 ´ w
σR ` pγh ´ 1qσ1

xBxυ
h (B.36)

Notice that πh in (B.36) is identical to (B.33).

8



B.8 Deriving the functional equation for χ

We first note that the experts’ aggregate risk choice (B.9) can be re-arranged to express

the expected return premium ∆e as follows:

∆e
“ γe

χκ

w
|σR|

2
´ γh

1 ´ χκ

1 ´ w
|σR|

2
´ pσxσRq ¨

“

pγh ´ 1qBxυ
h

´ pγe ´ 1qBxυ
e
‰

(B.37)

Substituting (B.37) into the complementary slackness condition for experts’ skin-in-the-

game constraint (B.12),

0 “ min
!

χ ´ χ, p1 ´ wqγeχκ|σR|
2

´ wγhp1 ´ χκq|σR|
2

´ wp1 ´ wq pσxσRq ¨
“

pγh ´ 1qBxυ
h

´ pγe ´ 1qBxυ
e
‰

)

.

Since all the capital is held by experts whenever their skin-in-the-game constraint is not

binding, we may substitute κ “ 1 everywhere in this equation, as shown in Lemma B.1. The

above equation is actually an algebraic equation for χ, which can be solved by substituting

σx and σR into the second term in the minimum, obtaining

0 “ min
!

χ ´ χ,
”

pp1 ´ wqγe ` wγhq|Dz|
2

` pBw log qqDυ,z ´ Dυ,w

ı

pχ ´ wq

` wp1 ´ wqpγe ´ γhq|Dz|
2

´ Dυ,z

)

. (B.38)

In the above, we have defined2

Dz
.
“

?
z2σk ` σ1

zBz log q (B.39)

Dυ,w
.
“ wp1 ´ wq|Dz|

2
Bw
“

pγh ´ 1qυh
´ pγe ´ 1qυe

‰

(B.40)

Dυ,z
.
“ wp1 ´ wq pσzDzq ¨ Bz

“

pγh ´ 1qυh
´ pγe ´ 1qυe

‰

. (B.41)

When χ ą χ, the second term of the minimum operator in equation (B.38) is linear in

χ ´ w, holding fixed the functions pq, υe, υhq.

The analysis is simpler in one special case. If risk aversions are identical (γe “ γh “ γ),

2The notation above is helpful, since it allows us to write |Dz|2 “ p1 ´ pχκ ´ wq Bw log qq
2

|σR|2, and
simplify the expression for σxσR as follows:

σxσR “
1

1 ´ pχκ ´ wq Bw log q

ˆ χκ´w
1´pχκ´wqBw log q |Dz|2

σzDz

˙

9



the second term of the minimum operator in equation (B.38) simplifies substantially. Then,

we may prove the following proposition, which says for many parameters that the skin-in-

the-game constraint is either always-binding or never-binding.

Proposition B.3. Suppose agents have identical risk aversions (γe “ γh “ γ). Experts’

optimal risk retention χ is

χ “ maxpχ,wq. (B.42)

For w ě χ, the skin-in-the-game constraint is slack and the wealth share evolves (locally)

deterministically, i.e., σw “ 0. At w “ χ, when the skin-in-the-game constraint just binds,

the formula for the drift of the expert wealth share is

µwpχ, zq “ χp1 ´ χq
“

chpχ, zq ´ cepχ, zq
‰

` λdpν ´ χq.

The following hold:

(i) If Wt ď χ for some time t and supz µwpχ, zq ă 0, then χt “ χ with probability one.

(ii) If Wt ě χ for some time t and infz µwpχ, zq ą 0, then χt ą χ with probability one.

Proof of Proposition B.3. If γe “ γh “ γ, then the second term in the minimum operator

in equation (B.38) becomes

Mpχq
.
“

”

γ|Dz|
2

` pBw log qqDυ,z ´ Dυ,w

ı

pχ ´ wq ´ Dυ,z. (B.43)

Whenever χ ą χ, we solve for χ from Mpχq “ 0. Therefore, χ “ maxpχ, χ˚q, where

χ˚ P ty : Mpyq “ 0u. As a preliminary, we show that χ˚ “ w solves Mpχ˚q “ 0, such that

(B.42) holds. To prove this, conjecture (and later verify) that πe “ πh on χ ą χ. Using

(B.35) and (B.36), this conjecture implies

γ
χκ

w
σR ` pγ ´ 1qσ1

xBxυ
e

“ γ
1 ´ χκ

1 ´ w
σR ` pγ ´ 1qσ1

xBxυ
h, if χ ą χ. (B.44)

Since κ “ 1 when χ ą χ (Lemma B.1), and since σw “ pχκ ´ wqσR “ pχ ´ wqσR, equation

(B.44) reduces to

pγ ´ 1qσ1
zBz

`

υh
´ υe

˘

“ pχ ´ wq
γ ´ pγ ´ 1qwp1 ´ wqBwpυh ´ υeq

wp1 ´ wq
σR, if χ ą χ. (B.45)
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Substituting (B.45) into (B.41) and (B.43), we obtain

Mpχq “ pχ´wq

”

γ|Dz|
2

` pBw log qqDυ,z ´Dυ,w ´

´

γ ´ pγ ´ 1qwp1´wqBwpυh
´υe

q

¯

D1
zσR

ı

.

Consequently, χ˚ “ w is one solution to Mpχ˚q “ 0.

Under this solution, we may verify πe “ πh as follows. First, use σw “ pχ ´ wqσR “ 0

when χ “ χ˚ “ w to find from (B.22)-(B.23) that this equilibrium features

σe
n “ σh

n “ σR, if χ ą χ. (B.46)

Second, introduce to all agents, for a short period of time, zero-net-supply Arrow-Debreu

claims on each of the Brownian shocks. Let σe˚
n and σh˚

n denote agents’ risk exposures

in this modified economy. In the modified equilibrium, there is a single traded risk price

π˚ on these shocks, and both expert and household risk prices coincide with π˚. Also,

since these Arrow-Debreu assets are only introduced for an arbitrarily short period of time,

agents value processes υe and υh are unaffected. Putting these results together, and using

formulas (B.35) and (B.36), we have

γσe
n “ πe

` p1 ´ γqσ1
xBxυ

e

γσh
n “ πh

` p1 ´ γqσ1
xBxυ

h

γσe˚
n “ π˚

` p1 ´ γqσ1
xBxυ

e

γσh˚
n “ π˚

` p1 ´ γqσ1
xBxυ

h.

By repeating the arguments leading to (B.46), we know that the modified equilibrium also

features σe˚
n “ σh˚

n “ σR. Therefore, π
e “ πh “ π˚.

Finally, because Mpχ˚q “ 0 in (B.43) is a linear equation in χ˚, it admits a unique

solution, so χ˚ “ w must be the only solution. This proves (B.42).

Next, to demonstrate cases (i) and (ii), compute the drift µw. We have already shown

that σw “ 0 when χ ą χ, so it suffices to show that µw ă 0 when χ ě χ in case (i) and

µw ą 0 when χ ď χ in case (ii). For case (i), the condition Wt ď χ implies that we need

only show µw ă 0 when χ “ χ. Similarly for case (ii), the condition Wt ě χ implies that

we need only show µw ą 0 when χ “ χ. These are implied by supz µwpχ, zq ă 0 and

infz µwpχ, zq, respectively.
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B.9 Deriving the functional equation for κ

First, note that (B.37) is an equation relating χ, κ, and ∆e. Second, by taking the difference

µe
R ´ µh

R “ µe
R ´ r ´ π ¨ σR ` π ¨ σR ´ pµh

R ´ rq, using the definitions of µe
R and µh

R, along

with the definitions of ∆e and ∆h in (B.4)-(B.5), we obtain:

∆h
“ χ∆e

´
ae ´ ah

q
. (B.47)

Now, combine the complementary-slackness condition for households’ capital holdings (B.11)

from Lemma B.1, with (B.37) and (B.47) to obtain

0 “ min
!

1 ´ κ, wγhp1 ´ χκq|σR|
2

´ p1 ´ wqγeχκ|σR|
2

` wp1 ´ wq
αe ´ αh

χq
` wp1 ´ wq pσxσRq ¨

“

pγh ´ 1qBxυ
h

´ pγe ´ 1qBxυ
e
‰

)

. (B.48)

We may substitute χ “ χ everywhere in this equation, due to Lemma B.1. Given pυe, υhq,

equation (B.48) is actually a standalone variational inequality (differential equation wrapped

inside of a min operator) for κ, since q can be expressed solely as a function of pκ, υe, υhq

through (B.13), and since both σx and σR can be expressed solely in terms of χ, κ, q, and

Bxq through (B.25) and (B.29). By inspection, the boundary condition κp0, zq “ 0 will be

satisfied automatically as long as αh ą ´8.

B.10 Asymptotic analysis as w Ñ 0

In this section, we work in a one-dimensional model (no shocks to Z), so assume σz “ 0.

We will allow the birth/death (OLG) process with rate λd but will assume all newborn

agents are born as households, so ν “ 0. We will make following assumption on the nature

of equilibrium and analyze the two cases separately.

Assumption B.4. One of the following two assumptions hold as w Ñ 0. Either (i)

χκ{w Ñ C P p1,8q or (ii) χκ Ñ C P p0, 1s.

Our goal is to prove the following proposition:

Proposition B.5. Suppose ρe “ ρh “ 1, ν “ 0, δe ě δh, and γh ě γe. Shut down growth

and volatility shocks, σz “ 0. Models satisfying case (ii) of Assumption B.4 feature a

12



stationary wealth density that decays quadratically, i.e.,

fpwq „ G0w
2 as w Ñ 0, some constant G0.

Models satisfying case (i) of Assumption B.4 feature a stationary wealth density that decays

at rate ζ, i.e.,

fpwq „ G0w
ζ as w Ñ 0, some constant G0,

where

ζ
def
“

2rδh ´ δe ´ λd ` pγeC
2 ´ γh ´ pC ´ 1qqσ2

ks

pC ´ 1q2σ2
k

´ 2,

and where C ě 1 is given below in equations (B.51) or (B.52), depending on parameters.

Consequently, the lower tail of models in case (i) is thicker than that of case (ii) models if

and only if δh ´ δe ´ λd ă rpC ´ 1qp2C ´ 1q ´ γeC
2 ` γhsσ2

k.

Remark 1. Proposition B.5 imposes ν “ 0 (experts are never exogenously “reborn”) in

order to make a stark comparison between two classes of models. If ν ą 0, then the formula

for the tail index ζ will change, because these economies feature µwp0q “ νλd ą 0 and

σwp0q “ 0. A particular implication is that, if ν ą 0, the density fpwq can never have an

asymptote as w Ñ 0, whereas an asymptote is possible if ν “ 0. That said, the point of

Proposition B.5 is to provide guidance on features that generically “thicken” the tail of the

wealth share density, and these features remain the same in economies with ν ą 0.

Proof of Proposition B.5. Below, we will use the notation g1pwq „ g2pwq to mean g1pwq{g2pwq Ñ

1 as w Ñ 0. For expedience, we assume, but do not verify (although it can be verified), that

µq „ µ̄q and σq „ σ̄q for bounded constants µ̄q and σ̄q.
3 This assumption, in particular,

implies σR „ σ for some constant σ. From Lemma B.2 and the form of πe, πh in (B.35)

and (B.36), we have the following asymptotic state dynamics:

µw „ pδh ´ δe ´ λdqw ` χκσ2
rγe

χκ

w
` pγe ´ 1qpχκ ´ wq

d

dw
υe

´ γhp1 ´ χκq ´ pγh ´ 1qpχκ ´ wq
d

dw
υh

s

` pχκ ´ wqσ2
rγhp1 ´ χκq ` pγh ´ 1qpχκ ´ wq

d

dw
υh

´ 1s (B.49)

3In either case, we would conjecture q „ Aq ` Bqw and derive the aforementioned facts by solving Aq

and Bq both from goods market clearing, e.g., (B.14). After determining Aq and Bq, the values of µ̄q and
σ̄q could be obtained by applying Itô’s formula to q.
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σw „ pχκ ´ wqσ (B.50)

In the one-dimensional model, agents’ HJB equations take the following form:

0 “ max

"

δplog δ ´ 1 ´ υq ` µn ´
γ

2
σ2
n ` rµw ` p1 ´ γqσnσwsυ1

`
1

2
σ2
wυ

2
`

1 ´ γ

2
σ2
wpυ1

q
2

*

,

where

µe
n „ r `

χκ

w

”

γepχκ{wq ` pγe ´ 1qpχκ ´ wq
d

dw
υe
ı

σ2

µh
n „ r ` p1 ´ χκq

”

γhp1 ´ χκq ` pγh ´ 1qpχκ ´ wq
d

dw
υh
ı

σ2

σe
n „

χκ

w
σ and σh

n „ p1 ´ χκqσ

Now, we consider the two cases of Assumption B.4.

Case 1: χκ{w Ñ C. Conjecture state dynamics of the asymptotic form

µw „ Bµw and σw „ Bσw.

Conjecture also value functions take the asymptotic form

υe
„ Ae ` Bew

ζe and υh
„ Ah ` Bhw

ζh where ζe, ζh ą 0.

Substituting these assumptions into (B.49)-(B.50) shows that

Bµ “ δh ´ δe ´ λd ` rγeC
2

´ γh ´ pC ´ 1qsσ2

Bσ “ pC ´ 1qσ

At this point, we have the dynamics of w, independently of the value functions, but we still

must verify the conjecture.

Asymptotically, the HJBs require the following dominant-term equations to hold,

0 “ δerlog δe ´ 1 ´ Aes ` r ` γeC
2σ2

´
γe
2
C2σ2

0 “ δhrlog δh ´ 1 ´ Ahs ` r ` γhσ
2

´
γh
2
σ2.
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We substitute r which must take the form

r „ δh ` Φpi˚
pqqq ´ ηk ` µ̄q ` σ̄qσk ´ γhσ

2,

which is bounded (and equals the representative-agent risk-free rate when households domi-

nate the economy). Substituting this into the HJB equations, we obtain explicit expressions

for Ae, Ah. For the terms of order wζe , wζh , the HJB equations say

δe “ Bµζe `
1

2
B2

σζepζe ´ 1q

δh “ Bµζh `
1

2
B2

σζhpζh ´ 1q,

whereby Be, Bh have dropped out (these constants are determined by the right boundary

w “ 1). These quadratic equations each have one positive and one negative root. Taking

the positive root, we verify that ζe, ζh ą 0.

It remains to determine C. The solution depends on the separate asymptotics of κ and

χ, not only their product. If κ Ñ 0 while χ Ñ χ ‰ 0, then the following analysis holds.

Using the definition of µj
R, the relationship µe

R “ σR ¨ rχπe `p1´χqπhs, and previous results

on asymptotics as w Ñ 0, we have that

αe ´ αh

q
„ χpγeC ´ γhqσ2.

Using the goods market clearing condition (B.13), we see that qp0q is independent of C.

Hence,

C “
γh
γe

`
αe ´ αh

χσ2qp0q
ě 1. (B.51)

On the other hand, if κ Ñ 1 while χ Ñ 0 (e.g., this occurs if αh “ ´8 and χ “ 0), then

we may use equation (B.38) to obtain4

C “
γh
γe

ě 1. (B.52)

The cases of interest, where C ą 1 strictly, are when either (a) γh ą γe and αe “ αh as

in Gârleanu and Panageas (2015); or (b) γh “ γe and αe ą αh as in Brunnermeier and

4Note that these equations for C agree if αe “ αh and χ “ 0, which shows that a frictionless economy
in the spirit of Gârleanu and Panageas (2015) can be implemented in our model by equivalently allowing
one of either χ or κ to adjust.
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Sannikov (2014).

Returning to the dynamics of w, we have the Kolmogorov Forward Equation, which

reads

0 “ ´
d

dw
rµwf s `

1

2

d2

dw2
rσ2

wf s.

Integrating from an interior point w to 1, and using the fact that µwp1q ă 0 and σwp1q “ 0

in all models we consider, implying f and σw both vanish at the upper boundary, we obtain

0 “ ´µwf `
1

2

d

dw
rσ2

wf s.

Asymptotically, as w Ñ 0, we have

0 “ ´Bµwf `
1

2
Bσ

d

dw
rw2f s ` opwq.

Solving this equation shows that, asymptotically,

fpwq „ G0w
2pBµ{B2

σ´1q, some constant G0 ą 0. (B.53)

This equation determines the existence (non-degeneracy) and asymptotic shape of the

stationary density.5

Case 2: χκ Ñ C. In this case, it suffices to consider parameters χ ą 0 and αh “ ´8,

in which case χ „ χ and κ „ 1. Then, C “ χ P p0, 1s as desired. Mimicking the previous

analysis, conjecture that

µw „ Bµ{w and σµ „ Aσ

and for the value functions

υe
„ Ae ` Be logpwq and υh

„ Ah ` Bhw.

5As long as 2Bµ ą B2
σ, a non-degenerate density exists. This condition is

2rδh ´ δe ´ λds ą r3pC ´ 1q2 ´ 2γeC
2 ` 2γhsσ2.

The shape is given by the exponent 2pBµ{B2
σ ´ 1q. If, as in Brunnermeier and Sannikov (2014), 1

2B
2
σ ă

Bµ ă B2
σ, then the density has an asymptotic spike.
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These conjectures imply

Aσ “ Cσ

Bµ “ pCσq
2
rγe ` pγe ´ 1qBes

πe
„ pCσ{wqrγe ` pγe ´ 1qBes

πh
„ σrp1 ´ Cqγh ` Cpγh ´ 1qBhs

r „ Ar ` p1{wqBr

for constants Ar
.
“ δh ` Φpi˚pqp0qqq ´ ηk `

q1p0q

qp0q
Aσσk ´ p1 ´ Cqσrp1 ´ Cqγh ` Cpγh ´ 1qBhs

and

Br
.
“

q1

q
Bµ ´ pCσq

2
pγe ` pγe ´ 1qBeqs.

Note that equation (B.13) with κ “ 1 shows that q1{q is bounded. Indeed, we have

q1p0q

qp0q
“ ´

δe ´ δh
δh ` 1{ϕ1

, some constant ϕ1 ą 0.

which is the same equation one would obtain for the specific functional form leading to

(B.14). In the above, ϕ1 is to be interpreted as the local elasticity of the accumulation

function Φ near w „ 0, whereas this elasticity is assumed globally constant in (B.14).

Substituting these results into agents’ HJB equations, and keeping only the highest-

order terms, we obtain

0 “
1

w2

”

γepCσq
2

´
1

2
γepCσq

2
` BµBe ´

1

2
A2

σBe `
1 ´ γe

2
A2

σB
2
e

ı

0 “
1

w

”

Br ` BµBh

ı

.

Due to 1{w Ñ 8 as w Ñ 0, the terms in brackets must be 0 for the equations to hold.

Substituting previous results and simplifying, we obtain6

Be “ ´1

Bh “ 1 `
δe ´ δh

δh ` 1{ϕ1

.

Any Ae, Ah are consistent with the HJBs at this boundary.

6Note that Be solves a quadratic equation 0 “ γe ` p2γe ´ 1qBe ` pγe ´ 1qB2
e , which has the second

solution Be “ ´γe{pγe ´ 1q. However, substituting this root yields πe „ 0.

17



The state dynamics are thus given by

µw „ pCσq
2
p1{wq and σw „ Cσ.

Hence, repeating the same analysis of the Kolmogorov Forward Equation as in case 1, we

obtain asymptotically,

fpwq „ G0w
2, some constant G0 ą 0. (B.54)

Thus, the density has a tail that decays quadratically, irrespective of Bµ, Bσ and by exten-

sion the model parameters.

Comparing the cases. Comparing the formulas (B.53) and (B.54), we see that case 1

has a thicker tail than case 2, if and only if

δh ´ δe ´ λd ă rpC ´ 1qp2C ´ 1q ´ γeC
2

` γhsσ2,

where C is given either by (B.51) or (B.52) depending on the context. This analysis proves

Proposition B.5.
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C Computational Appendix

Joseph Huang, Haomin Qin and Chun Hei Hung7

C.1 Global solutions using finite difference methods

We solve the single-agent models in Sections 4 as well as the heterogeneous agents model

in environment IP in Section 5 using finite difference methods. The single-agent models

require solving a PDE of the following form:

LHJB pv;xq “ 0 (C.1)

Where x “ pz1, z2q in Section 4.4, x “ pz1q in Section 4.5 and x “ pk2{k, z1, z2q in Section

4.6. The heterogeneous agent problems can be summarized using experts’ and households’

HJB equations, as well as two functional equations for χ and κ that are contained in

Appendix B,8

Le
HJB

`

ve, vh, κ, χ;x
˘

“
ρe

1 ´ ρe
δ1{ρe
e exp

„

p1 ´
1

ρe
qveq

ȷ

´
δe

1 ´ ρe
` r

`
1

2γe

`

∆e ` πh ¨ σR

˘2

}σR}
2 `

„

µX `
1 ´ γe
γe

ˆ

∆e ` πh ¨ σR

}σR}
2

˙

σXσR

ȷ

¨ BXv
e

`
1

2

„

tr pσ1
XBxx1veσXq `

1 ´ γe
γe

pσ1
XBxveq

1

„

γeId ` p1 ´ γeq
σRσ

1
R

}σR}
2

ȷ

σ1
XBxv

e

ȷ

“ 0

(C.2)

Lh
HJB

`

ve, vh, κ, χ;x
˘

“
ρh

1 ´ ρh
δ
1{ρh
h exp

„

p1 ´
1

ρh
qvhq

ȷ

´
δh

1 ´ ρh
` r `

1

2γh
}πh

}
2

`

„

µX `
1 ´ γh
γh

σXπ
h

ȷ

¨ Bxv
h

`
1

2

„

tr
`

σ1
XBxx1vhσX

˘

`
1 ´ γh
γh

›

›σ1
XBxv

h
›

›

2
ȷ

“ 0

(C.3)

Lκ

`

ve, vh, κ, χ;x
˘

“ 0 (C.4)

Lχ

`

ve, vh, κ, χ;x
˘

“ 0 (C.5)

where x “ pw, z1, z2q.

7Thanks to Judy Yue and Suri Chen for their helpful comments on improving the usability of the
computational code.

8The experts and households HJB equations for the heterogeneous-agent models in Section 5 share the
general form in equation (B.1). Additionally, Lκ can be formulated using equation (B.48) and Lχ can be
formulated using equation (B.38).
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The PDEs for v in equations (21) and ve, vh in equation (C.2) and (C.3) have the general

quasi-linear form

0 “A˚
px, v, Bxvq ` µX px, v, Bxvq Bxv ` tr

“

B px, v, Bxvq Bxx1vB px, ϕk, Bxvq
1
‰

(C.6)

Note that we are able to achieve this form by substituting the minimizing drift adjustment

H˚
t into the HJB equation using equation (10) so that the term becomes part of A˚px, v, Bxvq

in (C.6).

To solve, we augment (C.6) with a false time-derivative Btv, known as a “false transient”.

Since the time-derivative appears on the right-hand-side of the PDE, the equation to solve

is

0 “ Btv ` A˚
px, v, Bxvq ` µX px, v, Bxvq Bxv ` tr

“

B px, v, Bxvq Bxx1vB px, ϕk, Bxvq
1
‰

(C.7)

Thus, the original PDE (C.6) is the stationary solution to the augmented PDE (C.7), i.e.,

Btv “ 0 holds in (C.7). We solve (C.7) iteratively until Btv « 0.

We break down our approach into three algorithms. Algorithm 1 updates the value

function given a generic set of equilibrium objects ĉ, î, κ̂ etc. - this is called the “outer

loop”. Algorithm 2 describes how we compute the equilibrium objects for the single-agent

models while Algorithm 3 describes the same for environment IP in section 5 (the “inner

loop”).
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Algorithm 1 Finite difference methods for PDEs

1: Form a guess for ϕ0pxq :“ vpx, T q, which is the terminal condition.
2: Generate a grid of time points tT, T ´ ∆t, . . .u and a grid of space points X .
3: Given a candidate function ϕkpxq for vpx, T ´ k∆tq restricted to X , compute finite difference

approximations to all derivatives. The time derivative is approximated with the backward
difference

Btvpx, T ´ k∆tq «
vpx, T ´ k∆tq ´ vpx, T ´ pk ` 1q∆tq

∆t
“

ϕkpxq ´ ϕk`1pxq

∆t

Denote the finite-difference approximations of the spatial derivatives, i.e. the derivatives
of the value function with respect to the state variables, by

B̂xϕkpxq « Bxvpx, T ´ k∆tq

B̂xx1ϕkpxq « Bxx1vpx, T ´ k∆tq.

We apply these approximations to (C.7) to solve for ϕk`1 given ϕk, using one of the schemes
in (C.8) and (C.9).

4: Using ϕk`1, calculate

errork`1 :“ max
xPX

|vpx, T ´ k∆tq ´ vpx, T ´ pk ` 1q∆tq|

∆t
“ max

xPX

|ϕk`1pxq ´ ϕkpxq|

∆t
.

Given a tolerance for convergence tol ą 0, repeat this step until errork`1 ă tol. The function
ϕk`1pxq is the approximate solution to (C.6).

There are several considerations when applying Algorithm 1:

Discrete grid: We use ∆t “ 1.0 when possible to reduce time to convergence, but

reduce ∆t to 0.01 and 0.001 in two cases (Model IP and the two capital model with τ “ 1)

where we would otherwise experience problems in convergence. For the models where we

use ∆t “ 1.0, we find that lowering ∆t does not alter our converged solutions. We also

experiment with different sizes and densities for our state space grids and find no difference

in the results (other than computational time).

Approximation of spatial derivatives: We can find ϕk`1 explicitly or implicitly

and assume ϕk is known. The explicit method approximates the spatial derivatives in

(C.7) using ϕk, so that ϕk`1 only appears on the left-hand side of the equation:

ϕk`1 “ϕk `

"

A˚
´

x, v, B̂xϕk

¯

` µX

´

x, ϕk, B̂xϕk

¯

B̂xϕk

` tr

„

B
´

x, ϕk, B̂xϕk

¯

B̂xx1ϕkB
´

x, ϕk, B̂xϕk

¯1
ȷ*

∆t.

(C.8)
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Notice the right-hand side of (C.8) can be written as a matrix-vector product (recall that

ϕk and its partial derivatives are known).

The implicit scheme solves for ϕk`1 in (C.9). Notice how ϕk`1 (rather than ϕk) appears

in (C.9):

ϕk`1 ´ ϕk “

"

A˚
´

x, v, B̂xϕk

¯

` µX

´

x, ϕk, B̂xϕk

¯

B̂xϕk`1

` tr

„

B
´

x, ϕk, B̂xϕk

¯

B̂xx1ϕk`1B
´

x, ϕk, B̂xϕk

¯1
ȷ*

∆t.

(C.9)

Recall that ϕk`1 and its partial derivatives are unknown. (C.9) is a linear partial differential

equation that can be solved using a finite difference method. In summary, the explicit

scheme requires us to compute matrix-vector products whereas the implicit scheme requires

us solving a linear system.

The advantage of the implicit scheme is that it tends to work robustly even for larger

∆t, whereas the explicit scheme typically requires a sufficiently small ∆t (Achdou et al.

(2022)). As such, the implicit scheme provides faster convergence and greater numerical

stability. Therefore, we opt for the implicit scheme.

Approximation of drift terms: In (C.8), we approximate the term µX

´

x, ϕk, B̂xϕk

¯

B̂xϕk

using an upwinding scheme. For each state Xi we compute its contribution to the above

term as:

µXi

´

x, ϕk, B̂xϕk

¯

B̂xϕk “maxtµXi
, 0u

vpxi ` ∆xi, x´i, T ´ k∆tq ´ vpxi, x´i, T ´ k∆tq

∆xi

` mintµXi
, 0u

vpxi, x´i, T ´ k∆tq ´ vpxi ´ ∆xi, x´i, T ´ k∆tq

∆xi

“ µ`
Xi

px, ϕk, B̂xϕkqB̂
p`q
x pϕkq ` µ´

Xi
px, ϕk, B̂xϕkqB̂

p´q
x pϕkq

where xi denotes the value of state Xi at x, x´i denotes the values of the rest of the

state variables at x, B̂
p`q
x and B̂

p´q
x are forward and backward differences, while µ`

Xi
and µ´

Xi

denote the positive and negative parts of µXi
. Barles and Souganidis (1991) show that

this upwinding is necessary, with certain additional regularity conditions, for the numerical

scheme to converge to the unique viscosity solution of the underlying partial differential

equation, though we do not verify whether these conditions have been satisfied here.
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Solving the linear system: The linear system in (C.8) can be expressed as:

Av “ u

where v is the stacked vector ϕk`1pxq at each point in the state-space grid, u is the flow

term and A is a sparse square matrix with dimension equal to the product of the dimensions

of the state space grid. In the single-agent models, we solve this using Julia’s base function

for solving linear systems, which uses an LU decomposition and back-substitution to solve

the system.

For Model IP, to solve the linear systems repeatedly, we use a conjugate gradient

method, an iterative method that efficiently solves large, sparse, symmetric positive definite

linear systems by constructing a sequence of orthogonal search directions to minimize the

residual and converge to the solution. There are two advantages associated with conjugate

gradient for our solution method. First, notice that for a given linear system, conjugate

gradient requires that the user provides an initial guess. In our model, as ϕk converges

to the true solution, one can reasonably suspect that the distance between ϕk`1 and ϕk

shrinks as ϕk converges. We can then use a “smart guess” approach where, when solving for

ϕk`1, we use ϕk as the initial guess. Second, when constructing the finite difference matrix,

a smaller ∆t increases the diagonal of the matrix, making the matrix better-conditioned.

This is particularly useful when we solve for models that require smaller ∆t, because the

time required to solve each linear system declines as ∆t drops.

Now we apply Algorithm 1 to the single and heterogeneous agent models:

Algorithm 2 Numerical Procedure for Single Agent Models using FDM

Given vpnq, we would like to update vpn`1q by iterating one time-step in its PDE.

1: Inner loop: update equilibrium objects iteratively. For any equilibrium object
y, let the sequence of iterants for this loop be

␣

ŷplq : l “ 0, 1, . . .
(

. Form some initial

guess for vp0q. At the nth step in the iteration process:

1. Solve for the consumption and investment policy functions ĉpnq, îpnq by applying
vpnq to equations (22), (17). Solve also for the drift distortion term 1´γ

2
z2|σ1

x
Bv
Bx

|

described in (10).

2. When structural ambiguity exists, solve additionally for the robust control variable
ŝpnq following Hansen and Sargent (2022).

3. Construct the drift and diffusion terms in (21).

2: Outer loop: update value function using PDE. Update the value functions vpn`1q

using Algorithm 1
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Algorithm 3 Numerical Procedure for Heterogeneous Agent Models using FDM

Given ve,pnq and vh,pnq, we would like to update ve,pn`1q and vh,pn`1q by iterating one time-step in

their PDEs.

1: Inner loop: update equilibrium objects iteratively.
For any equilibrium object y, let the sequence of iterants for this inner loop be

␣

ŷplq : l “ 0, 1, . . .
(

1. If n ě 1, initialize ŷp0q “ ypn´1q. If n “ 0, use the guess κ̂p0q “ w, χ̂p0q “ 1, q̂p0q from
equation (B.14), ∆̂h,p0q “ 0, and ∆̂e,p0q “ χ´1r∆̂h,p0q `

ae´ah
q̂p0q s from equation (B.5).

2. For each l ě 0, do the following:

(a) Update all other ŷplq objects as follows.

i. Set β̂
plq
e “ χ̂plqκ̂plq{w and β̂

plq
h “ p1 ´ κ̂plqq{p1 ´ wq.

ii. Set σ̂
plq
K , σ̂

plq
q , σ̂

plq
R , and π̂plq (in that order) using equations (18), (B.28), (B.29),

and (B.33).

iii. Set µ̂
plq
K , µ̂

plq
q , and r̂plq (in that order) using equations (18), (B.26), and (B.32).

Get µ̂
e,plq
R and µ̂

h,plq
R from equations (B.2) and (B.3), respectively..

(b) Define κ̂pl`1q “ κ̂plq ` Hplq ˆ dt, where dt is a small enough time-step, and Hplq is
defined by the right-hand-side of equation (B.48), computed using χ “ χ and ŷplq

for all other objects.

(c) Denote the linear expression in the second argument of the minimum in equation
(B.38) by

Gpw,χq :“ A0pwq ` A1pwqpχ ´ wq

Define q̃ according to equation (B.14) with κ “ 1. Using q̃ and its derivatives in
place of q, as well as κ “ 1 and ŷplq, compute A0, A1. Solve the equation Gpw,χq “ 0
for χ at each w. Denote the solution by χ̃. If χ̃ ě χ, set χ̂pl`1q “ χ̃. Otherwise,
there are two cases:

• If Gpw,χq ą 0, then set χ̂pl`1q “ χ.

• If Gpw,χq ă 0, then set χ̂pl`1q “ `8 (or some very large number).

(d) Use equation (B.37) to solve for ∆̂e,pl`1q, then set ∆̂h,pl`1q by (B.47). Use κ̂pl`1q

and χ̂pl`1q but ŷplq for everything else in this step.

(e) Set q̂pl`1q by equation (B.14), using κ̂pl`1q and pve,pnq, vh,pnqq.

3. Iterate on (b). When }κ̂pl`1q ´ κ̂plq} ` }χ̂pl`1q ´ χ̂plq} is small, stop iterating.

4. Put ypnq “ ŷplq.

2: Outer loop: update value functions using PDEs. Update the experts and households
value functions ve,pn`1q, vh,pn`1q separately using Algorithm 1
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C.2 Approximate global solutions using neural networks

We globally solve the heterogeneous agents models in environments RF, PR, SG in section

5 using machine learning methods. Amidst the backdrop of rapid advancements in deep

learning, Sirignano and Spiliopoulos (2018) proposed the deep Galerkin method (DGM) to

solve partial differential equations using neural networks without relying on mesh gener-

ation. Al-Aradi et al. (2022) handled HJB equations in their original, unsimplified form,

solving for the value function and optimal control by representing each with deep neural

networks, and proceed with policy iteration algorithm (DGM-PIA). Barnett et al. (2023)

systematically review the recent development for deep learning algorithms in scientific com-

puting.

Contrast with the DGM-PIA algorithm used in Al-Aradi et al. (2022), we approximate

expert value function, ve, households value function, vh, and expert’s capital share κ simul-

taneously using a single neural network with 3-dimensional outputs. The algorithm avoids

any iteration among equilibrium variables to achieve efficiency. We explicitly solve χ using

(C.5) due to its embedded linear structure, and rewrite the system to be solved as

Le
HJB

`

ve, vh, κ;x
˘

“ 0

Lh
HJB

`

ve, vh, κ;x
˘

“ 0

Lκ

`

ve, vh, κ;x
˘

“ 0

(C.10)

Our single neural network has 1 input layer, 2 hidden layers, and 1 final output layer.

The input layer takes a 3-dimensional vector, pw, z1, z2q, as inputs. The final layer has

3-dimensional outputs, which are used to approximate ve, vh, κ respectively. Each hidden

layer has 16 neurons9. tanh activation functions are used in each neuron except for the

final layer. In the final layer, we choose no activation function for ve and vh, and use a

sigmoid activation function for κ to constrain the expert’s capital share between 0 and 1.

Our neural net approximation F can be characterized as

rve, vh, κs “ F px;θq (C.11)

where θ are neural net parameters.

9Our results are robust across various neural network architectures. Increasing the number of hidden
layers and units do not impact our results.
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Algorithm 4 Training Procedure

We use a Glorot normal initializer1 to initialize our neural nets parameters θ0. Then given

θi, i “ 0, 1, 2, ..n, at each iteration we

1: Uniformly draw pw, z1, z2q from the state space N times. The formulated training set

xi “ pwi, z
1
i , z

2
i q is a N ˆ 3 matrix.2

2: Evaluate the neural nets on the training set

rve
i ,v

h
i ,κis “ F pxi;θiq

and calculate the loss functions

Le
HJB

`

ve
i ,v

h
i ,κi;xi,θi

˘

Lh
HJB

`

ve
i ,v

h
i ,κi;xi,θi

˘

Lκ

`

ve
i ,v

h
i ,κi;xi,θi

˘

(C.12)

3: Calculate the mean square error for each loss function

Le
HJB pxi,θiq “

1

N
}Le

HJB

`

ve
i ,v

h
i ,κi;xi,θi

˘

}
2

Lh
HJB pxi,θiq “

1

N
}Lh

HJB

`

ve
i ,v

h
i ,κi;xi,θi

˘

}
2

Lκ pxi,θiq “
1

N
}Lκ

`

ve
i ,v

h
i ,κi;xi,θi

˘

}
2

(C.13)

where Le
HJB,Lh

HJB,Lκ are all scalars.

4: Construct the composite objective loss function as

L “ Le
HJB ` Lh

HJB ` λLLκ

where λL is a weighting coefficient.3

5: Update θi using the standard scipy Broyden–Fletcher–Goldfarb–Shanno optimization

algorithm4 in each iteration until θn and L fall below the tolerance.5

θi`1 “ argminL (C.14)
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C.3 Computing Shock Elasticities

The shock elasticities (exposure and price elasticities) are computed by solving:

εMpt, xq “ νpxq ¨

!

σMpxq ` σXpxq ¨
B

Bx
logE

”´Mt

M0

¯

| X0 “ x
ı)

(C.15)

where µM , σM are the drift and diffusion of d logMt. See Borovička et al. (2014) and

Borovička and Hansen (2016) for further discussion. We compute this in two ways: 1) by

solving a PDE using finite differences, or 2) using simulations.

First, we can compute the conditional expectation in (C.15) using finite differences as

follows. Define fMpt, xq :“ ErMt

M0
fMp0, Xtq | X0 “ xs. Then, using the law of iterated

expectations, followed by the definition of fM , we have fMpt, xq “ ErMu

M0
Er Mt

Mu
fMp0, Xtq |

Xus | X0 “ xs “ ErMu

M0
fMpt ´ u,Xuq | X0 “ xs. Hence, tMtfMpT ´ t,XtqutPr0,T s is a

martingale and must have zero drift. Applying Itô’s formula gives a PDE for fM in pt, xq,

i.e.,

0 “ ´
BfM
Bt

`

´

µM `
1

2
}σM}

2
¯

fM `
`

µX ` σM ¨ σX

˘

¨
BfM
Bx

`
1

2
tr
´

σXσ
1
X

B2fM
BxBx1

¯

. (C.16)

The initial condition is fMp0, xq ” 1, which allows us to recover the desired conditional

expectation. The linear PDE in (C.16) is solved using finite difference methods. We obtain

εMpt, xq by numerically differentiating fMpt, xq and substituting it into (C.15).

Alternatively, we can compute the expectation term by simulating M using µM and σM

and taking the mean across simulations for each pt, xq. We find that both methods generate

the same results for the figures used in the paper. Discrepancies, however, arise when we

initialize the state variable near the boundaries of the state space grid for some example

economies not reported in the paper.

The left panel of Figure 1 shows discrepancies between the simulation method (which is

the accurate solution) and the PDE method due to subtle issues related to local martingales

embedded in M . For instance, this figure is based on environment RF, which features a

1Further details on TensorFlow’s Glorot normal initializer are available here.
2Our results are robust to increasing the number of points in each individual training set.
3In our training, we prioritize ensuring that first-order conditions are met by setting λL “ 10, 000. This

penalization effectively reduces Lκ to a range between 10´11 and 10´14.
4A detailed explanation of the BFGS algorithm implemented in SciPy can be found here. We choose

the BFGS algorithm over Adam due to its higher efficiency in our tests. BFGS achieves a rapid reduction
in composite loss and attains lower validation errors across three models.

5We choose n “ 5 and set tolerance as 10´4. Our results are robust for n ě 5.
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Figure 1: Capital shock price elasticities for environment RF of Section 5. The left plot imposes γe “ γh “ 1
while the right plot imposes γe “ 4 and γh “ 8; the remaining parameters are the same as in Section 5.
The solid lines represent elasticities computed using finite differences, while the dashed lines represent
elasticities computed using simulations. The blue curve gives elasticities when W is initialized at the 0.5th
percentile of its stationary distribution, the orange curve at the 1st percentile, the green curve at the 10th
percentile and the red curve at the median. For the first parameterization, the difference between the two
methods becomes significant as the initial point moves closer to the boundary at zero, whereas the two
methods coincide in the second parameterization. The simulated elasticities were computed using 5000
Monte Carlo simulation draws for time trajectories of forty years. We drop all simulations where, at some
time during the simulation, wealth is less than the smallest grid point (0.001). We drop 0.08 percent of
simulations for the elasticities initialized at the 0.5th percentile, and less for the other initializations. The
simulated elasticities are smoothed using a Gaussian kernel with standard deviation of 200, where the time
increment is 0.01 years.

singularity at w “ 0; namely, since experts cannot deleverage, their risk prices diverge to

`8 as w Ñ 0. This singularity can be so severe as to render the risk-neutral probability

density a strict local martingale, rather than a true martingale. See Hugonnier (2012) for

a theoretical analysis of this situation in a restricted participation model, including the

possibility of bubbles and the like. When such local martingales arise, computing shock

elasticities using the PDE method requires delicate consideration of boundary conditions in

the space dimension (x). For instance, in environment RF with log preferences (γe “ γh “ 1

as in the left panel), we can prove that both “natural boundary conditions” and “reflecting

boundary conditions” will lead to the wrong answers for the elasticities (on the other hand,

the simulations will remain correct).
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In principle, these local martingale issues could cause numerical challenges for envi-

ronments RF and SG, both of which feature this local martingale issue. That being said,

the right panel shows that the preference parameters used in the paper (in particular the

large level of risk aversions) strongly mitigate the local martingale issues. Hence, we do

not expect substantial issues for any calculations in the paper. Furthermore, we have al-

ways double-checked any elasticity calculations using both the PDE method as well as a

simulation-based approach.

The “term structure of uncertainty prices” is formed via a second type of shock elasticity,

which differs conceptually from the first type described above. While εMpt, xq measures the

expected response of Mt to a shock at time 0, we could also compute the expected response

of Mt to a shock at the same time t. We can compute this alternative shock elasticity via

ε̃Mpt, xq “ νpxq ¨
ErMt

M0
σMpXtq | X0 “ xs

ErMt

M0
| X0 “ xs

, (C.17)

The calculation of term structure of uncertainty prices requires solving the PDE (C.16) with

initial conditions fMp0, xq ” σMpxq to obtain the numerator. Once again, this conditional

expectation can alternatively be solved using simulations. Note that, for the uncertainty

prices computed the paper, the process M will be a martingale representing uncertainty-

induced belief distortions; consequently, the denominator is 1 due to the martingale prop-

erty.
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D Computational Methods by Figure

Figures Method of Computation
1, 2 and 3 Using a two-dimensional finite difference method, as

detailed in Appendix C.1, we first solve the model for
ρ “ 1 and use the solution as an initial guess for ρ “

0.67 and 1.5. We then compute shock elasticities using
finite differences as outlined in Appendix C.3.

4 We follow the method described in Hansen and Sar-
gent (2022) Section 4.2.2. For a given level of relative
entropy q, we use the method of undetermined coeffi-
cients to solve for set of the drift distortion parameters
pη0, η1q satisfying the restriction on ρ. For each set of
pη0, η1q, we then compute the corresponding structural
parameters β1, βk, ηk, ϕ1 and draw the contour set.

5 and 6 Using a one-dimensional finite difference method, we
solve the baseline model, the worst-case structured
model and compute shock elasticities.

7, 8 and 9 For computational reasons, we first solve a version of
the model without stochastic volatility using a two-
dimensional finite difference method. We then use
the solutions as initial guesses for the corresponding
specifications in the model with stochastic volatility
and solve using a three-dimensional finite difference
method.

10, 11 and 12 We solve each model using neural networks as detailed
in Appendix C.2.

13 We solve the model using a two-dimensional finite dif-
ferences method, via the MFR Suite library.

14 and 15 We use finite differences methods to compute the shock
elasticities as outlined in Appendix C.3.
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Gârleanu, Nicolae and Stavros Panageas. 2015. Young, old, conservative, and bold: The im-
plications of heterogeneity and finite lives for asset pricing. Journal of Political Economy
123 (3):670–685.

Hansen, Lars Peter and Thomas J Sargent. 2022. Structured Ambiguity and Model Mis-
specification. Journal of Economic Theory 199:1–32.

Hugonnier, Julien. 2012. Rational asset pricing bubbles and portfolio constraints. Journal
of Economic Theory 147 (6):2260–2302.

Sirignano, Justin and Konstantinos Spiliopoulos. 2018. DGM: A deep learning algorithm for
solving partial differential equations. Journal of Computational Physics 375:1339–1364.

31


	Calculations for heterogeneous-agent model
	Setup and HJB equations
	Household portfolio choice
	Expert portfolio choice
	Equilibrium capital and risk distribution
	Price of capital
	Law of motion of K, W, and Q
	Equilibrium risk-free rate and risk prices
	Deriving the functional equation for 
	Deriving the functional equation for 
	Asymptotic analysis as w 0

	Computational Appendix
	Global solutions using finite difference methods
	Approximate global solutions using neural networks
	Computing Shock Elasticities

	Computational Methods by Figure

