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Abstract

Two intermediary-based factors—a broad distress measure and a corporate bond in-

ventory measure—explain more than 40% of the puzzling common variation of credit

spread changes beyond canonical structural factors. A simple intermediary-based

model with partial market segmentation accounts for the magnitude and patterns

of this comovement and delivers further implications with empirical support. First,

whereas bond sorts on risk-related variables produce monotonic loading patterns on

intermediary factors, non-risk-related sorts produce no pattern. Second, dealer inven-

tory comoves with corporate-credit assets only, whereas intermediary distress comoves

even with non-corporate-credit assets. Third, dealers’ inventory responds to (instru-

mented) bond sales by institutional investors.
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What drives variation in U.S. corporate credit spreads? Standard credit risk factors play a

role, yet a substantial amount of excess common variation remains, as documented in Collin-

Dufresne, Goldstein, and Martin (2001) (hereafter CGM). The corporate bond market relies

crucially on broker-dealers for intermediation, who use their balance sheets to take inventory

and absorb bond supply from clients. A natural conjecture is that non-fundamental factors

related to the supply and demand for intermediary services constitute a substantial piece of

the puzzling excess common variation, à la the expanding literature of intermediary-based

asset pricing (see He and Krishnamurthy (2018) for a survey).

In this paper, we provide novel evidence for this intermediary view. In particular, two

intermediary factors—(1) a distress measure that captures constraints on the entire inter-

mediary sector and (2) an inventory factor that captures the corporate bond holdings of

dealers—are shown to account for more than 40% of the puzzling common variation in

credit spread changes. Most importantly, we relate these two factors to shocks to supply and

demand for intermediary services in the corporate bond market, illuminating the underlying

frictions involved in bond intermediation and their effects on asset pricing.

We construct the quarterly dealer inventory factor based on the cumulative customer or-

der flows (in par value) with all dealers, using the enhanced TRACE database of corporate

bond transactions with untruncated trade size and anonymous dealer codes. With the usual

caution of imperfect measurement, we do address a few practical difficulties in using transac-

tion records to construct inventory measure, such as the unobservable level of dealers’ bond

inventory at the beginning of our sample period (2005:Q1), changes to inventory unrelated

to transactions (such as bond expiration), and missing primary market transactions from

issuing firms to underwriting dealers.

Our measure of intermediary distress combines two existing measures that have been

shown to capture the severity of broad intermediation frictions. The first is a balance sheet

leverage measure proposed by He, Kelly, and Manela (2017) (hereafter HKM) for bank

holding companies of primary dealers recognized by the Federal Reserve Bank of New York

1



(FRBNY). The second is the price-based “noise” measure proposed by Hu, Pan, and Wang

(2013) (hereafter HPW), i.e., the root mean squared distance between the market yields

of Treasury securities and the hypothetical yields implied from yield curve models. This

“noise” measure captures market information more directly, albeit less primitively (relative

to HKM leverage); HPW provide substantial evidence that “noise” is tightly connected

to disruptions in funding costs for arbitrageurs and other intermediaries (in fact, Treasury

securities constitute the major collateral in repo funding). Our intermediary distress measure

is the first principal component (PC) of these two measures, meant to parsimoniously capture

the capital and funding constraints on the aggregate intermediary sector.

Following CGM and more recently Friewald and Nagler (2019) (hereafter FN), our anal-

ysis starts by extracting residuals of individual-bond time series regressions of credit spread

changes on seven structural factors. We assign each of the residual series into one of 15

cohorts based on time-to-maturity and rating, compute an average residual for each cohort,

and extract the principal components of these 15 cohort-level residuals. Similar to CGM,

but with comprehensive data on corporate bond transactions in recent years, we find 80%

of the variation can be explained by the first PC, indicating a large systematic component

not captured by structural credit factors.

We connect the two intermediary factors—intermediary distress and dealer inventory—to

this common variation of credit spread changes. Our two intermediary factors explain 51%

of the variation of the first PC of credit spread residuals (43% of the total variation). About

two-thirds of this explanatory power is attributable to intermediary distress and one-third

to dealer inventory. Given the low correlation between distress and inventory, our empirical

results document a two-factor structure of the common unexplained credit spread variation.

Furthermore, we find that factors loadings are monotonically decreasing in bond ratings

for both intermediary factors, an empirical pattern that is crucial to our later theoretical

modeling. Economically, one standard deviation increases of dealer inventory and interme-

diary distress are associated with quarterly credit spread increases of about 3–40 and 4–70
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basis points depending on rating groups, respectively.

Motivated by these two findings, we present an equilibrium model with hedgers and

intermediaries trading multiple assets. We assume some market segmentation: a different

group of hedgers trades in each asset class (e.g., corporate credit, equities, asset-backed

securities, and options), as in “preferred-habitat” models (Vayanos and Vila, 2021). Hedgers

can be thought of as institutional investors that specialize in an asset class and face liquidity

shocks, e.g., insurance companies and pension funds trading corporate bonds. Risk-averse

intermediaries absorb asset supply coming from hedgers, but they demand a risk premium

for these services.

Our model features a single dominant factor in bond pricing—the average risk aversion

of intermediaries and bond hedgers—that governs all non-fundamental movements in asset

prices. With asset market segmentation, fluctuations in this bond factor are not spanned by

aggregate market factors, which permits non-trivial CGM residuals.

This latent factor—the average bond trader risk aversion—is unobservable, but our model

allows us to relate it to the demand and supply for corporate bonds, which are closely

linked to our two empirical factors. We consider two types of shocks: intermediary wealth

shocks and hedger liquidity shocks. Intermediary wealth decreases are (negative) “demand

shocks” in the sense that intermediaries’ risk aversion increases, which shifts their demand

schedules inward. Such wealth shocks are effectively captured by intermediary leverage and

a noise-like measure, the building blocks for our distress factor. Hedger liquidity shocks,

modeled as an increase in hedger risk aversion, are asset “supply shocks” in the sense that

more bonds arrive onto intermediaries’ balance sheets, lowering bond prices. In theory, our

two empirical factors—dealer inventory and intermediary distress—respond to both “supply

shocks” and “demand shocks”; however, the signs of our measured factor loadings imply that

the inventory factor mainly captures “supply”, whereas the distress factor mainly captures

“demand.” Finally, the model produces factor loadings that are monotone in asset riskiness,

consistent with our credit rating sorts.
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Overall, model-based regressions with dealer inventory and leverage reproduce the qual-

itative patterns of all our baseline empirical findings. We also show how our baseline results

rely on two key assumptions: asset market segmentation and investor heterogeneity (i.e., in-

termediaries versus hedgers). In particular, without asset market segmentation, CGM factors

would soak up all systematic credit spread variations, while without investor heterogeneity,

there can be no role for dealer inventory to affect credit spreads.

Guided by the model, we develop three sets of additional empirical tests, designed to

further corroborate the key channels embedded in our framework. First, since limited in-

termediary risk-bearing capacity represents the only significant trading cost/friction in our

model, sorting bonds by any characteristic unrelated to risk should not produce any pattern

in associations to our two intermediary factors. Indeed, sorting by two such variables, matu-

rity and trading intensity (measured by total dollar volume), produces no detectible pattern

in the economic magnitude or statistical significance of loadings on our intermediary factors.

By contrast, sorting by risk-related variables like credit rating and market beta produces a

monotonic loading pattern as predicted by theory.

Second, we enlarge our tests to other assets to further explore market segmentation. In

our model, (a) corporate-credit assets should be sensitive to dealers’ corporate bond inven-

tory, or even inventory computed from a subset of corporate bonds (“spillover effects”); (b)

non-corporate-credit assets should be insensitive to corporate bond inventory (“segmentation

effects”); and (c) both types of assets should be sensitive to intermediary distress.

We find empirical support for these predictions. Results of two tests support spillover

effects within corporate-credit markets: the first using dealer inventory of high-yield bonds

and investment-grade bonds separately to explain credit spreads of all bonds, and the second

using dealer inventory of bonds to explain CDS spreads. Moreover, consistent with seg-

mentation effects, agency mortgage-backed securities (MBS), commercial mortgage-backed

securities (CMBS), asset-backed securities (ABS), and S&P 500 index options are insensitive

to corporate bond inventory. Finally, all assets are sensitive to intermediary distress. This
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last finding is also consistent with the evidence of HKM that the bank-holding companies of

primary dealers act as the marginal investor across many asset classes.

Third, in strong support for our heterogeneous investor framework, we establish a direct

link between dealer inventory and liquidity shocks hitting other investors. We identify liq-

uidity shocks to long-term institutional investors, show that dealer inventory responds, and

measure bond price effects.1 Specifically, the evidence linking dealer inventory to liquidity

shocks uses eMAXX data to measure bond holdings by each of the three groups of insti-

tutional investors: insurance companies, mutual funds, and pension funds. Given that in-

surance companies face regulatory constraints in holding low-rated bonds, bond downgrades

cause them to sell, which resembles a liquidity shock (Ellul, Jotikasthira, and Lundblad, 2011;

Koijen and Yogo, 2015). Indeed, insurance companies decrease their holdings of downgraded

bonds, especially those downgraded from investment-grade to high-yield—so-called “fallen

angels” (Ambrose, Cai, and Helwege, 2008)—by about $0.67 million, relative to the average

of those that experience no rating change or are downgraded from some IG rating to a lower

IG rating. Mutual funds and pension funds take some of the IG-to-IG downgraded bonds,

but not fallen angels. Importantly, dealers’ inventories of fallen angels increase substantially

in the quarter when bonds are downgraded, by about $1.61 million.

Pushing this idea further, we use fallen angel sales by institutional investors as an in-

strumental variable for supply shocks to bond dealers. To (partially) address the potential

confound that fundamental changes trigger sell-offs and simultaneously lower bond prices,

we control for sell-offs of all downgraded bonds. Instrumented by fallen angel sell-offs, dealer

inventory increases are highly significant in increasing credit spreads. Finally, the effect of

dealer inventory using IVs is larger than that in the baseline analysis, likely because our IVs

mitigate the downward bias caused by unobserved demand shocks.

Related literature. This paper contributes primarily to empirical literatures on credit

1A similar idea is systematically explored in Koijen and Gabaix (2020) in quantifying the inelasticity of
U.S. equity prices to institutional demands.
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risk and intermediary asset pricing. In the credit risk literature, the unexplained common

variation of credit spread changes, first documented in CGM and most recently studied by

FN, is a canonical puzzle in the context of structural models like Merton (1974) and Leland

(1994).2 We will discuss our main differences with FN shortly. Related is the “credit spread

puzzle” of Huang and Huang (2012). In view of these puzzles, attention has been paid to

the role of market liquidity. For example, Longstaff, Mithal, and Neis (2005), Bao, Pan, and

Wang (2011), and Bao and Pan (2013) show that illiquidity measures affect credit spreads

and corporate bond returns.3 We contribute to this literature by explicitly linking the key

liquidity providers—broker-dealers as important intermediaries—to corporate bond pricing.

The broad intermediary asset pricing literature (Adrian, Etula, and Muir, 2014; He, Kelly,

and Manela, 2017) has shown that financial intermediary balance sheets have pricing power

for large cross-sections of assets.4 Relative to the existing literature, our study is narrower

in scope but richer in detail. We provide evidence on both the supply and demand side

of the corporate bond market, and investigate spillovers/segmentation across asset classes.

To assist our empirical explorations, we develop a static intermediary-based model that

formally defines and investigates a notion of CGM residuals relative to the market portfolio,

which is a critical analytical object that helps distinguish between alternative benchmark

models. Our main modeling innovation is to formalize supply-demand logic via two types

of shocks: (1) liquidity shocks in the vein of Ho and Stoll (1981), Vayanos and Vila (2021),

2Schaefer and Strebulaev (2008) show that structural models capture well the sensitivity of corporate
bond returns to equity returns or hedge ratios, which may seem to conflict with the negative implication of
CGM given the intrinsic relation between returns and yield spread changes. Huang and Shi (2014) find that
structural models indeed characterize well the hedge ratios for credit spread changes, but half of variations in
credit spread changes are still unexplained even after including explanatory variables or specifications that
are important in characterizing hedge ratios.

3He and Milbradt (2014) develop a theory where credit risk in Leland and Toft (1996) and He and
Xiong (2012) interacts with the over-the-counter search liquidity, with satisfactory quantitative performance
over business cycles shown in Cui, Chen, He, and Milbradt (2017). Relatedly, Lin, Wang, and Wu (2011),
Acharya, Amihud, and Bharath (2013), and de Jong and Driessen (2012) study the pricing of liquidity risk
in corporate bond returns.

4Recent contributions include Du, Tepper, and Verdelhan (2018), Chen, Joslin, and Ni (2018), Siriwardane
(2019), Boyarchenko, Eisenbach, Gupta, Shachar, and Van Tassel (2018), Fleckenstein and Longstaff (2020),
and He, Nagel, and Song (2021), among others.
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and Greenwood, Hanson, and Liao (2018); and (2) intermediary wealth shocks inspired by

standard intermediary models à la He and Krishnamurthy (2012, 2013).

By invoking dealers’ special role in taking inventory to provide liquidity, our paper is

related to studies that focus on bond dealers’ inventory and transaction costs, including Bao,

O’Hara, and Zhou (2018), Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018),

Schultz (2017), Dick-Nielsen and Rossi (2018), Di Maggio, Kermani, and Song (2017) and

Choi, Shachar, and Shin (2019).5 FN also fits into this class of papers. We view our

intermediary asset pricing approach as complementary to these papers studying bond dealers,

which are typically categorized under “market microstructure” or “market liquidity” (see

Vayanos and Wang, 2013, for a survey). In both approaches, shocks to supply and demand

for intermediary services operate as the essential economic forces. The key difference is our

focus on the balance sheet health of liquidity providers as a measure of liquidity costs, rather

than transaction cost–based measures.

Our paper overlaps with FN, in that we both examine the CGM puzzle and try to ex-

plain it with intermediary factors. In particular, FN investigate, in addition to measures

of bargaining and search frictions, measures of dealer inventory and intermediary funding

costs.6 Relative to FN, our main contributions include (i) documenting a refined structure

of CGM residuals and (ii) introducing a model that closely connects to the empirical regu-

larities. In particular, we uncover a novel two-factor structure of residuals, with monotonic

factor loadings. By contrast, FN employ twelve factors and do not investigate loading pat-

terns.7 Furthermore, our model allows us to give parsimonious risk-based supply-demand

5Two recent studies on equity markets, Carole, Hendershott, Charles, Pam, and Mark (2010) and Hen-
dershott and Menkveld (2014) relate variations of bid-ask spreads and prices to the inventory positions of
New York Stock Exchange specialists.

6For this purpose, they use the TED spread in their main paper, and the HKM capital ratio as a robustness
exercise in their online appendix.

7Despite having twelve factors, FN nevertheless deliver slightly lower explanatory power at the monthly
frequency. Their PC1 explains about 48% of CGM residual variation, of which their twelve factors account
for 23%; thus, their factors have approximately 11% explanatory power. Although our main analyses are
quarterly, we also do a monthly analysis for comparison (see Internet Appendix A.5): our two factors explain
15% of residual yield spread variation. Section 1.3.1 of the paper contains more detailed comparison with
FN’s results.
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interpretation to the results. By explicitly identifying necessary assumptions for a model

to rationalize these results, we are able to develop direct tests of these assumptions, all of

which are new.

1 Intermediary Factors and Credit Spread Changes

In this section, we first introduce the data sample of U.S. corporate bond transactions. We

then construct our two intermediary factors and connect our intermediary factors to credit

spread changes. We shall introduce other datasets (used in Section 3), including the Lipper

eMAXX database of institutional investors’ corporate bond holdings, as well as returns on

agency MBS, CMBS, ABS and S&P 500 index options, as they arise.

1.1 Data on Corporate Bond Transactions

Our sample of corporate bond transactions are from the enhanced Trade Reporting and

Compliance Engine (TRACE) maintained by the Financial Industry Regulatory Authority

(FINRA).8 These data contain untruncated principal amounts and an indictor of whether

the trade is either between a customer and a dealer or between two dealers. Our sample

period is 2005:Q1–2015:Q2.

We first apply a number of filters to account for reporting errors, to assign each trade

to the actual trading counterparties, and to examine a sample of bonds that is relatively

common to the literature (e.g., Bao and Hou, 2017). The resulting data sample after the

basic adjustments is used to construct our dealer inventory measure, so we denote it the

“bond inventory sample.” See Table A.1 in Internet Appendix A for the detailed step-by-

step procedure of data filtering and the associated change in sample coverage.

8The TRACE database covers all corporate bond transactions executed by broker dealers registered with
FINRA. The missing trades from TRACE are those executed on all-to-all trading platforms or exchanges
such as the New York Stock Exchange’s Automated Bond System. These trades account for a very small
portion of total corporate bond trading volume, less than 1% in 1990 and 5% in 2014 according to reports
of U.S. SEC (1992) and Bank for International Settlements (2016).
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To construct the baseline sample for studying variation of credit spreads, we merge the

TRACE database with Mergent FISD (bond characteristics), CRSP (equity prices), and

Compustat (accounting information). We exclude unmatched bonds and then restrict to

senior unsecured bonds that are denominated in U.S. dollars, have a fixed coupon rate,

have an available credit rating, do not have embedded options except possibly make-whole

calls, are issued by non-financial and non-utility firms, and with issue sizes greater than $10

million. We keep only secondary market trades by removing those with P1 flag (primary

market trades) and those with the trading date before and at the bond offering date. We

exclude trades of bonds with time-to-maturity less than one year and those with trade size

larger than the issue size.

Our main sample frequency is quarterly. For each bond i, we compute the yield-to-

maturity of the last trade in quarter t, and then calculate its credit spread csi,t by subtracting

the yield of the corresponding Treasury security.9 The quarterly changes of credit spreads

are then ∆csi,t = csi,t − csi,t−1. However, many corporate bonds do not trade every day,

so that the calculated ∆csi,t is not necessarily based on two actual quarter-end prices. To

avoid large deviations from actual quarterly changes, we exclude a ∆csi,t observation if the

actual number of days between the trade dates in quarter t and t − 1 is below 45 or above

120 days. We match the Treasury yield to the exact day of the trade used in each quarter in

computing credit spread to eliminate nonsynchronization issues. We scale ∆csi,t to a 90-day

change.10 Finally, we remove upper 1% and lower 1% tails of the credit spread levels to

avoid the influence of outliers, and require bonds to have four years of consecutive quarterly

observations of ∆csi,t to ensure enough observations for regressions on structural model

factors.

9The Treasury yield is calculated based on the Gurkaynak, Sack, and Wright (2007) database with linear
interpolations between provided maturities whenever necessary.

10Though at a monthly frequency, Bao and Hou (2017) perform similar adjustments for trade exclusions,
synchronization with Treasuries, and scaling of the resulting ∆csi,t. Our choice to only include trades
separated by 45-120 days is motivated to balance sample size considerations with relevance considerations
(i.e., better synchronization with other quarterly variables we use in our analysis).
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Table 1 reports the summary statistics of our baseline sample of credit spreads. We

have 2584 distinct bonds issued by 653 firms, with a total of 55,938 observations at the

bond-quarter level.11 Around 35% of the observations are on high-yield bonds, defined as

having Moody’s crediting rating below BBB. The mean credit spread is 1.52% and 5.27% for

investment-grade and high-yield bonds, respectively. The average time-to-maturity is 9.78

years, which is higher for investment-grade bonds (10.85) than high-yield bonds (6.78).

1.2 Intermediary Factors

1.2.1 Dealer Inventory

Our measure of dealer inventory is computed using cumulative order flows between customers

and dealers from TRACE. As our objective is to study the balance sheet pressure imposed

by aggregate dealer inventory, we use the “bond inventory sample” defined in Section 1.1

that includes the whole set of corporate bond transactions.

Using records of transactions to construct measures of inventory poses several practical

difficulties, which we address carefully. First, we have no data on the actual level of dealers’

bond inventory at the beginning of our sample period. Accordingly, we construct the dealer

inventory measure starting from 2002:Q3 when the TRACE data of corporate bond trans-

actions first became available, but only use the inventory measure after 2005:Q1. With this

“buffer” period of two and half years, the mismeasurement of dealer inventory starting from

2005:Q1 should be mitigated in light of the evidence on half-lives of dealer inventory being

up to several months (Schultz, 2017; Goldstein and Hotchkiss, 2020).

11Our baseline dataset is quarterly, but we also perform similar adjustments/filters to monthly data in
order to directly compare to existing studies. After all data filters, our monthly sample has 3324 bonds and
more than 185,000 bond-month observations; see Table A.1. For comparison, Bao and Hou (2017) use a
sample of about 10 years from July 2002 to December 2013; they have a larger sample size with more than
230,000 bond-month observations and around 7000–9000 distinct bonds. FN also use a monthly dataset from
January 2003 to December 2013; their sample includes only 974 bonds with 45,000 bond-month observations,
substantially smaller than that of Bao and Hou (2017) and our monthly sample.
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Second, to correct for maturing bonds, we assume dealers’ inventory of this bond turns

zero at its maturity date and hence remove this amount of inventory on that date.12

Third, to eliminate primary market trades, we make two adjustments. Starting March 1,

2010, due to a FINRA requirement, we are able to use an identifier for primary market trades.

Before March 1, 2010, we remove trades of a bond executed before and on its offering date.

This procedure should remove most of the primary market trades as underwriting dealers

are expected to finish delivering bonds within a short period of time.

After making these adjustments, we construct a quarterly measure of dealer inventory by

aggregating cumulative order flows of all dealers with customers. We use par value rather

than market value to avoid the potential confounding effect of price changes when studying

the effect of dealer inventory on credit spreads. The quarterly log change of this measure,

denoted ∆Inventory, is the baseline dealer inventory factor in our analysis.13

To the best of our knowledge, data on dealers’ exact holding amounts of corporate bonds

are unavailable. Besides our method using TRACE transaction data, two data sources based

on financial reporting also provide some crude information on dealers’ security holdings. One

is the FRBNY report on holdings of primary dealers, and the other is the Flow of Funds

report on holdings of security broker-dealers, released by the Federal Reserve.14

Several differences and issues are worth discussing. First, these sources do not purely

track corporate bonds. The FRBNY began collecting primary dealers’ holdings of corporate

bonds as a separate asset class only starting April 3, 2013; its reported corporate bond

12Our procedure will miss callable bonds that are being called before maturity, though these callable bonds
are removed from inventory at their times of maturity. Another potential issue of our inventory measure
is that it does not include dealers’ in-kind transactions with ETF sponsors (which are not reported to the
TRACE). However, we deem this effect to be small; Pan and Zeng (2019) show that during 2010 to 2015
ETF activities accounted for less than 5% of the corporate bond market trading volume, of which dealers’
in-kind transactions were only a fraction.

13Log changes can be problematic if the inventory level becomes negative, which is not the case with our
measure and sample period. Note that our inventory measure is only based on bond transactions. Including
dealers’ derivative positions and short sales may make the inventory go negative.

14See, respectively, https://www.newyorkfed.org/markets/gsds/search.html and https://www.

federalreserve.gov/apps/fof/DisplayTable.aspx?t=l.130.
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positions prior to April 3, 2013, are extrapolated backward.15 The Flow of Funds series

is the holding amounts of “corporate and foreign bonds” (FL663063005.Q) that includes

corporate bonds as well as all other fixed-income securities (e.g., private-label MBS). Second,

our method covers exactly the dealers trading in corporate bonds. The FRBNY report only

includes about 20 primary dealers (a subset of ours), while the Flow of Funds series covers

a broader set than those intermediating corporate bonds, i.e., all broker-dealers who submit

information to the Securities and Exchange Commission through either the Financial and

Operational Combined Uniform Single Report (FOCUS) or the Report on Finances and

Operations of Government Securities (FOGS).16

1.2.2 Intermediary Distress

To construct the intermediary distress factor, we combine the balance sheet–based leverage

ratio measure of the aggregate intermediary sector proposed by HKM and the price–based

“noise” measure proposed in HPW.

The HKM leverage ratio, denoted LevHKM
t for quarter t, is computed as the aggre-

gate market equity plus aggregate book debt divided by aggregate market equity, using

CRSP/Compustat and Datastream data, of the holding companies of primary dealers recog-

nized by the FRBNY. In measuring the change or innovation of the leverage ratio, we create

the variable ∆NLevHKM
t := (LevHKM

t )2 − (LevHKM
t−1 )2, motivated by the nonlinear effect of

intermediary constraints on asset prices suggested by theory.17

15Before April 3, 2013, corporate bonds are not separated from securities issued by non-federal agencies
(e.g., government-supported enterprises) are available. The FRBNY extrapolates corporate bond positions
prior to April 3, 2013, using the composition of corporate bond holdings on that date.

16Discrepancies in asset and dealer coverage lead to differences between our dealer inventory measure and
the two alternative data sources. First, magnitudes can diverge; for example, FRBNY data shows primary
dealer holdings of $250 and $28 billion at the end of 2007Q1 and 2014Q4, respectively, compared to $91 and
$107 billion from our series. Second, unlike the two alternative measures, our dealer inventory series shows
an expansion starting from early 2013—the measure in Goldberg and Nazawa (2020) shows a similar pattern
to ours—consistent with the increasing outstanding balance of corporate debt (Figure 2). That said, all
measures share a similar increasing trend from 2003–2007 and a large decline from 2007–2012. In addition,
reconstructing our dealer inventory measure using only primary dealers delivers similar results.

17Intermediary-based theories suggest that conditional time-t risk premia should be proportional to
(LevHKM

t )2. In fact, acknowledging this, the forecasting regressions of HKM use (LevHKM
t )2 as their fore-
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The HPW “noise” measure is computed as the root mean squared distance between the

market yields of Treasury securities and the hypothetical yields implied from yield curve

models like that of Svensson (1994).18 “Noise” is widely used in the literature as a measure

of “shortage of arbitrage capital” across various markets. The rationale is that relative value

trading across various habitats on the yield curve is conducted at most investment banks and

fixed-income hedge funds. A significant deviation of market yields from model-implied yields

is a symptom of a lack of arbitrage capital, and importantly, “to the extent that capital is

allocated across markets for major marginal players in the market, this symptom applies not

only to the Treasury market, but also more broadly to the overall financial market” (HPW,

2352). Given this reasoning, we view HPW noise and HKM leverage as capturing similar

ideas, but with noise circumventing the many measurement-error issues inherent in balance-

sheet variables like leverage. We denote ∆Noise the quarterly change of the HPW noise

measure (in basis points).

Our measure of intermediary distress, denoted as ∆Distress, is defined as the first princi-

pal component of ∆NLevHKM
t and ∆Noise. The former is constructed mainly using balance

sheet information of financial intermediaries, while the latter is based on prices in the Trea-

sury market; both differ from the credit risk market which is our focus. Combining the two

leads to a parsimonious measure of the capital constraints on the aggregate intermediary

sector. As shown in Internet Appendix A.5, both ∆NLevHKM
t and ∆Noise contribute a

nontrivial fraction of the explanatory power of ∆Distress for credit spread changes.

casting variable. In the previous NBER working paper version (He, Khorrami, and Song, 2019), we used
the leverage-related variable (LevHKM

t −LevHKM
t−1 )×LevHKM

t−1 , which is approximately equal to 1
2∆NLevHKM

t

for small shocks and delivers slightly stronger explanatory power. In unreported calculations, we have also
repeated our analysis using ∆LevHKM

t := LevHKM
t − LevHKM

t−1 , rather than our nonlinear factor ∆NLevHKM
t ,

and found a small reduction in explanatory power. Overall, as our analysis is quarterly, a frequency at which
nonlinearities matter more, we deem it important to correctly capture the appropriate functional form of
the state variables, i.e., to keep the nonlinearities.

18The Svensson (1994) model is an extension of the yield curve model initially proposed in Nelson and
Siegel (1987). These models are widely used in the academic literature and in practice to compute benchmark
yield curves (Gurkaynak, Sack, and Wright, 2007). Song and Zhu (2018) discuss the use of these models
by the Federal Reserve in evaluating offers submitted in auctions that executed the purchases of Treasury
securities for quantitative easing.
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1.2.3 Summary Statistics

To gauge the variation of the two intermediary factors, Figure 1 plots the quarterly time

series of ∆Inventory and ∆Distress (both scaled to have zero mean and unit variance) in the

top panels. Dealer inventory has comparable frequent variation across different subperiods

of the sample, whereas intermediary distress exhibits extreme variation in the 2008 crisis but

mild variation otherwise. Importantly, the two factors exhibit largely orthogonal variation,

with a correlation of only −0.028 (Table 2).

The third panel of Figure 1 plots the quarterly time series of ∆NLevHKM and ∆Noise

that are used to construct our measure of intermediary distress. These two series line up

with each other well, though ∆Noise led ∆NLevHKM by a quarter in plummeting during

the 2008 crisis. The correlation between them is 0.41 (Table 2). Our measure ∆Distress,

equal to the first principal component of ∆Noise and ∆NLevHKM, captures 70% of their

total variation.

Table 2 also reports correlations of our intermediary factors with other important vari-

ables. Whereas ∆Distress has a moderate 0.466 correlation with ∆V IX (which is one of

the CGM structural factors), the correlation of ∆Inventory with ∆V IX is low and statisti-

cally insignificant. In addition, the correlations of our intermediary factors with ∆ILiq, the

illiquidity factor of corporate bond trading of Dick-Nielsen, Feldhütter, and Lando (2012),

are quite low in the range of 0.2 to 0.3; it is marginally significant for ∆Inventory, but

insignificant for ∆Distress. We control for ∆ILiq when studying the effects of intermediary

factors on credit spreads.

1.3 Credit Spread Changes and Intermediary Factors

We show that intermediary factors have strong explanatory power for credit spread changes.

Additionally, sensitivities to these intermediary-based factors are monotone in credit risk, a

pattern that is robust to many other alternative specifications.
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1.3.1 Commonality of Credit Spread Changes

We first replicate the exercise in CGM and show that the strong commonality persists in

the U.S. corporate bond market in our sample of 2005–2015. Following CGM, we consider

seven determinants, motivated from the Merton (1974) model, of credit spread changes: firm

leverage Levi,t, 10-year Treasury interest rate r10y
t , square of 10-year Treasury interest rate(

r10y
t

)2
, slope of the term structure Slopet measured as the difference between 10-year and

2-year Treasury interest rates, S&P 500 return RetSPt , a jump factor Jumpt based on S&P

500 index options, and V IXt. See Internet Appendix A.2 for further details.

We run a time series regression for each bond i:

∆csi,t = αi + β1,i ×∆Levi,t + β2,i ×∆V IXt + β3,i ×∆Jumpt

+ β4,i ×∆r10y
t + β5,i × (∆r10y

t )2 + β6,i ×∆Slopet + β7,i ×RetSPt + εi,t, (1)

by which an estimate of each regression coefficient for each bond is obtained. To avoid

asynchronicity issues, in running this regression for bond i, we match the dates of any

structural regressors available at daily frequency (e.g., V IXt) to the dates of measured credit

spreads for bond i. Similar to the empirical procedure of CGM, we assign each bond into one

of 15 cohorts based on time-to-maturity and rating, and then report the regression results at

the cohort-level. Panel A of Table 3 shows that the sample size is fairly homogenous across

maturity groups but heterogeneous across rating groups.

Panel A reports the regression results. Following CGM, we report the average regression

coefficients across bonds within each cohort, with associated t-statistics computed as the

average coefficient divided by the standard error of the coefficient estimates across bonds.

The dependence of ∆cs on the factors is as expected based on structural frameworks. For

example, credit spreads significantly increase with firm leverage and volatility, and decrease

with the risk-free rate and the stock market return. The mean adjusted R2 is about 30–40%
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for bonds rated equal to or above BBB and about 55% for bonds rated equal or below BB.

There is a strong common factor structure of the regression residuals, as pointed out by

CGM. The residual series εg,t of each cohort g are computed as the average of regression

residuals εi,t across bonds i in the cohort g. Panel B of Table 3 reports the principal

component analysis of the 15 regression residuals, and finds that over 80% of the variation can

be explained by the first PC, whereas the second PC explains an additional 6%. Moreover,

the last column of Panel A reports the variation of residuals for each cohort g, εvarg (=∑
t(εgt − ε̄g)2 with ε̄g the time series mean of εgt), as a fraction of the total variation of the

15 cohorts
∑15

g=1 ε
var
g . The BB and B cohorts account for the majority (about 86%) of the

total variation. That is, compared to higher-rated cohorts, although the structural factors

can explain more of the raw credit spread changes in these two lower-rated cohorts as noted

above, what remains to be explained is still large.

It is worth comparing our data sample and results with those of two closely related

studies, CGM and FN. In terms of data sample, CGM use a 10-year monthly sample from

July 1988 to December 1997 with a total of 688 bonds and dealer quote prices, while FN

also use a 10-year monthly sample but from January 2003 to December 2013 with a total of

974 bonds and actual transaction prices. We use a 10-year quarterly sample from 2005:Q1

to 2015:Q3 with a total of 2584 bonds and actual transaction prices.

In terms of the overall explanatory power in individual bond regressions, the average

adjusted R2 is about 25% and 22% in CGM and FN, respectively, but about 45% in our

study. Our much higher adjusted R2 in individual bond regressions is likely because we use

a quarterly sample as opposed to monthly samples of the other two studies (indeed, in the

monthly regressions reported in Table A.10, the average adjusted R2 drops to 26%). The

important feature of these residuals is commonality: the fraction of the total unexplained

variance of regression residuals that can be accounted for by the first PC is very high (80%),

similar to CGM and FN.19

19Our PC1 explains 80% of grouped residual variation, similar to the 76% found in CGM. This is a bit
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1.3.2 Effect of Intermediary Factors on Common Credit Spread Changes

The strong common variation of credit spread changes beyond structural factors implies the

existence of a “market” factor specific to the corporate bond market (see similar implications

for the MBS market in Gabaix, Krishnamurthy, and Vigneron, 2007). In fact, CGM show

that the PC1 is largely associated with the change in market-level credit spread index, so

they conclude “there seems to exist a systematic risk factor in the corporate bond market that

is independent of equity markets, swap markets, and the Treasury market and that seems to

drive most of the changes in credit spreads” (CGM, 2202). In this section, we show that our

two intermediary factors have significant explanatory power for this systematic factor in the

corporate bond market.

We study the effect of intermediary factors on common credit spread changes based on

the following time series regressions:

εg,t = αg + β1,g∆Inventoryt + β2,g∆Distresst + ug,t, (2)

where εg,t is the average residual of cohort g (= 1, . . . , 15).20 Panels A and B of Table 4 report

univariate regressions on dealer inventory and intermediary distress, respectively, and Panel

C reports bivariate regressions. We find that dealer inventory and intermediary distress both

comove positively with residuals of credit spread changes.21 Further, factor loadings across

higher than the 48% documented in FN. To directly compare to these studies, we repeat this analysis at the
monthly frequency, in which PC1 accounts for 76% of the variation of the 15 credit spread residuals (see
Table A.10 in the next section). Overall, all three studies confirm a strong common factor structure for the
credit spread changes beyond those driven structural factors, though our paper and CGM document a much
stronger commonality than FN.

20Equivalent to our “two-stage” approach, one can use a kitchen-sink regression by including the seven
structure variables and our two intermediary factors jointly. This alternative approach allows us to see more
directly how much explanatory power the intermediary factors bring relative to the structural factors based
on the R2 increase. We use the two-stage approach because it gives a relatively clean gauge on the loadings.

21Statistically, dealer inventory is weak in univariate regressions but strong in joint regressions, whereas
intermediary distress shows strong statistical significance in both univariate and joint regressions. The weak
statistical significance of dealer inventory in univariate regressions is likely due to the unbalanced number
of bonds assigned into different cohorts. Indeed, firm-leverage cohorts, used in Table A.5 of the Internet
Appendix, have more balanced number of observations, and the statistical significance of both intermediary
factors is strong in univariate regressions.
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our bond cohorts show a salient pattern: lower-rated bonds have greater loadings on both

inventory and distress. For example, the joint regression in Panel C of Table 4 implies that a

one standard deviation increase of dealer inventory (intermediary distress) is associated with

a quarterly increase of about 3–40 basis points (4–70 basis points) in bond yields, with higher

sensitivities for lower-rated bonds. This monotonic pattern is reminiscent of the principal

component loadings: lower-rated bond residuals have higher loadings on PC1 in Table 3.

To evaluate the overall explanatory power of the intermediary factors on credit spread

changes, we compute the fraction of the total variation of residuals that is accounted for by

∆Inventory and ∆Distress. In particular, for each of the 15 time series regressions, we can

compute the total variation of credit spread residuals εvarg as above and also the variation

uvarg ≡
∑

t(ug,t)
2 that cannot be explained by the two intermediary factors. For each of

the three maturity groups and all 15 rating-maturity groups, we compute the fraction of

variation explained by the two intermediary factors as

FVEG = 1−
∑

g∈G u
var
g∑

g∈G ε
var
g

, (3)

where G ∈ {short, medium, long, all}.

As reported in the last column of Table 4, the two intermediary factors explain 28%,

53%, and 45% of the total variation of residuals of credit spread changes for short, medium,

and long term bonds, respectively, and 43% for all bonds. Similar calculations for dealer

inventory and intermediary distress separately show that two-thirds of this explanatory power

can be attributed to intermediary distress and one-third to dealer inventory, consistent with

the correlations of these two factors and the PC1 reported in the last row of Table 3. In

Internet Appendix A.5, we redo this analysis with the two variables comprising ∆Distress

decomposed. A greater amount of unexplained credit spread variation is accounted for by

∆Noise (32%) than NLevHKM (14%). Likely, this is because ∆Noise, a price-based measure,

better proxies “market distress” relative to ∆NLevHKM
t , which admits a more primitive
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economic interpretation.

In sum, our baseline analysis shows that (i) dealer inventory and intermediary distress

have significant effects on common changes in credit spread residuals, (ii) the effects are

positive and monotonically decreasing with bond ratings, and (iii) the two factors, having

low correlation, together account for almost half of the unexplained variation of credit spread

changes: one-third and two-thirds are attributable to dealer inventory and intermediary

distress, respectively. Several robustness checks are in Internet Appendix A.

1.3.3 Comparison to Microstructure Measures of Liquidity

Given our focus on bond market liquidity providers, it is instructive to understand how much

of credit spread changes can be explained by measures of liquidity for secondary corporate

bond markets in comparison to our intermediary factors. In the literature, these measures

usually aim to capture transaction costs and trading activeness that are more microstruc-

ture oriented (Chen, Lesmond, and Wei, 2007; Bao, Pan, and Wang, 2011; Dick-Nielsen,

Feldhütter, and Lando, 2012). We use the aggregate illiquidity measure of Dick-Nielsen,

Feldhütter, and Lando (2012), ∆ILiq, which is calculated as an equally weighted average of

four metrics: the Amihud (2002) measure of price impact, the Feldhütter (2012) measure

of round-trip cost, and respective daily standard deviations of these two measures. That

is, ∆ILiq captures trading illiquidity due to price impact and transaction costs, as well as

liquidity risk, and is aggregated into a time-series factor.

As reported in Table 2 and discussed earlier, ∆ILiq is only modestly correlated with our

two intermediary factors. Importantly, we find that ∆ILiq mainly adds to the explanatory

power (adjusted R2) of high-rated cohorts but not low-rated cohorts, and its explanatory

power is relatively small (Table A.7).22 Given our somewhat different focus, we acknowledge

several reasons that could drive the relatively small explanatory power of these commonly

22Similar patterns are found using the corporate bond illiquidity measure of Bao, Pan, and Wang (2011),
available at the monthly frequency up to 2009.
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used illiquidity measures: (i) we focus on the quarterly frequency, during which transaction

cost–based illiquidity may simply be less important; and (ii) the first-stage CGM regres-

sion may already include variables correlated with this type of liquidity (e.g., Table 2 shows

corr[∆ILiq,∆V IX] = 0.38, so loadings on V IX could crowd-out the contribution of ILiq).

Individual bond–specific liquidity could be important to credit spread variation at the indi-

vidual bond level; our analysis says that for the common component of credit spread changes,

at the quarterly frequency, dealer inventory and intermediary distress seem to better capture

the relevant notion of “liquidity.”

2 An Economic Framework

We present a simple intermediary-based setting that provides a supply-demand interpreta-

tion to our results. Supply shifts come from shocks to hedgers’ risk aversion, which initiate

portfolio liquidations that increase bond supply in the market. In addition, it will be impor-

tant that hedgers are partially segmented across asset classes, similar to “preferred-habitat”

models like Vayanos and Vila (2021) and Greenwood, Hanson, and Liao (2018). Demand

shifts come from shocks to intermediary wealth: because intermediaries are risk-averse, bal-

ance sheet shocks affect required returns on intermediation, as in He and Krishnamurthy

(2012, 2013). We show how model-based regressions with dealer inventory (a proxy for bond

supply) and dealer leverage (a proxy for intermediary wealth) reproduce the patterns of

our bond-level regressions. Finally, we derive further tests guided by the model. Analyses,

proofs, and extensions of the model are in Internet Appendix B.

2.1 The Model

Assets. There are multiple risky asset contracts numbered a = 1, . . . , A. Asset payoffs

are given by δ, which is normally distributed, δ ∼ Normal(δ̄,Σ). Let p be the equilibrium
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asset price vector. There is also a riskless asset that pays 1 per unit of investment, as a

normalization. Thus, we may think of δ as the net-of-interest payoff as well.

Given that CGM residuals are computed for corporate bonds relative to “market” that

includes other assets, we consider mutually exclusive asset classes A1, . . . ,AN , where each

Ai is a subset of the set of assets {1, . . . , A}. Examples of asset classes might be equities,

corporate bonds and related credit derivatives, asset-backed securities, options, foreign ex-

change, commodities, etc. Below, we will formalize exactly how asset classes are segmented.

Examples without segmentation can be studied by setting N = 1.

Hedgers. As in Kondor and Vayanos (2019), hedgers inherit random endowment h′δ, with

h ≥ 0, and have mean-variance preferences. However, hedgers are segmented across as-

set classes. One can interpret segmentation as a reduced-form for some specialization not

modeled here.

The representative hedger in asset class An receives endowment
∑

a∈An
haδa and solves

max
θH

E[WH,n]− ρn
2

Var[WH,n] where WH,n :=
∑
a∈An

haδa +
∑
a∈An

θH,a(δa − pa). (4)

Hedgers of different asset classes may have different risk aversions ρn, the vehicle we use to

model asset supply shocks. Specifically, the supply shocks would be changes to (ρn)Nn=1, which

will induce trades between hedgers and intermediaries. While this setup features “completely

segmented” hedgers in the sense that there is no overlap in portfolios of hedger n and hedger

n′ 6= n, this is not actually required. In Internet Appendix B.3, we consider a more general

model allowing hedgers to have partially-overlapping portfolios, and we prove that this more

general model is actually approximately isomorphic to the model in our main text, with some

correlation in the shocks to (ρn)Nn=1 as a reduced-form stand-in for the underlying portfolio

overlap. This approximate isomorphism may be of some independent interest.

Intermediaries. Intermediaries are mean-variance optimizers, who are integrated across
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asset classes unlike hedgers. The intermediary optimization problem is

max
θI

E[WI ]−
γ(w)

2
Var[WI ] where WI := w + θI · (δ − p). (5)

The intermediary risk aversion γ(w) is assumed to be a decreasing function of their wealth

w, as in He and Krishnamurthy (2012, 2013).23 The demand shocks we consider are shocks

to w, which affects intermediary risk aversion, thus willingness to intermediate.

Market clearing. For simplicity, all risky assets are in zero net supply, meaning24

θH + θI = 0. (6)

The aggregate “market” portfolio will be important for us to compare the model to our

empirical findings. Because all assets are in zero net supply, we define market using the

endowments as portfolio weights. Thus, the market cash flow is x′δ, and its price is x′p,

where xi := hi/
∑A

j=1 hj is the “weight” on asset i.

CGM residuals. To compare our model closely to the data, we will construct a proxy for

CGM residuals. Let dp denote equilibrium price changes in response to supply and demand

shocks (dρn)Nn=1 and dw. Because the CGM procedure conditions on volatility and jump

factors, interest rate factors, and firm leverage, we presume from the outset that δ̄ and Σ are

constant over time for our analysis (i.e., they are not part of our “shocks”). For each asset

i, define the market beta βa,mkt := Cov[δa+dpa,x′δ+d(x′p)]
Var[x′δ+d(x′p)]

. Here and always, we compute this

beta using both fundamental variation and price changes, as would occur in data. Then, we

23In Internet Appendix B, we also allow γ to be a function of a regulatory tightness variable z. Using
this more general setup, Internet Appendix B.4 develops additional predictions about how bond prices and
dealer balance sheets comove with regulatory shocks, which are pervasive in our sample period (2005–2015).
These predictions are then tested and verified in Internet Appendix A.8.

24Allowing positive net supply of assets only slightly alters the equilibrium relationships. Indeed, if s is
the asset supply vector, then hedgers’ endowments h are replaced in all expressions below by h+ s.
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define a proxy for CGM residuals by

εa := dpa − βa,mktd(x′p). (7)

To affect residuals (εa)
A
a=1, non-fundamental shocks must differentially drive asset prices and

in a way that is not spanned by market betas.

2.2 Benchmarks

No segmentation benchmark. Suppose first that N = 1, so all markets are integrated.

Let ρ denote the representative (integrated) hedger risk aversion. In this case, it is straight-

forward to show that equilibrium asset prices are given by

p = δ̄ − ΓΣh, (8)

where Γ := (ρ−1+γ−1)−1 denotes the aggregate risk aversion index. A critical drawback of (8)

is that Γ is a market-wide scalar. Furthermore, asset a’s loading on Γ is (Σh)a = Cov[δa, h
′δ],

the fundamental covariance to the market. Thus, running a regression of any asset on the

market portfolio will soak up price variation due to variation in Γ, which is the only variable

affected by our shocks (ρ, w). Consequently, this full-integration model cannot produce CGM

residuals that comove with proxies of intermediary balance sheets or liquidity shocks. Hence,

relevant CGM residuals require some market segmentation.

Lemma 1. If N = 1 (full integration), εa is independent of dw and dρ.

No heterogeneity benchmark. We reintroduce segmentation (N > 1) with one of the

asset classes being corporate credit, which we call Abonds. Before delving into our full model,

consider a benchmark without intermediaries; this benchmark model has a representative

investor in each segment An, with risk aversion ρn. Equilibrium asset prices in such a model
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are given by

pa = δ̄a − ρn(a)(Σh)a, (9)

where n(a) :=
∑N

n=1 n1a∈An indicates to which segment asset a belongs. Thus, the represen-

tative bond investor’s risk aversion (ρbonds) acts like a common factor driving bond prices.

Such a model could plausibly produce CGM residuals εa that comove with our empirical

dealer distress variable; for example, if dealers are biased towards bond intermediation,

shocks to their balance sheets will affect ρbonds (more so than ρequities, ρMBS, etc.) and trans-

mit to bond prices. However, such a model cannot reproduce the two-factor structure of our

empirical results simply because we cannot even define a measure of dealers’ bond inventory.

Hence, with a representative bond investor, there can be no price impact from a trade of

bonds between different individual investors, contrary to the core idea underlying a role for

dealer inventory.

2.3 Market Segmentation and Investor Heterogeneity

Now we proceed with an environment consisting both of intermediaries and hedgers, as

well as asset market segmentation (i.e., hedger “habitats”). As this model is analytically

cumbersome, we make the following assumption to facilitate clear formulas and intuition.

Assumption 1. Corporate bond fundamentals are positively correlated: any two assets

a, a′ ∈ Abonds have Cov[δa, δa′ ] > 0. By contrast, assets in different classes have weak

fundamental correlation: for a ∈ An and a′ ∈ An′ , with n 6= n′, assume Cov[δa, δa′ ] ≈ 0.

It is sensible that fundamentals are less correlated “between” asset classes than “within,”

especially if segmentation is endogenous; the approximation of the “between” correlation by

zero is for analytical clarity.25 Going forward, when a relation holds approximately (indicated

by ≈), this is due to the weak-correlation approximation in Assumption 1.

25In addition, note that Assumption 1 could be replaced by an alternative whereby intermediary trading is
segmented along the same dimensions as hedger trading. Indeed, segmented traders trade as if the “between”
correlations are zero. See Internet Appendix B.5.
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Equilibrium prices. Under Assumption 1, equilibrium asset prices take the following form

pa ≈ δ̄a − Γn(a)(Σh)a, where Γn := (ρ−1
n + γ−1)−1, (10)

where recall n(a) indicates the segment to which asset a belongs. Equation (10) mirrors (8)

closely (the simplicity of the formula is due to Assumption 1), but with a critical modification:

Γn is no longer market-wide, but rather asset-class-specific. As a result, a broad market

index will not fully capture bond price variation due to Γn, which introduces a role for

non-fundamental shocks to affect bond residuals.

Before we delve into the details of our bond regressions, note that this model is consistent

with a single dominant principal component for the residuals, as documented in CGM and

our Table 3. Indeed, all non-fundamental shocks alter bond prices by affecting Γbonds in

(10); this single pricing factor is common to all bonds. Bonds load on this single factor

through the bond-specific quantity (Σh)a, analogous to bonds’ eigenvector loadings on their

first principal component (see right-hand column of Table 3). Of course, the “single factor”

Γbonds is hard to measure, so below we identify proxies for shocks that drive it.

Non-fundamental shocks. The non-fundamental shocks are to (ρn)Nn=1 and w.26 Rather

than allowing arbitrary shock structures, we will take a more parsimonious and illustrative

approach. Supply shocks will be modeled as “segment-wide” but not “market-wide,” in the

sense that the aggregate market portfolio capital gains d(x′p) is independent of (dρn)Nn=1.

One can thus think of supply shocks as a change that induces hedger rebalancing in their

portfolio holdings, e.g., from bonds to other asset classes. Because of our focus on bonds,

26As suggested earlier, Internet Appendix B.3 shows that pricing formula (10) also holds in a more general
model with partially-overlapping hedger portfolios. The only nuance is that ρ−1n should be interpreted
as the sum of risk tolerances of individual hedgers participating in asset class n. For instance, suppose
each hedger i has risk tolerance ρ̂−1i and suppose hedgers i1, . . . , ik invest in asset class n. Then, we show
that ρ−1n = ρ̂−1i1 + · · · + ρ̂−1ik is a sufficient statistic that justifies formula (10). As a consequence, investor

overlap induces greater correlation in shocks to (ρn)Nn=1 than is present in the shocks to individual-hedger
risk aversions. However, nothing in Proposition 1 below hinges on this cross-correlation, so all of our main
results continue to hold in the more general model.
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let the bond supply shock be

s := log(ρbonds).

As shocks to w are the only demand shocks, the analysis is reduced to the two-dimensional

shock (dw, ds). Finally, assume dw is independent of ds.

Bond regressions. Recall in Section 1.2 our empirical pricing factors are “bond inventory”

and “intermediary distress.” In the model, these are defined as

(Inventory) ξ := log
(∑

a

θI,a1a∈Abonds

)
(Distress) λ := log

(∑
a

θI,a/w
)
.

Our model’s inventory factor corresponds exactly to our empirical construction. Our model’s

distress factor is intermediary leverage, mirroring HKM leverage in our empirical construc-

tion. As intermediaries are marginal in all markets, shocks to w will also affect Treasury

prices, meaning the HPW “Noise” variable can be justified as another proxy for w-shocks.

Next, we regress residuals εa on these model-based inventory and distress factors:

Proposition 1. Suppose N > 1, and let Assumption 1 hold. If ds and dw are the only

non-fundamental shocks, then εa are generically non-zero, and the following hold:

(i) [Explanatory power] Bond residuals are spanned by ξ and λ:

εa ≈ βa,ξdξ + βa,λdλ, a ∈ Abonds.

(ii) [Sign of sensitivities] βa,ξ < 0 and βa,λ < 0 for all a ∈ Abonds if

(a) ∂Γbonds

∂γ
is high relative to

∑
n αn

∂Γn

∂γ
(where αn ∝

∑
j∈An

xj(Σx)j are weights sum-

ming to one in this weighted average);

(b) ∂ξ/∂s > 0 and ∂λ/∂w < 0; also, −∂ξ/∂w
∂ξ/∂s

and ∂λ/∂s
|∂λ/∂w| are sufficiently small.
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(iii) [Monotonic sensitivities] Factor loadings scale as

βi,ξ/βj,ξ ≈ βi,λ/βj,λ ≈ (Σh)i/(Σh)j, if i, j ∈ Abonds. (11)

Proposition 1 shows that, with market segmentation, we can reproduce all of our main

empirical results. First, part (i) says that not only are the CGM residuals non-zero, they

are completely explained by our two factors. This stark result, thanks to our reduction of

supply and demand shocks to the two-dimensional shock (dw, ds), illustrates how the model

has the potential to match our large explanatory power in Section 1.3.27

Part (ii) outlines what is required to generate bond spreads’ positive loading on our factors

in Table 4 (if bond prices load negatively, then spreads load positively). There are two steps

to understand the intuition for this result. First, bonds should be more sensitive to the

shocks (ds, dw) than a weighted average of non-bond assets, such that the market portfolio

does not adequately control for this non-fundamental variation. For bond supply s, this

excess sensitivity is obvious, but for aggregate intermediary wealth w, the excess sensitivity

requires a condition like (a), which conveys the economically substantive assumption that

intermediaries are important in bond markets, more so than in a typical non-bond asset

market. This can happen if ρbonds is relatively high so that hedgers are relatively reluctant

to participate in bond markets. Haddad and Muir (2021) provide some independent evidence

showing that corporate credit is the most intermediary-reliant asset class.

The second step requires that each of our factors dξ and dλ be reasonable proxies for

shocks (ds, dw), which is ensured by condition (b). The first half of condition (b) conveys

the natural supply-demand intuition of the model: ds > 0 induces selling by hedgers which

increases dealer inventory; dw < 0 raises dealer leverage by a mechanical balance-sheet

effect. The second part bounds the biases in βξ and βλ that can arise because our proxies

27The theoretical explanatory power of our factors would be reduced if some of the non-fundamental
variation is idiosyncratic (i.e., if there is bond-specific variation independent of the segment-wide variation).
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are imperfect.28

Finally, part (iii) says that riskier bonds should have higher loadings on our factors. In-

tuitively, intermediaries have limited risk-bearing capacity, and riskier bonds require more of

this capacity. Our model thus emphasizes a risk-based story for non-fundamental variation,

which can help distinguish our results from FN and others. In particular, part (iii) is consis-

tent with our empirical slope coefficients that are monotonically decreasing in credit rating,

if credit rating is a good proxy for bond riskiness. Rating as a proxy for risk is sensible given

defaults tend to happen in bad times, so that bonds with higher default risk also contain

higher risk premia (see, e.g., Chen, 2010). Quantitatively, Table 4 reports β̂B
ξ /β̂

AA
ξ ≈ 10 to 19

and β̂B
λ /β̂

AA
λ ≈ 8 to 18, which are roughly consistent with each other.29

2.4 Additional Testable Implications

To corroborate the key assumptions of the model, we develop additional testable Predictions

1–3 below, which we shall take to data in Section 3.

First, although bonds have many other features besides their riskiness, the model posits

that only these features interact with intermediary balance sheets; see equation (11). This

is because, besides limited intermediary risk-bearing capacity, there are no other significant

trading costs or intermediation frictions. Thus, if two bonds differ on some characteristic

ki 6= kj, but they have the same risk, then they will have the same sensitivities to the

intermediary factors (ξ, λ), i.e., βi,ξ = βj,ξ and βi,λ = βj,λ. Moreover, the model says that

28An example story for such biases is the following. Suppose dw > 0 causes inventory ξ to rise; this can
occur in our model as wealthier intermediaries are more willing to hold risky bonds. At the same time, bond
price residuals εa rise. The positive induced comovement between εa and ξ would increase βξ, unless such

variation is mostly captured by βλ. In fact, βλ will capture the variation of this story if ∂λ/∂s
|∂λ/∂w| is small

enough.
29Our NBER working paper version (He, Khorrami, and Song, 2019) takes a margin-based interpretation.

The analogous result to equation (11) says that relative factor loadings are given by relative margin and/or
capital requirements, i.e., βi,ξ/βj,ξ ≈ βi,λ/βj,λ ≈ mi/mj . There we discuss how regulatory capital charges
(e.g., Basel II) mandate capital charges that are quantitatively consistent with our regression coefficients.
In this version, we take a risk-based interpretation, which we view as broader, since margin and capital
requirements are often set according to asset riskiness.
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an appropriate measure of “aggregate risk” on which to sort is a bond’s covariance with

the aggregate endowment, i.e., (Σh)i = Cov[δi, h
′δ]. This produces the following empirical

prediction.

Prediction 1. Sorting bonds by their covariance to aggregate risk proxies should produce a

monotonic pattern in sensitivities on both dealer inventory and intermediary distress. Sorting

bonds by a characteristic unrelated to risk should not produce any pattern in sensitivities.

Second, the model features “spillover effects” that are curtailed by the degree of segmen-

tation between asset classes. For example, when dealers take a risky asset into inventory,

they will demand a higher premium on all other risky assets they trade within that same

asset class. Assets in other segments will be only modestly affected if segmentation is severe.

In Internet Appendix B.3, we explore a more general partial-segmentation model (modeled

through overlapping hedger portfolios) to formalize how the degree of segmentation matters:

asset classes more segmented from corporate bonds experience smaller spillover effects of

bond inventory on their prices. On the other hand, when dealers are hit with an aggregate

wealth shock like our dw, assets in all segments will be affected. Together, these lead to the

following test of our market segmentation hypothesis:

Prediction 2. Assets in the same class with corporate bonds will be sensitive to bond inven-

tory; other assets less so. All risky assets will be sensitive to intermediary distress.

Third, Proposition 1, part (ii), shows how the sign of our measured factor loadings

supports an interpretation that bond inventory ξ is a good proxy for bond supply shocks

s. Using such sign restrictions is a standard way of separating supply and demand shocks

in the literature (e.g., Goldberg and Nazawa, 2020), though this line of reasoning depends

on the model structure. A more direct test would be to extract plausibly exogenous supply

shocks ds and observe how inventory ξ changes. Furthermore, any associated bond price

response highlights the sense in which trades between market participants (e.g., investors
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and dealers) are non-neutral, supporting our deviation from a representative bond investor

benchmark.

Prediction 3. If investors liquidate some bond positions for reasons plausibly unrelated to

aggregate intermediary wealth, economic conditions, or firm fundamentals, then (i) dealer

bond inventory should increase; and (ii) bond prices should fall.

3 Empirical Support to the Economic Framework

In this section, we provide supporting evidence, corresponding to Predictions 1–3 above,

that corroborates the key economic mechanisms of our framework.

3.1 Risk-Based Monotonic Loadings

First, we conduct two sets of further analyses on the risk-based explanation for the monotonic

loading of credit spread changes on intermediary factors.

Sorting based on trading volume. The first set conducts placebo tests: sorting bonds

based on variables unrelated to risk should produce no pattern in price sensitivities to inter-

mediary factors (see Prediction 1). A result of this type can be observed in Table 4, where

the regression coefficients of both ∆Inventory and ∆Distress are roughly similar across

maturity groups, a sorting variable not strongly tied to risk.

To present further evidence along this direction, we examine bond sorts on trading vol-

ume, which is plausibly unrelated to a bond’s riskiness. For each bond in each quarter, we

compute the total trading volume (in dollar market value) in the last month of the quarter.

Then in each quarter, we sort bonds independently into one of 15 groups based on quintiles

of ratings and terciles of total trading volume. Within each rating category, the average

total trading volume differs substantially across the tercile groups, about $2, $17, and $100

million respectively (Table 5, Panel A).
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As shown in Panel B of Table 5, the magnitude and statistical significance of loadings on

both intermediary factors decrease in ratings (consistent with our main results), but remain

roughly the same across the terciles by trading volume. This result suggests that, more so

than measures based on trading activeness, our two intermediary factors capture a notion of

“liquidity” that interacts with intermediary risk-bearing capacity.

Sorting on alternative measures of risk. In the second set of tests, we sort bonds into

groups by their regression betas on the S&P 500 and the VIX, which are taken from the

CGM regression (1). Note that our beta estimates come from a regression of credit spread

changes on the CGM factors, so we multiply them by −1 before sorting to obtain something

closer to a return beta (since spreads increase as bond prices fall). The rationale for choosing

these two aggregate factors stems from their wide use as measures of aggregate risk and the

consensus in the literature on the sign of their risk prices; in particular, riskier bonds are

those with higher S&P beta and lower VIX beta.

Sorts based on these measures of risk are potentially better motivated theoretically than

our credit rating sorts, as our model says that loadings on our intermediary factors should

be proportional to a bond’s covariance with some aggregate risk factor (the aggregate en-

dowment in our model); see equation (11). Two caveats are worth pointing out. First,

beta estimates can be quite noisy, especially given that we only have a 10-year quarterly

sample with potentially missing observations for individual bonds. Second, sorts on a single

beta may lead to mis-measurement of bond riskiness in a multi-factor economy and hence

mis-classification of bonds into risk-based groups.

Notwithstanding these caveats, Panel A in Table 6 reports results for 15 groups sorted on

maturity and quintiles of S&P beta (from “low” to “high”); similarly we report the results

in Panel B for VIX beta, but with the opposite order (from “high” to “low”). For both

panels, the bonds in second through fifth quintiles display a monotonic loading pattern on

both ∆Inventory and ∆Distress, for each maturity.
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We note that the first beta quintile in each maturity sometimes exhibits higher-than-

expected loadings on our intermediary factors. Though a full explanation of this non-

monotonic pattern is beyond the scope of this paper, it is likely related to the aforementioned

caveat of risk mis-measurement using S&P or VIX betas alone. Indeed, as reported in the

first column in each panel, the average beta of these bonds differs sharply from other groups.

For example, the S&P beta is substantially negative for these first-quintile groups, but posi-

tive for the other groups. These supposedly “low-risk” bonds actually have high volatility in

general, whereby they will tend to load heavily on other omitted risk factors. By contrast,

the rating-based sorts are not subject to this issue: high-rated bonds almost always have

low credit spreads and low spread volatility.30

3.2 Spillover and Segmentation

Second, we show that dealer inventory has spillover effects within the corporate credit market

but not outside it, while intermediary distress affects various asset classes universally.

3.2.1 Spillover Effects: High-Yield and Investment-Grade Bonds and CDS

Assets closely related to corporate bonds are likely to be traded by the same hedgers, and

these markets should feature a spillover effect with respect to the bond inventory factor (see

Prediction 2). We provide two tests of this prediction: the first splits bond inventory into

high-yield and investment-grade inventories; the second considers CDS responses to bond

inventory. We expect high-yield bonds to be sensitive to investment-grade inventory (and

vice versa) and CDS spreads to be sensitive to bond inventory.

Similar to the aggregate inventory measure, we construct dealer inventory of high-yield

(HY) and investment-grade (IG) bonds separately, denoted by ∆InventoryHY and ∆InventoryIG.

30In unreported results, we find that sorts based on S&P 500 beta estimated in univariate regressions
deliver similar results to those based on S&P 500 beta from CGM regressions. Instead, sorting bonds by
their credit spread levels and their credit spread volatilities produces uniformly monotonic intermediary
loading patterns similar to our baseline credit rating sorts.
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Table 7 reports the results when regressing the residuals of credit spread changes on ∆InventoryIG

and ∆InventoryHY separately, as well as ∆Distress.

Consistent with the spillover effect, ∆InventoryIG (∆InventoryHY ) has explanatory

power for credit spread changes of high-yield (investment-grade) bonds. As the logic of our

model suggests, ∆InventoryHY has overall stronger effects than ∆InventoryIG because an

increase in the former reduces dealers’ risk-bearing capacity more than a similar increase

in the latter. Loadings on both inventory measures also feature a similar monotone effect

from high-rated to low-rated bonds, as with the aggregate inventory ∆Inventory in Table 4.

Recall that these results hold for yield spread residuals, which are orthogonalized with respect

to the structural CGM factors in equation (1), ruling out typical explanations purely based

on default risk.31

One concern with the interpretation of these results as evidence of spillover effect is that

HY and IG inventories may be simply correlated or driven by an unobserved common factor.

Yet, the correlation of ∆InventoryHY and ∆InventoryIG is -0.277, inconsistent with this

alternative interpretation.32

In Internet Appendix A.6, we demonstrate spillover effects extend to CDS, whose payoffs

are tightly linked to corporate bonds and anecdotally traded at similar desks and firms.

Consistent with Prediction 2, CDS residuals behave very much like bond yield spread resid-

uals: CDS residuals have a strong common component (PC1) whose variation is significantly

31From our perspective, and that of our model, any results which find loading patterns based on CGM
residuals should be interpreted as some amount of unspanned default risk that interacts with intermediary
balance sheets. Therefore, our statement “purely based on default risk” refers to a benchmark world in
which intermediary balance sheets do not matter. A similar discussion can be found in the literature on the
interaction between default and liquidity in the corporate bond market (e.g., He and Xiong (2012), He and
Milbradt (2014), and Cui, Chen, He, and Milbradt (2017)).

32Strictly speaking, our model with “risk-aversion shock only” should predict ρHY bonds and ρIG bonds to
be positively correlated. However, there are alternative ways to model “supply shocks” beyond these risk
aversion shocks; for instance, if specific hedgers are hit by idiosyncratic shocks (say, there is a HY firm that
issues bonds, just like in our NBER working paper version (He, Khorrami, and Song, 2019)), then this should
lead to uncorrelated components of inventory measured from different bond subsets. Furthermore, a sudden
inflow of HY bonds onto dealer balance sheets might generate some sales of IG bonds back to institutional
investors, given some intermediaries are actively rebalancing; this is an unmodelled force that tends to make
the inventory correlations negative.
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linked to our to intermediary factors. We emphasize that, similar to the bond results, our

CDS results hold for CDS residuals, which control for market- and firm-level CGM factors,

ruling out typical explanations based purely on default risk.33

3.2.2 Segmentation Effects: Non-Corporate-Credit Asset Classes

The spillover effects just documented may be limited by the presence of some market segmen-

tation. To investigate this, we perform a similar analysis on a host of non-corporate-credit

asset classes, which plausibly are partially segmented from corporate credit.34 Specifically,

we regress quarterly changes of yield spreads of agency MBS (various maturities), CMBS

(various ratings), ABS (various ratings), and monthly S&P 500 index options (various mon-

eyness) returns, all over Treasuries, on the time series variables to extract the residuals.

Details on these data are in Internet Appendix A.4.

We then run time series regressions of these residuals on ∆Inventory and ∆Distress, at

the quarterly frequency for agency MBS, CMBS, and ABS and at the monthly frequency for

S&P 500 index options. According to Prediction 2, these assets should be relatively insensi-

tive to bond inventory changes, but should still respond to aggregate intermediary distress.

Table 8 shows results consistent with this prediction.35 Furthermore, the R-squares suggest

that equity options are the most segmented from corporate bonds, followed by Agency MBS,

and finally followed by CMBS and ABS.36 Finally, the magnitude of the distress loadings

are in the ballpark of our baseline bond results in Table 4 (the option returns are monthly,

33We caution that the trading of single-name CDS contracts is very sparse post the 2008 crisis.
34For evidence in this direction, see Table 1 in Becker and Ivashina (2015), which shows how various

institutional investors (the counterpart of our model’s hedgers) hold substantially different portfolios across
asset classes.

35The only exception is index call options for which even the intermediary distress factor is not significant.
This is consistent with the option pricing literature, in which out-of-the-money put options, not call options,
are found to carry the large downside tail risk or crash risk (Bollerslev and Todorov, 2011; Gao, Lu, and
Song, 2019; Chen, Joslin, and Ni, 2018).

36Among these asset classes, Becker and Ivashina (2015) only show the Agency MBS holdings by institu-
tional investors. They report quite low institutional holdings of Agency MBS compared to corporate bonds,
suggesting a large segmentation.
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so their loading magnitudes should be compared to Table A.10), with higher-risk assets such

as low-rated CMBS and ABS featuring larger loadings.

3.3 Institutional Holdings and Supply Shocks

We further delve into bond-level dealer inventories and institutional holdings to provide

evidence that the supply of bonds from some regulatory-driven sell-offs by institutional

investors leads to changes of dealer inventory. Based on such micro-level evidence, we then

construct instruments for the dealer inventory factor at the aggregate level and conduct IV

analysis of the effect of dealer inventory on credit spread changes.

A word of caution: bond downgrades typically contain information about firm fundamen-

tals and economic conditions, so we cannot argue that investor sell-offs are unambiguously

exogenous “supply shocks” (as in Prediction 3). But recall that when constructing the resid-

uals of credit spread changes we have controlled for firm- and market-level structural factors.

Moreover, severe downgrades from IG rating to HY rating, also called “fallen angels,” are

more likely to serve as pure supply shocks, thanks to regulatory constraints imposed on

financial institutions (especially for insurance companies). Our later IV analysis uses “fallen

angels” (controlling normal downgrades) together with the insured losses due to natural

disasters to instrument the supply shock.

3.3.1 Institutional Holdings of Corporate Bonds

We obtain data on institutional investors’ holdings of corporate bonds from the survivorship

bias–free Lipper eMAXX database of Thomson Reuters. This data set contains quarter-end

security-level corporate bond holdings of insurance companies, mutual funds, and pension

funds in North America (based on where the holder is located).37 We use the eMAXX

37Data on insurance companies’ holdings are based on National Association of Insurance Commissioners
(NAIC) annual holdings files and quarterly transaction reports to state insurance commissioners. Data on
mutual fund holdings are from Lipper, owned by Thomson Reuters, covering over 90% of the mutual fund
universe. Data on pension fund holdings are from state and local municipal pension funds and large private
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holdings over 2005:Q1–2015:Q2, with information on bond characteristics such as historical

outstanding balance and credit rating by matching to FISD based on the CUSIP number.

More details on these data are in Internet Appendix A.3.

Figure 2 provides a summary of the eMAXX institutional holdings, as well as dealer in-

ventories from TRACE. The top panel plots quarterly time series of institutional investors’

holdings and dealers’ inventory, as well as the aggregate outstanding balance of U.S. cor-

porate debt securities based on the Flow of Funds. The dollar (par) value of institutional

holdings has seen a significant increase from $1.3 trillion to $2.7 trillion, with much of the

increase coming after plummeting in the 2008 crisis. The rise of holdings is strongest in

mutual funds, consistent with Li and Yu (2020). At the same time, there has been a sizeable

expansion of the whole corporate bond market, from less than $5 trillion to more than $8

trillion outstanding. The bottom panel plots quarterly time series of the fraction of U.S.

corporate debt securities held by institutional investors, by dealers, and by both, in percent.

The fraction steadily accounts for 25–35% of the aggregate outstanding balance.

3.3.2 Supply Shocks from Institutional Investors: Bond-Level Evidence

We first document that a significant amount of institutional investor sell-offs of downgraded

bonds are absorbed into dealers’ balance sheet as inventories. To this end, we compute

the total inventory change of all dealers for each bond i in each quarter t, denoted as

∆Inventoryi,t from TRACE. We further compute, from eMAXX, the change of total holdings

for each bond i and in each quarter t, denoted as ∆Holdingi,t, by each of three groups of

institutional investors: insurance companies, mutual funds, and pension funds.

Using the historical rating information provided by Mergent FISD, we identify observa-

tions of ∆Inventoryi,t and ∆Holdingi,t as “downgrade” observations if bond i is downgraded

from IG rating to either IG or HY rating in quarter t and as “no rating change” observa-

pension funds who voluntarily submit data to Thomson Reuters (see Cai, Han, Li, and Li (2019), Becker
and Victoria (2015), and Manconi, Massa, and Yasuda (2012) for further details).
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tions if the credit rating remains unchanged. Among “downgrade” observations, we further

identify “fallen angels” that have been downgraded from IG rating to HY rating (Ambrose,

Cai, and Helwege, 2008; Ellul, Jotikasthira, and Lundblad, 2011) and “downgrade (IG)”

observations with bonds downgraded from IG rating to a lower IG rating.38

Table 9 reports the average quarterly change of holdings by insurance companies, mutual

funds, and pension funds, in panels A, B, and C, respectively, and the average quarterly

change of dealers’ inventories in panel D. For each investor group, we report the average

of ∆Holdingi,t or ∆Inventoryi,t across “downgrade (IG),” “fallen angels,” and “no rating

change” observations. Both average holdings changes (in $million) and percentage changes

as a fraction of initial holdings (i.e., average holdings as of quarter t− 1) are reported. We

also include the average of changes in quarter t + 1, i.e., one quarter following the rating

change, as it may take time for investors to adjust their positions.

For “downgrade (IG)” bonds, both at the downgrade quarter (t) and the next quarter

(t + 1), insurance companies decreased their holdings by about $0.92–1.01 million, while

mutual funds and pension funds increased their holdings by $0.29–0.38 million at quarter t

but sold $0.16–0.25 million at quarter t+1. Insurance companies sold “fallen angels” in both

quarters, about $1.27–1.35 million, while mutual funds and pension funds bought $0.12–0.20

million at quarter t and sold $0.24–0.47 million the quarter after.

In other words, the sell-offs by insurance companies are larger for “fallen angels” than

for “downgrade (IG)” bonds, whereas purchases by mutual funds and pension funds are

smaller. This is consistent with insurance companies being forced to sell downgraded bonds,

especially “fallen angels” due to regulatory constraints, and mutual funds and pension funds

purchasing these bonds to take advantage of “fire-sale” discounts (Cai, Han, Li, and Li, 2019;

Anand, Jotikasthira, and Venkataraman, 2018).

Table 9 shows that dealers buy a similar amount of “downgrade (IG)” bonds in quarter

38Our analysis relies on the sell-offs induced by bond downgrading, so we exclude “upgrade” observations.
We also exclude observations with bonds downgraded from HY rating to a lower HY rating, as the different
initial rating category makes it hard to compare with “fallen angel” observations.

37



t to mutual funds and pension funds, about $0.34 million, but a much larger amount of

“fallen angels,” about $1.31 million. Dealers also buy “downgrade (IG)” bonds and sell

“fallen angels” in quarter t + 1, but in small amounts. More importantly, compared with

the level of inventory as of quarter t − 1, dealers’ purchase amount of “fallen angles” is

strikingly large, an increase of about 77%, which is substantially greater than “downgrade

(IG)” bonds (about 18%), and dwarfs those of mutual funds and pension funds that are

below 1%. Dealers—who provide liquidity for insurance companies—should adjust their

price quotes actively in response to these relatively large shocks to their balance sheets.

In Internet Appendix A.7, we conduct a similar analysis in regression format, which

allows us to control for firm size, bond age, and time-to-maturity. The results on sell-offs by

institutional investors and intermediation by dealers are similar to the summary statistics in

Table 9.

In sum, insurance companies dump a large amount of “fallen angels,” and dealers take

them into their inventories. Taking as a premise that insurance companies face constraints

due to regulations for holding low-rated bonds (Ellul, Jotikasthira, and Lundblad, 2011), we

interpret downgrade-induced sell-offs by insurance companies as a supply shock to increase

dealers’ inventories, independent of their balance sheet condition. Thus, downgrade-induced

sell-offs work similarly to our model, in which hedgers sell bonds to intermediaries due to a

sudden increase in their risk aversion (increase in ρbonds), independently from intermediary

risk aversion (i.e., γ).39 In the following, we construct an IV for the dealer inventory factor

based on institutional investors’ liquidations of “fallen angels.”

39Given the lack of reversal in our empirical sell-off patterns (i.e., at time t + 1, insurance companies,
mutual funds, and dealers all reduce their holdings of fallen angels), some unobserved investors (e.g., hedge
funds) must be increasing their holdings after the shock. This could be interpreted as activity by some
risk-tolerant investors who are better-equipped to hold low-rated bonds. In our model, these risk-tolerant
investors could reasonably be lumped together with dealers to comprise our model’s “intermediaries.”

38



3.3.3 IV Regressions

To construct a time series IV for the dealer inventory factor ∆Inventoryt, we aggregate the

changes of institutional holdings of downgraded bonds in each quarter. In particular, we

use the sell-offs of “fallen angels” ∆HoldingFAt as the IV and the sell-offs of all downgraded

bonds ∆HoldingDt as a control. Using ∆HoldingDt as a control (partially) takes care of the

confound that downgrading contains information on the fundamental value of bonds, which

then leads to both sell-offs and price effects.40 We include all three types of institutional

investors when computing ∆HoldingFAt and ∆HoldingDt , not only insurance companies, to

capture the net selling to dealers, given that mutual funds and pension funds seem to take

some amount of downgraded bonds sold by insurance companies. We scale ∆HoldingFAt and

∆HoldingDt by their respective levels of holdings as of t−1, corresponding to our construction

of ∆Inventoryt as a percentage change.

The left panel of Table 10 reports first-stage regressions of ∆Inventory on ∆HoldingFAt .

As mentioned above, we include ∆HoldingDt as a control, in addition to the intermediary

distress factor and six time series variables also used in the baseline bond-level regressions (1).

We observe that a one standard deviation decrease in institutional holdings of “fallen angels”

is associated with about a 0.28 standard deviation increase in dealer inventory, indicating

the relevance of ∆HoldingFAt for ∆Inventory.

The right panel of Table 10 reports second-stage regressions of quarterly residuals of credit

spread changes on ∆Distress and ∆Inventory, using ∆HoldingFAt as an inventory IV. The

last two rows report the test statistic for weak instruments by Montiel-Olea and Pflueger

(2013) (MP) and associated critical values. We observe that the MP-statistic is larger than

the critical value, rejecting the null hypothesis that ∆HoldingFAt is a weak investment.

40Of course, there are other possible liquidity-type shocks one could use to instrument dealer inventory,
mutual fund flows being chief among them in the literature (see Goldstein, Jiang, and Ng (2017) for bond-
level evidence; see Ben-Rephael, Choi, and Goldstein (2021) and Falato, Goldstein, and Hortaçsu (2020) for
aggregate versions that would be appropriate as time series factors). We leave such explorations for future
research.
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Importantly, we find that ∆Inventory—instrumented by ∆HoldingFA—is highly signif-

icant in increasing credit spreads.41 The coefficients in these IV regressions, especially on

∆Inventoryt, are significantly larger than those in the baseline regressions of Table 4.42 One

leading explanation is that dealer inventory changes could be driven by unobserved bond

demand shocks (e.g., regulatory changes that impact dealers). A demand shock increases

dealer inventory but lowers credit spreads (or vice versa), and this negative inventory-spread

comovement biases against the positive supply-driven comovement. Using the IV, which we

claim are purely about supply, can purge such demand effects. In Internet Appendix A.8,

we directly test the hypothesis that regulatory tightenings on dealers in our sample period

acted like negative demand shocks that can help explain the difference between our OLS and

IV results.43

4 Conclusion

It has been two decades since CGM raised one of the canonical puzzles in the pricing of credit

risk, i.e., the large common variation in credit spread changes beyond structural factors.

We build on intermediary asset pricing and demonstrate the importance of intermediary

constraints to explain this canonical puzzle. We show that two intermediary-based factors, a

distress measure that captures financial constraints of the whole intermediary sector and an

inventory measure that captures inventory held by dealers specializing in corporate bonds,

41In our NBER working paper version (He, Khorrami, and Song, 2019), we also use Property & Casualty
insurers’ excess disaster-related payouts (e.g., damages from hurricanes) as an IV for bond inventory. While
this insurance loss IV is plausibly more exogenous to bond market activity, it is also weaker statistically.
Still, the sensitivity of spreads to ∆Inventory is similar for the insurance IV as the fallen angel sell-off IV.

42Another difference between the IV regressions and baseline regressions (2) is that the former includes
additional time series controls. These controls are not included in the baseline regressions because they have
been controlled for in the bond-level regressions (1) used to construct the residuals. We include them in IV
regressions to make sure the IV analysis is robust to them, which, however, is not the reason for the larger
regression coefficients on ∆Inventoryt.

43Of course, the much larger coefficients could also result from our IV being relatively weak—see Jiang
(2017) for evidence that this is the case in some recent finance research. However, our IV passes a weak-
instrument test (following Montiel-Olea and Pflueger, 2013), suggesting this is less likely.
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explain more than 40% of the puzzling common variation documented in CGM.

Our simple economic framework combines three key elements: (A1) asset market segmen-

tation, (A2) the supply and demand sides of the bond market, and (A3) limited intermediary

risk-bearing capacity. The existence of common variation in the residuals of credit spread

changes identifies a role for asset market segmentation (A1). The relevance of our dealer

inventory factor identifies a role for investor heterogeneity, corresponding to supply and de-

mand (A2). The monotonicity of factor loadings in bond ratings supports a central role for

intermediaries’ risk-bearing capacity (A3).

In the spirit of CGM, we have focused on using non-bond return-based factors to ex-

plain the time series variation of credit spreads. A natural question is whether our non-

bond-return-based intermediary factors are related to bond-return factors proposed in the

literature. As an exploratory analysis, Table A.14 of Internet Appendix A presents regres-

sions of four bond-return factors of Bai, Bali, and Wen (2019) on our two intermediary

factors. After orthogonalizing all factors to time series variables in the individual bond

regressions of equation (1), intermediary distress comoves with all return-based factors sig-

nificantly, unlike dealer inventory. This result suggests intermediary distress provides a

potential fundamental-based explanation for return-based factors, while we have yet to find

some return-based factors to proxy for dealer inventory.

Endeavoring to obtain a more primitive economic understanding of factor-based models

can be a fertile future research direction. Such factor modeling typically outperforms eco-

nomic modeling. For example, the recent paper Kelly, Palhares, and Pruitt (2020) provides

a systematic statistical procedure for extracting latent factors driving bond returns, jointly

with bond characteristic–based factor loadings using a rich set of 30+ possible characteristics

(characteristics like yield spread, duration, and rating emerge as the important determinants

of factor loadings, partly justifying the bond sorts we examine). Their procedure performs

very well along many metrics (e.g., R-squared), even better than previous studies. But

what underlying economic shocks govern the factors, and why do these characteristics gov-
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ern risk sensitivity? Answering this question can insulate our understanding of the bond

market against structural changes and alternative policy regimes. Here, we have proposed

factors and factor loadings are driven by asset riskiness interacting with liquidity shocks and

intermediary balance-sheet shocks.
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Figure 1: Quarterly Time Series of Intermediary Factors and CGM PC1
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Note: This figure plots quarterly time series of ∆Inventory, ∆Distress, ∆Noise, ∆NLevHKM, and

the first principal component of regression residuals of credit spread changes on structure factors

(CGM PC1) as reported in Table 3. The sample period is from 2005:Q1 through 2015:Q2. The

four intermediary variables are standardized to zero mean and unit standard deviation, and the

CGM PC1 is based on 90-day change of credit spreads in percent.
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Figure 2: Summary of Amount of Institutional Holdings and Dealer Inventories
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Note: The top panel plots quarterly time series of the holding amount by institutional investors

(including mutual funds, pension funds, and insurance companies) based on eMAXX data and by

dealers based on TRACE data, as well as the aggregate outstanding balance of U.S. corporate debt

securities (“L.208 Debt Securities” series, which is the sum of the outstanding debt securities by

nonfinancial corporate business, U.S.-chartered depository institutions, foreign banking offices in

the U.S., finance companies, security brokers and dealers, and holding companies) based on the

“Financial Accounts of the United States” (Z.1) data release by the Federal Reserve, in $trillions

of principal value. The bottom panel plots quarterly time series of the fraction of U.S. corporate

debt securities held by institutional investors (left scale), by dealers (right scale), and by both (left

scale), respectively, in percent. The sample period is from 2005:Q1 through 2015:Q2.
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Table 1: Summary of the Credit Spread Sample

All Bonds
Number of bonds 2,584
Number of firms 653
Number of bond-quarters 55,398

mean std p25 p50 p75
Yield spread 2.51 2.69 0.95 1.60 3.12
Coupon 6.32 1.59 5.38 6.30 7.25
Time-to-Maturity 9.78 8.07 4.19 6.80 11.84
Age 5.12 4.32 2.14 3.86 6.67
Issuance 550.50 471.97 250.00 400.00 650.00
Rating 9.25 3.43 7.00 9.00 11.00

Investment Grade Bonds
Number of bonds 1,980
Number of firms 383
Number of bond-quarters 40,828

mean std p25 p50 p75
Yield spread 1.52 1.17 0.81 1.22 1.85
Coupon 5.87 1.42 5.00 5.90 6.75
Time-to-Maturity 10.85 8.76 4.21 7.38 17.56
Age 5.34 4.46 2.21 4.01 7.06
Issuance 605.62 505.64 300.00 500.00 750.00
Rating 7.58 1.90 6.00 8.00 9.00

High Yield Bonds
Number of bonds 900
Number of firms 373
Number of bond-quarters 14,570

mean std p25 p50 p75
Yield spread 5.27 3.65 3.15 4.46 6.12
Coupon 7.60 1.33 6.75 7.50 8.25
Time-to-Maturity 6.78 4.50 4.14 5.92 7.80
Age 4.53 3.87 1.97 3.49 5.69
Issuance 396.04 313.28 200.00 300.00 500.00
Rating 13.96 2.15 12.00 14.00 16.00

Note: This table reports bond characteristics for our baseline sample of credit spreads. We report the mean,

standard deviation (sd), median (p50), 25th percentile (p25), and 75th percentile (p75) for the whole sample,

investment grade subsample, and high yield subsample. The total number of bonds is smaller than the sum

of the number of bonds in the investment grade and high yield subsamples because rating change make some

bonds of investment grade in one part of the sample period but of high yield in the other part. Credit spread

(in percentage) is the difference between the annualized yield-to-maturity of a corporate bond and a Treasury

with the same maturity calculated with linear interpolations whenever necessary. Coupon is the coupon rate

in percent. Time-to-maturity is in units of years. Age is the number of years since issuance. Issuance size is

in $millions of face value. Rating is the Moody’s credit rating of a bond coded numerically so that a higher

number means lower rating, e.g., Aaa=1 and C=21. The overall sample period is 2005:Q1–2015:Q2
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Table 2: Correlations of Empirical Measures

∆Inventory ∆Distress ∆Noise ∆NLevHKM ∆V IX ∆ILiq

∆Inventory 1.000

∆Distress -0.028 1.000

∆Noise -0.058 0.840*** 1.000

∆NLevHKM 0.011 0.840*** 0.411*** 1.000

∆V IX 0.044 0.466*** 0.235 0.548*** 1.000

∆ILiq 0.306* 0.224 0.192 0.185 0.381** 1.000

Note: This table reports correlations of quarterly time series of ∆Inventory, ∆Distress, ∆NLevHKM,

∆Noise, ∆V IX, and ∆ILiq. The sample period is from 2005:Q1 through 2015:Q2. Significance levels are

represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the p-value.
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Table 4: Regressions of Credit Spread Change Residuals on Intermediary Factors

Groups A: ∆Inventory B: ∆Distress C: ∆Inventory + ∆Distress

Maturity Rating ∆Inventory R2
adj ∆Distress R2

adj ∆Inventory ∆Distress R2
adj % Explained

Short AA 0.032 0.074 0.035 0.093 0.035 0.041** 0.159 0.283

(1.587) (1.506) (1.431) (1.996)

Short A 0.022 0.024 0.054* 0.143 0.047* 0.062*** 0.219

(1.121) (1.946) (1.859) (2.584)

Short BBB 0.030 0.022 0.099** 0.228 0.064* 0.110*** 0.297

(1.055) (2.420) (1.859) (3.063)

Short BB 0.073 0.033 0.152** 0.136 0.145 0.177*** 0.225

(0.948) (2.542) (1.535) (3.112)

Short B 0.207** 0.084 0.272 0.141 0.340*** 0.330** 0.299

(2.388) (1.568) (3.020) (2.324)

Medium AA 0.021 0.027 0.045*** 0.121 0.033 0.050*** 0.169 0.531

(1.293) (2.577) (1.612) (3.691)

Medium A 0.040 0.057 0.080** 0.226 0.072** 0.093*** 0.355

(1.627) (1.966) (2.491) (2.703)

Medium BBB 0.074** 0.091 0.128** 0.275 0.105*** 0.145*** 0.408

(2.385) (2.131) (2.860) (2.965)

Medium BB 0.147** 0.123 0.227*** 0.300 0.199*** 0.261*** 0.465

(2.046) (3.597) (2.866) (5.105)

Medium B 0.169** 0.063 0.440*** 0.418 0.338*** 0.498*** 0.594

(2.159) (2.783) (5.149) (4.203)

Long AA 0.022* 0.046 0.035 0.119 0.024* 0.039* 0.158 0.449

(1.797) (1.381) (1.803) (1.700)

Long A 0.025 0.035 0.059 0.193 0.041* 0.066** 0.261

(1.336) (1.640) (1.790) (2.003)

Long BBB -0.058 0.019 0.158*** 0.139 -0.069 0.147*** 0.158

(-0.782) (4.836) (-0.927) (4.400)

Long BB 0.102 0.063 0.220*** 0.288 0.174*** 0.250*** 0.416

(1.570) (3.795) (2.904) (5.218)

Long B 0.206 0.043 0.629** 0.388 0.421*** 0.700*** 0.513

(1.453) (2.188) (2.844) (2.737)

Total 0.426

Notes: This table reports quarterly time series regressions of each of the 15 residuals of quarterly credit

spread changes (in percentage), for cohorts based on time-to-maturity and credit rating, on ∆Inventory (in

panel A), on ∆Distress (in panel B), and on both (in panel C). Robust t-statistics based on Newey and West

(1987) standard errors using the optimal bandwidth choice in Andrews (1991) are reported in parentheses.

Significance levels are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the p-value. The

last column reports the fraction of the total variation of residuals that is accounted for by ∆Inventory and

∆Distress, denoted as FVE and computed as in (3) for short, medium, and long term bonds, as well as all

bonds. The sample period is from 2005:Q1 through 2015:Q2.
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Table 5: Groups by Trading Volume

Groups A: Sample Summary B: Regressions of Residuals

Rating Trd Volume TrdVolume ($ million) Bond# Obs ∆Inventory ∆Distress R2
adj

AA Low 2.462 92 527 -0.008 0.032 0.062

(-0.311) (1.299)

AA Medium 17.779 113 796 0.022 0.051*** 0.219

(1.195) (3.603)

AA High 136.25 129 1084 0.040*** 0.041** 0.206

(2.735) (1.942)

A Low 1.995 684 6173 0.040 0.062*** 0.231

(1.589) (2.377)

A Medium 16.882 741 4700 0.061** 0.080*** 0.354

(2.459) (3.147)

A High 110.411 699 4246 0.043* 0.069* 0.263

(1.842) (1.936)

BBB Low 2.011 1199 9436 -0.061 0.103*** 0.068

(-0.698) (3.060)

BBB Medium 17.056 1209 7401 0.046 0.158*** 0.435

(1.108) (6.113)

BBB High 106.026 1137 6405 0.083** 0.141*** 0.351

(2.455) (2.536)

BB Low 2.584 431 1972 0.182*** 0.225*** 0.364

(2.754) (3.937)

BB Medium 17.777 471 2435 0.199*** 0.234*** 0.415

(2.657) (3.741)

BB High 100.298 451 2303 0.169** 0.220*** 0.336

(2.157) (5.456)

B Low 2.360 412 2276 0.339*** 0.381*** 0.354

(3.118) (3.621)

B Medium 17.342 468 2973 0.328*** 0.455*** 0.493

(4.111) (2.804)

B High 89.654 437 2604 0.401*** 0.537*** 0.528

(3.833) (3.084)

Note: This table reports results using 15 cohorts based on credit rating and trading volume (dollar

value of the total trading volume in the last month of a quarter). Panel A reports the total dollar

trading volume in $millions, number of bonds, and number of observations for each cohort. Panel

B reports quarterly time series regressions of each of the 15 residuals of quarterly credit spread

changes (in percentage) on ∆Inventory and ∆Distress, with robust t-statistics based on Newey

and West (1987) standard errors using the optimal bandwidth choice in Andrews (1991) reported

in parentheses. Significance levels are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with

p as the p-value. The sample period is from 2005:Q1 through 2015:Q2.
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Table 7: Inventories of HY vs IG Bonds

Groups A: ∆InventoryHY B: ∆InventoryIG

Maturity Rating ∆InventoryHY ∆Distress R2
adj ∆InventoryIG ∆Distress R2

adj

Short AA 0.017 0.036 0.087 0.022 0.037 0.098

(0.925) (1.159) (1.215) (1.164)

Short A 0.044* 0.067* 0.197 0.006 0.062 0.136

(1.755) (1.909) (0.294) (1.631)

Short BBB 0.065* 0.122** 0.301 0.011 0.115** 0.233

(1.943) (2.570) (0.351) (2.253)

Short BB 0.125 0.204*** 0.196 0.069 0.198*** 0.158

(1.267) (2.604) (1.084) (2.905)

Short B 0.198 0.353* 0.212 0.202* 0.353* 0.215

(1.304) (1.753) (1.814) (1.896)

Medium AA 0.032 0.051*** 0.177 0.008 0.048** 0.128

(1.577) (3.144) (0.631) (2.368)

Medium A 0.055** 0.087* 0.288 0.016 0.082 0.209

(2.395) (1.815) (0.687) (1.539)

Medium BBB 0.087** 0.145** 0.349 0.023 0.137* 0.259

(2.485) (2.129) (0.714) (1.834)

Medium BB 0.150** 0.261*** 0.371 0.068* 0.251*** 0.295

(2.001) (3.708) (1.759) (3.845)

Medium B 0.251** 0.520*** 0.494 0.175*** 0.511*** 0.446

(2.310) (3.038) (2.726) (2.976)

Long AA 0.029** 0.031 0.104 -0.010 0.026 0.057

(2.125) (0.872) (-0.619) (0.657)

Long A 0.034* 0.063 0.197 0.012 0.061 0.156

(1.710) (1.395) (0.613) (1.251)

Long BBB 0.017 0.177*** 0.155 -0.058 0.168*** 0.169

(0.375) (3.897) (-1.185) (3.686)

Long BB 0.136* 0.256*** 0.410 0.058 0.246*** 0.334

(1.926) (4.210) (1.295) (4.711)

Long B 0.261* 0.730** 0.470 0.246** 0.729** 0.465

(1.650) (2.388) (2.021) (2.383)

FVE 0.364 0.340

Note: This table reports quarterly time series regressions of each of the 15 residuals of quarterly credit

spread changes (in percentage), for cohorts based on time-to-maturity and credit rating, on ∆InventoryHY

(in panel A), on ∆InventoryIG (in panel B). Robust t-statistics based on Newey and West (1987) standard

errors using the optimal bandwidth choice in Andrews (1991) are reported in parentheses. Significance levels

are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the p-value. The last row reports the

fraction of the total variation of residuals that is accounted for, denoted as FVE and computed as in (3), for

all cohorts. The sample period is from 2005:Q1 through 2015:Q2.
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Table 8: Non-Corporate-Credit Assets

A: Agency MBS

FN30y FN15y FG30y FG15y

∆InventoryA 0.027 0.008 0.029* -0.006

(1.554) (0.466) (1.925) (-0.399)

∆Distress 0.049*** 0.054*** 0.058*** 0.046***

(2.840) (3.282) (3.666) (2.756)

R2
adj 0.138 0.197 0.153 0.127

B: CMBS

Duper AM AJ

∆InventoryA 0.040 -0.185 -0.278

(0.411) (-1.177) (-1.436)

∆Distress 0.270*** 0.877*** 0.915***

(3.225) (3.128) (3.464)

R2
adj 0.178 0.346 0.321

C: ABS

Credit Card Auto AAA Auto A Auto BBB

∆InventoryA -0.020 -0.002 -0.004 -0.067

(-0.797) (-0.085) (-0.050) (-0.709)

∆Distress 0.185*** 0.046 1.210*** 1.216**

(3.194) (0.857) (2.657) (2.349)

R2
adj 0.248 0.009 0.436 0.378

D: S&P 500 index options

Call: 0.90 Call: 0.95 Call: ATM Call: 1.05 Call: 1.10

∆InventoryA 0.047 0.033 0.022 0.028 -0.133

(0.411) (0.279) (0.184) (0.199) (-0.924)

∆Distress -0.062 -0.085 -0.058 -0.121 -0.242

(-0.113) (-0.143) (-0.088) (-0.171) (-0.304)

R2
adj 0.002 0.003 0.001 0.004 0.014

Put: 0.90 Put: 0.95 Put: ATM Put: 1.05 Put: 1.10

∆InventoryA -0.226 -0.155 -0.114 -0.082 -0.074

(-0.800) (-0.705) (-0.683) (-0.637) (-0.648)

∆Distress 0.302 0.291* 0.300*** 0.286*** 0.267**

(0.941) (1.800) (2.941) (3.042) (2.290)

R2
adj 0.020 0.024 0.034 0.040 0.037

Note: This table reports quarterly time series regressions of residuals of quarterly yield spread changes of

agency MBS (in panel A), CMBS (in panel B), and ABS (in panel C) on ∆Inventory and ∆Distress.

Monthly time series regressions of residuals of one-month (unannualized) returns are reported for S&P 500

index option portfolios (in panel D). All the series of yield spreads and returns are in percent. Each residual

series is computed by regressing yield spread changes or returns similar to (1). Robust t-statistics based on

Newey and West (1987) standard errors using the optimal bandwidth choice in Andrews (1991) are reported

in parentheses, with significance levels indicated by * p < 0.1, ** p < 0.05, and *** p < 0.01, where p is the

p-value. The overall sample period is 2005:Q1–2015:Q2 for yield spreads, and January 2005 through January

2012 for options.
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Table 9: Average Quarterly Changes of Institutional Investors’ Holdings and
Dealers’ Inventories of Individual Bonds

A: Insurance Companies

Downgrade (IG) Fallen Angels No Rating Change

Obs Amount % Holding Obs Amount % Holding Obs Amount % Holding

∆Holdingt 9673 −0.916 −1.249 3261 −1.353 −1.904 416254 −0.390 −0.448

∆Holdingt+1 9604 −1.008 −1.374 3185 −1.274 −1.793 416965 −0.404 −0.464

Holdingt−1 73.359 71.075 87.087

B: Mutual Funds

Downgrade (IG) Fallen Angel No Rating Change

Obs Amount % Holding Obs Amount % Holding Obs Amount % Holding

∆Holdingt 5265 0.376 0.489 1760 0.116 0.153 345154 −0.423 −0.649

∆Holdingt+1 5204 −0.161 −0.209 1701 −0.237 −0.312 345385 −0.390 −0.599

Holdingt−1 76.882 75.998 65.153

C: Pension Funds

Downgrade (IG) Fallen Angel No Rating Change

Obs Amount % Holding Obs Amount % Holding Obs Amount % Holding

∆Holdingt 4566 0.285 1.453 1484 0.204 1.126 304541 −0.321 −2.682

∆Holdingt+1 4508 −0.246 −1.254 1443 −0.474 −2.617 304883 −0.309 −2.581

Holdingt−1 19.621 18.110 11.971

D: Dealers

Downgrade (IG) Fallen Angel No Rating Change

Obs Amount % Holding Obs Amount % Holding Obs Amount % Holding

∆Inventoryt 20254 0.343 17.599 6792 1.311 76.756 687927 0.254 21.381

∆Inventoryt+1 18949 0.022 1.129 6449 −0.275 −16.101 614380 0.028 2.357

Inventoryt−1 1.949 1.708 1.188

Note: This table reports the average quarterly change of holdings by insurance companies, mutual funds, and

pension funds, in panels A, B, and C, respectively, and the average quarterly change of dealers’ inventories

in panel D. The average quarterly change for three sets of observations is computed separately: “downgrade

(IG)” observations (in the first three columns) with bonds downgraded from IG rating to IG rating, “fallen

angels” observations (in the second three columns) with bonds downgraded from IG rating to HY rating,

and “no rating change” observations (in the last three columns) with bond experiencing no rating change.

For current quarter and the subsequent quarter, we report the number of observations, the change in holding

amount (in $millions), and changes in percentages as a fraction of current quarter average inventory holdings

(the inventory holdings in $millions as of the current quarter are reported in the last row of each panel).

The sample period is 2005:Q1–2015:Q2.
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Table 10: IV Regressions

First Stage Second-Stage

Maturity Rating ∆Inventoryt ∆Distresst
∆HoldingFAt -0.279*** Short AA 0.264*** 0.001

(-4.532) (3.197) (0.009)

∆Distress 0.443** Short A 0.267** 0.084

(2.245) (2.487) (1.019)

∆HoldingDt 0.055 Short BBB 0.234 0.210**

(0.333) (1.551) (2.455)

∆V IX -0.003 Short BB 0.640* 0.338

(-0.175) (1.750) (1.575)

∆Jump -11.428* Short B 0.918*** 0.668**

(-1.653) (2.728) (2.502)

∆r10y 0.571** Medium AA 0.269* -0.008

(2.117) (1.759) (-0.082)(
∆r10y

)2
-0.443** Medium A 0.244 0.097

(-2.000) (1.328) (0.937)

∆slope -0.293 Medium BBB 0.246** 0.233***

(-1.573) (2.130) (2.804)

retSPt 6.109*** Medium BB 0.691** 0.320*

(4.519) (2.445) (1.799)

Intercept 0.027 Medium B 0.859*** 0.709***

(0.167) (3.687) (4.266)

R2
adj 0.372 Long AA 0.203*** 0.000

(3.009) (0.001)

Long A 0.284* 0.043

(1.746) (0.441)

Long BBB 0.257* 0.224

(1.719) (1.633)

Long BB 0.479*** 0.390***

(3.340) (4.397)

Long B 0.808*** 1.278***

(3.661) (8.386)

MP Test 12.574

Critical Value [12.374]

Note: The left panel reports the first-stage regressions of residuals of quarterly credit spread changes (in

percentage) using ∆HoldingFAt as instrument for ∆Inventory. The change in institutional holdings of all

downgraded bonds ∆HoldingDt is included as a control, in addition to ∆Distress and the six time series

variables used in the bond-level regression (1). All measures except the six time series variable from (1) are

scaled to have zero mean and unit variance. The right panel reports coefficients of second-stage regressions

on ∆Inventory and ∆Distress, with those on control variables (∆HoldingDt and the six time series variables

used in (1)) omitted for simplicity of reporting. Robust t-statistics based on Newey and West (1987) standard

errors using the optimal bandwidth choice in Andrews (1991) are reported in parentheses, with significance

levels indicated by * p < 0.1, ** p < 0.05, and *** p < 0.01, where p is the p-value. The weak instrument

test statistic of Montiel-Olea and Pflueger (2013) (MP) is reported,; the critical value at a significance level

of 10% for the worst-case bias greater than 20% of the OLS bias is in the bracket. The sample period is

2005:Q1–2015:Q2.
54



References

Acharya, V. V., Amihud, Y., and Bharath, S. T. 2013. Liquidity Risk of Corporate Bond
Returns: Conditional Approach. Journal of Financial Economics 110: 358–386.

Adrian, T., Etula, E., and Muir, T. 2014. Financial Intermediaries and the Cross-Section of
Asset Returns. Journal of Finance 69: 2557–2596.

Ambrose, B. W., Cai, N. K., and Helwege, J. 2008. Forced Selling of Fallen Angels. Journal
of Fixed Income 18: 72–85.

Amihud, Y. 2002. Illiquidity and Stock Returns: Cross-Section and Time-Series Effects.
Journal of Financial Markets 5: 31–56.

Anand, A., Jotikasthira, C., and Venkataraman, K. 2018. Do Buy-Side Institutions Supply
Liquidity in Bond Markets? Evidence from Mutual Funds. Unpublished working paper.
Southern Methodist University.

Andrews, D. 1991. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix
Estimation. Econometrica 59: 817–858.

Bai, J., Bali, T. G., and Wen, Q. 2019. Common Risk Factors in the Cross-Section of
Corporate Bond Returns. Journal of Financial Economics 131: 619–642.

Bank for International Settlements 2016. Electronic trading in fixed income markets. Report
submitted by a Study Group established by the Markets Committee and chaired by Joachim
Nagel (Deutsche Bundesbank).

Bao, J., and Hou, K. 2017. De Facto Seniority, Credit Risk, and Corporate Bond Prices.
Review of Financial Studies 30 (08): 4038–4080.

Bao, J., O’Hara, M., and Zhou, X. A. 2018. The Volcker Rule and Corporate Bond Market
Making in Times of Stress. Journal of Financial Economics 130: 95–113.

Bao, J., and Pan, J. 2013. Bond Illiquidity and Excess Volatility. Review of Financial Studies
26 (07): 3068–3103.

Bao, J., Pan, J., and Wang, J. 2011. The Illiquidity of Corporate Bonds. Journal of Finance
66: 911–946.

Becker, B., and Ivashina, V. 2015. Reaching for yield in the bond market. Journal of Finance
70: 1863–1902.

Becker, B., and Victoria, I. 2015. Reaching for Yield in the Bond Market. Journal of Finance
70: 1863–1902.

Ben-Rephael, A., Choi, J., and Goldstein, I. 2021. Mutual Fund Flows and Fluctuations in
Credit and Business Cycles. Journal of Financial Economics 139: 84–108.

55



Bessembinder, H., Jacobsen, S., Maxwell, W., and Venkataraman, K. 2018. Capital Com-
mitment and Illiquidity in Corporate Bonds. Journal of Finance 73: 1615–1661.

Bollerslev, T., and Todorov, V. 2011. Tails, Fears, and Risk Premia. Journal of Finance 66:
2165–2221.

Boyarchenko, N., Eisenbach, T. M., Gupta, P., Shachar, O., and Van Tassel, P. 2018. Bank-
intermediated arbitrage. FRB of New York Staff Report.

Cai, F., Han, S., Li, D., and Li, Y. 2019. Institutional Herding and its Price Impact: Evidence
from the Corporate Bond Market. Journal of Financial Economics 131: 139–167.

Carole, C.-F., Hendershott, T., Charles, J., Pam, M., and Mark, S. 2010. Time Variation in
Liquidity: The Role of Market-Maker Inventories and Revenues. Journal of Finance 65:
295–331.

Chen, H. 2010. Macroeconomic conditions and the puzzles of credit spreads and capital
structure. Journal of Finance 65: 2171–2212.

Chen, H., Joslin, S., and Ni, S. X. 2018. Demand for Crash Insurance, Intermediary Con-
straints, and Risk Premia in Financial Markets. Review of Financial Studies 32 (05):
228–265.

Chen, L., Lesmond, D., and Wei, J. 2007. Corporate Yield Spreads and Bond Liquidity.
Journal of Finance 62: 119–149.

Choi, J., Shachar, O., and Shin, S. S. 2019. Dealer Liquidity Provision and the Breakdown
of the Law of One Price: Evidence from the CDS–Bond Basis. Management Science 65:
4100–4122.

Collin-Dufresne, P., Goldstein, R., and Martin, S. 2001. The Determinants of Credit Spread
Changes. Journal of Finance 56: 2177–2207.

Constantinides, G. M., Jackwerth, J. C., and Savov, A. 2013. The Puzzle of Index Option
Returns. Review of Asset Pricing Studies 3 (05): 229–257.

Cui, R., Chen, H., He, Z., and Milbradt, K. 2017. Quantifying Liquidity and Default Risks
of Corporate Bonds over the Business Cycle. Review of Financial Studies 31: 852–897.

de Jong, F., and Driessen, J. 2012. Liquidity Risk Premia in Corporate Bond Markets.
Quarterly Journal of Finance 02: 1–34.

Di Maggio, M., Kermani, A., and Song, Z. 2017. The Value of Trading Relations in Turbulent
Times. Journal of Financial Economics 124(2): 266–284.

Dick-Nielsen, J., Feldhütter, P., and Lando, D. 2012. Corporate Bond Liquidity Before and
After the Onset of the Subprime Crisis. Journal of Financial Economics 103: 471–492.

56



Dick-Nielsen, J., and Rossi, M. 2018. The Cost of Immediacy for Corporate Bonds. Review
of Financial Studies 32: 1–41.

Du, W., Tepper, A., and Verdelhan, A. 2018. Deviations from Covered Interest Rate Parity.
Journal of Finance 73: 915–957.

Ellul, A., Jotikasthira, C., and Lundblad, C. T. 2011. Regulatory Pressure and Fire Sales in
the Corporate Bond Market. Journal of Financial Economics 101: 596–620.
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Internet Appendix

A Additional Data Summary and Empirical Results

In this appendix, we provide additional data summary statistics and empirical results.

A.1 TRACE Data Cleaning and Filtering

First, Table A.1 reports the detailed procedure of sample cleaning and construction.

A.2 Structural Factors and Control Variables

The firm leverage Levi,t is computed as the book debt over the sum of the book debt and market
value of equity. Book debt is defined as the sum of “Long-Term Debt - Total” and “Debt in Current
Liabilities - Total” from Compustat, whereas market value of equity is equal to the number of common
shares outstanding times the CRSP share price. Debt data from Compustat are available at quarterly
frequency, and we follow the literature to assume that such balance sheet information becomes available
with a one-quarter lag (Bao and Hou, 2017). The interest rate factors r10y

t , (r10y
t )2, and Slopet are

calculated based on the Gurkaynak, Sack, and Wright (2007) database of Treasury yields (in percent).
The S&P 500 return RetSPt is from CRSP; the V IXt is from CBOE; the jump factor Jumpt is
computed S&P 500 index options, from OptionMetrics (see CGM for details).

A.3 eMAXX Data Summary

Figure A.1 and Table A.2 provide a summary of the eMAXX institutional holdings. The top panel of
Figure A.1 shows the quarterly series of the total number of institutions, which increased from about
5000 to more than 6000. This increase is mainly due to the growth of mutual funds, whereas the
number of insurance companies remains stable around 2800. As shown in the middle panel, the total
number of bonds held by these institutions is about 15,000 steadily, and largest by insurance companies.
Finally, the bottom panel plots quarterly series of the total holding amount by all institutions and
outstanding balance of an average bond, calculated as the respective average of the total holding
amount and outstanding balance across all bonds in each quarter. The average holding amount and
outstanding have increased roughly in parallel to each other, so the institutional holding steadily
accounts for 30–35% of the outstanding except a brief drop during the 2008 crisis.

Panel A of Table A.2 reports the number of institutional investors, panel B reports the number of
bonds, and panel C reports the aggregate holding amount in principal value, by insurance companies,
mutual funds, pension funds, and all institutions separately. Panel D reports summary statistics of
quarterly series of the total holding amount by all institutions and the outstanding balance, of an
average bond. Specifically, for each bond in each quarter, we first sum the holding amounts by all
institutions to obtain a total holding amount Holdingit. Then across all the bonds i in each quarter,
we compute the mean of Holdingit as the total holding amount of an average bond (or average bond’s
holding amount). Across all the bonds in each quarter, we also compute the mean of outstanding
balance as the outstanding balance of an average bond (or average bond’s outstanding balance). In
each quarter, we compute the ratio of average holding amount to average outstanding balance and
obtain a quarter series of average holding/outstanding.

Table A.3 reports summary statistics of corporate bond holdings of insurance companies, mutual
funds, and pension funds by rating groups. We find that insurance companies have a lower fraction
of holdings in HY bonds than mutual funds and pension funds, consistent with strict regulatory
constraints on insurance companies (Ellul, Jotikasthira, and Lundblad, 2011).
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A.4 Data from Other Asset Classes

Our analysis also uses yield spreads and returns of a host of other asset classes including CDS, agency
MBS, CMBS, ABS, and equity options. We obtain CDS quotes on individual U.S. corporations
denominated in U.S. dollars from Markit. We use 1-year, 5-year, and 10-year CDS contracts with
modified restructuring (MR) clauses, among which 5-year CDS are the most traded. We match the
CDS data with equity information from CRSP and accounting information from Compustat. For each
entity, we construct quarterly series of CDS spreads using the last quotation in every quarter.

We obtain series of yield spreads of agency MBS, CMBS and ABS from major Wall Street deal-
ers. Specifically, we use (option-adjusted) yield spreads of agency MBS based on the liquid “to-be-
announced” (TBA) contracts of 15-year and 30-year production-coupon Fannie Mae and Freddie Mac
MBS (see Gabaix, Krishnamurthy, and Vigneron (2007) and Gao, Schultz, and Song (2017) for details
of TBA contracts and option-adjusted spreads). We use the Barclays yield spreads of non-agency 10-
year CMBS of three AAA-rating groups, Super Duper Senior (Duper), mezzanine (AM), and junior
(AJ).1 We also use yield spreads of 5-year AAA-rated ABS on fixed-rate credit card loans and 3-year
ABS on fixed-rate prime auto loans of AAA, A, and BBB ratings.

In addition, we use monthly returns of portfolios of S&P 500 index options sorted on moneyness and
maturity from Constantinides, Jackwerth, and Savov (2013). These portfolios are leverage-adjusted
in that each option portfolio is combined with risk-free account to achieve a targeted market beta of
one. A leverage-adjusted call option portfolio consists of long positions in calls and some investment
in the risk-free account, while a leverage-adjusted put portfolio consists of short positions in puts and
more than 100% investment in the risk-free account. For the convenience of interpretation, we take
the negative of the put portfolio return. To avoid illiquidity issues, Constantinides, Jackwerth, and
Savov (2013) compute returns of one-month holding horizon regardless of the target maturity (30, 60,
or 90 days). We use the 30-day maturity to match the holding period precisely, but results are similar
using 60-day and 90-day maturities.

Table A.4 reports summary statistics of quarterly time series of option-adjusted spreads of agency
MBS, yield spreads of non-agency CMBS, and yield spreads of ABS all in percentage, in panels A,
B, and C, respectively. Panel D reports summary statistics of monthly time series of (unannualized)
one-month return of leverage-adjusted S&P 500 index option portfolios in percentage.

A.5 Robustness

Here, we present a number of robustness checks.
First, Table A.5 reports the results using 15 cohorts based on time-to-maturity and firm leverage.

Similar to CGM, we set the breakpoints of leverage to obtain a relatively homogeneous distribution
of bonds across cohorts compared to the rating-based cohorts in the baseline. The 15 residual series
share a strong common variation, with the PC1 accounting for 75% of the total unexplained variation
of credit spread changes. In regressions, credit spread residuals comove positively with intermediary
factors, with the loadings monotonically increasing with leverage. Compared with the baseline results
in Table 4, the statistical significance is stronger (especially for unreported univariate regressions
on dealer inventory) probably because of the balanced number of observations, while the economic
magnitudes are similar. The two factors together account for about 39% of the unexplained total
variation of credit spread changes.

1These different groups differ in terms of credit enhancement. Moreover, since CMBS usually have restrictions
on prepayment and are different from residential-loans backed agency MBS, we use the yield spreads for CMBS
but option-adjusted spreads for agency MBS. See Manzi, Berezina, and Adelson (2016) for further details.
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Second, one may be concerned that the strong explanatory power documented is mainly due to
the inclusion of the 2008 financial crisis. Table A.6 reports results following the baseline procedure
but excluding the 2008 financial crisis period (defined as 2007:Q3 - 2009:Q1 similar to Bao, O’Hara,
and Zhou (2018), Schultz (2017), and others). From Panel A of the PC analysis, we observe a
strong common variation with the PC1 accounting for 80% of the total unexplained variation of credit
spread changes. From Panel B of the quarterly bivariate series regressions on dealer inventory and
intermediary distress, intermediary factors have significant positive effects that monotonically increase
with decreasing ratings, and similar economic significance. The two factors together account for 43%
of the unexplained total variation of credit spread changes, similar to that in the baseline Table 4
including the crisis observations.

Third, as already mentioned in the main text, we study how much of credit spread changes can be
explained by microstructure-oriented illiquidity factors in comparison to our intermediary factors. We
use the aggregate illiquidity factor of Dick-Nielsen, Feldhütter, and Lando (2012), ∆ILiq, which is an
equally-weighted average of four metrics: the Amihud (2002) measure of price impact, the Feldhütter
(2012) measure of round-trip cost, and respective daily standard deviations of these two measures.
That is, their illiquidity measure captures trading illiquidity due to price impact and transaction costs,
as well as liquidity risk, and is aggregated into a time-series factor. Table 2 shows that ∆ILiq exhibits
low correlations with our two intermediary factors. Table A.7 reports quarterly time series regressions
of each of the 15 credit spread residuals on ∆ILiq, both in univariate regressions (Panel A) and in
multivariate regressions along with our two factors (Panel B). The results show that ∆ILiq mainly
adds to the explanatory power (adjusted R2) of high-rated cohorts but not low-rated cohorts, and its
explanatory power is quite small. In particular, Panel A shows that ∆ILiq accounts for about 3%
of the total variation of residuals of credit spread changes (and significantly positive only for high-
rated cohorts). Panel B shows that adding ∆ILiq to our two intermediary factors only increases the
explained fraction by 0.6% (from 42.6% to 43.2%).2

Fourth, recall we have constructed the intermediary distress factor ∆Distress as the first PC
of ∆Noise and ∆NLevHKM; this is partly for parsimony—to emphasize two economic forces on de-
mand and supply—and partly to eliminate the distinct issues carried by each measure separately:
∆NLevHKM has a more direct economic interpretation, but market price–based ∆Noise is measured
better. In Table A.8, we regress credit spread residuals on these two factors separately. Similar to
∆Distress, both measures have significant positive effects that monotonically decrease with bond
ratings. Individually, ∆Noise accounts for 32% of the unexplained total variation of credit spread
changes, higher than the 14% of ∆NLevHKM; the higher explanatory power of ∆Noise is likely due to
its superior measurement as a price-based variable. In addition, ∆Noise and DeltaNLevHKM jointly
explain 36% of the unexplained total variation in bivariate regressions, so they have overlapping but
nontrivial individual explanatory power.

Fifth, Table A.9 reports quarterly time series regressions of baseline residuals on baseline inter-
mediary factors, controlling for two other potential measures of intermediary distress, the leverage
measure of broker-dealers in Adrian, Etula, and Muir (2014), here constructed in the same nonlinear
way as in our baseline HKM measure, i.e., ∆NLevAEM

t := (LevAEM
t )2 − (LevAEM

t−1 )2 (in panel A) and
TED spread computed as the difference between three-month Libor and T-bill rates (in panel B).

2The corporate bond illiquidity measure proposed by Bao, Pan, and Wang (2011) is available at the monthly
frequency and only up to 2009. In unreported results, monthly regressions using the Bao, Pan, and Wang
(2011) measure over 2005–2009 give qualitatively similar results that illiquidity mainly affects credit spreads of
high-rated bonds, a pattern also found in Bao, Pan, and Wang (2011). Moreover, in an alternative approach,
we add ∆ILiq as an explanatory variable to the individual-bond regression (1). Consistent with the pattern
in Table A.7, it mainly adds to the explanatory power (adjusted R2) of high-rated cohorts but not low-rated
cohorts.
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We find that the broker-dealer leverage does not have incremental explanatory power relative to our
two intermediary factors. TED spread adds certain explanatory power, statistically significant for IG
bonds with similar economic significance for different cohorts, different from the monotonic increasing
effect of our two intermediary factors with decreasing ratings.

Finally, Table A.10 reports results following the baseline procedure except using monthly credit
spread changes. The first PC still accounts for 75% of the total unexplained variation of credit spread
changes, similar to CGM but higher than FN, both of whom use monthly series. Bivariate regressions
on the intermediary factors for this monthly sample show similar results to Table 4, with stronger
statistical significance, especially for dealer inventory, probably because of the large number of time
series observations for each bond. The two factors together account for 15% of the unexplained total
variation of credit spread changes, lower than that in the baseline quarterly analysis; this is expected
because of a larger number of observations and higher level of variation at the monthly frequency.

A.6 Evidence of Spillover Effects from CDS

Recall Prediction 2 of the model: other non-bond assets likely to be traded the corporate bond
desks/dealers should be sensitive to dealers’ corporate bond inventory. One test of this prediction
considers CDS spreads, which are tightly linked to corporate bonds by arbitrage, and so likely to be
traded by corporate bond desks. Moreover, CDS carry capital charges, and CDS of riskier, lower-rated
firms tend to have higher capital requirements. Agreements such as Basel II treat CDS as “credit risk
mitigation” and, ignoring counterparty risk, tie CDS capital charges directly to the capital charges of
the underlying bond (Shan, Tang, Yan, and Zhou, 2021).3 Similarly, through its VaR approach, the
SEC’s “net capital rule” would require CDS of higher-risk firms to be held with higher capital charges.

We conduct quarterly time series regressions of CDS spread changes on the same set of variables
as for bond yield spreads, and compute the quarterly series of residuals. For each quarter and each
maturity, we sort firms into one of the five groups of credit rating and take an average of the residuals
within each group and in each quarter. Similar to the baseline bond result, Table A.11 Panel B reports
the principal component analysis of the CDS spread change residuals, and shows that the first PC
accounts for over 80% of the common variation in CDS spread changes. Panel C reports regressions
of these residuals on dealers’ bond inventory and intermediary distress. The patterns of regression
coefficients mirror those for bonds themselves, i.e., positive and monotonically decreasing with bond
rating. The total explanatory power is lower than the 43% for bonds, but still reaches 31%.4

A.7 Institutional Investor Holding Changes: Regression

Here, we conduct regression analysis—which allows us to control for bond characteristics including
bond age and time-to-maturity, for instance—to formally test the relation between institutional in-
vestors’ sell-offs and dealers’ inventory changes. The first three columns of Table A.12 report results

3See page 46, section 5, paragraph 196 of https://www.bis.org/publ/bcbs128b.pdf. If the long bond
position is completely hedged by a long CDS position, then the net capital charge is only related to counterparty
risk. Thus, for our argument to hold, some banks trading in both bonds and CDS must not be completely hedged.

4One may be concerned that the sensitivity of CDS spreads to bond inventory reflects some latent unobserv-
able common credit risk factor. Two findings mitigate this concern. First, time series credit risk controls are
included in regressions to obtain CDS spread change residuals. Second, results remain the same using the sam-
ple of CDS for which the underlying entities are not matched to the firms in the sample of TRACE transactions
of corporate bonds used to construct the dealer inventory measure.
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based on the following regression:

∆Holdingi,t+τ = Intercept+ β1 × Falleni,t + β2 ×Downgradei,t + β3 × log(Amti,t+τ ) (12)

+ β4 × log(Sizei) + β5 ×Agei,t+τ + β6 × Time-to-Maturei,t+τ +
∑
t

FEt + εi,t+τ ,

where τ = 0 for the change in quarter t (reported in panel A) and τ = 1 for the change in quarter
t+ 1 (reported in Panel B). The indicator variable Downgradei,t equals 1 if bond i is downgraded in
quarter t and 0 otherwise, whereas Falleni,t equals 1 if bond i is a “fallen angel” in quarter t and 0
otherwise.

The sample includes “downgrade (IG),” “fallen angels,” and “no rating change” observations.
Thus, the coefficient on Downgradei,t captures the (t + τ) change of institutional investors’ holdings
of “downgraded (IG)” bonds in quarter t, relative to that of bonds without rating change contempo-
raneously. Similarly, the coefficient on Falleni,t captures the (t+ τ) change of institutional investors’
holdings of bonds downgraded from IG rating to HY rating in quarter t, relative to “downgraded (IG).”
Panel regressions of changes in dealers’ inventories ∆Inventoryi,t+τ , similar to (12) are reported in
the last column.

Consistent with summary statistics in Table 9, Table A.12 shows that insurance companies decrease
their holdings of downgraded (IG) bonds in both quarters, about $0.48–0.80 million, relative to the
bonds without rating changes. They sell “fallen angels” even more aggressively, about $0.67 million
more in quarter t and $0.33 million in quarter t+1, relative to bonds that are downgraded but remain
in the IG rating. Mutual funds and pension funds do not conduct significant purchases of “fallen
angles.” In contrast, dealers’ inventories of “fallen angels” increase substantially in quarter t (about
$1.61 million) and then decrease somewhat in quarter t + 1 (about $0.45 million). That is, dealers
first take inventories of “fallen angels” in providing liquidity to insurance companies, and then unwind
(part of) these inventories at a later time, consistent with standard inventory control behavior (Ho
and Stoll, 1981). Interestingly, dealers’ inventories of average downgraded bonds do not seem to be
significantly different from those with no rating change.

A.8 Regulatory Shocks

As discussed in Section 3.3, the significantly larger coefficients in IV regressions point to the presence
of (unobserved) demand shocks. We now provide evidence on the effect of demand shocks associated
with post-crisis regulations.

In particular, as discussed in Bao, O’Hara, and Zhou (2018), the Dodd-Frank Act enacted in
July 2010 and the Volcker Rule implemented in April 2014—as a component of the Dodd-Frank Act
specifically prohibiting banking entities from engaging in proprietary trading—both impaired dealers’
liquidity provision, raising observed credit spreads. At the same time, these regulatory shocks likely
led dealers to simultaneously decrease their leverage and shed bond inventory. During periods of such
regulatory tightening, as dealers are adjusting, one naturally expects a negative relationship between
our factors and credit spreads (see Appendix B.4, which develops this prediction in an extended version
of our model with regulatory shocks); this would bias against finding the positive association we have
documented over the full sample.

To investigate this conjecture, we consider the following time series regressions:

εg,t = ρg + β1,g ×∆Inventoryt + β2,g ×∆Distresst + β3,g ×DRegShock,t (13)

+ β4,g ×∆Inventoryt ×DRegShock,t + β5,g ×∆Distresst ×DRegShock,t + ug,t,
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where εg,t is the average residual of cohort g (= 1, . . . , 15). Table A.13 reports the regression results
with the dummy DRegShock,t for 2010Q1–2010Q4 and 2013Q4–2014Q3, i.e., eight quarters surrounding
the Dodd-Frank enaction and Volcker Rule implementation (similar to Bao, O’Hara, and Zhou, 2018).
The coefficients on the interaction terms of DRegShock,t with our two factors are almost all negative
and large in magnitude, consistent with our conjectured regulatory tightening effect.

We interpret these results as suggestive evidence that, during periods of regulatory tightening, a
significant component of bond price variation is due to pressure on dealers to shed assets and reduce
leverage. Unlike normal periods in which inventory is a supply proxy and distress is negatively related
to demand, large regulatory changes convert inventory into a demand proxy and produce a positive
association between distress and demand.

A.9 Bond Return Factors

Finally, as discussed in the conclusion of our main text, Table A.14 presents regressions of four bond-
return factors of Bai, Bali, and Wen (2019) on our two intermediary factors. After orthogonalizing
all factors to time series variables in the individual bond regressions (1), we find that intermediary
distress comoves with all return-based factors significantly, but not dealer inventory.
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B Model Analysis and Extensions

B.1 Benchmark Model without Segmentation

Hedger’s mean-variance optimal portfolio is

θH = (ρΣ)−1(δ̄ − p)− h. (14)

Intermediaries’ optimal portfolio is given by

θI = (γ(w)Σ)−1(δ̄ − p). (15)

Market clearing (6) then implies

p = δ̄ − (ρ−1 + γ(w)−1)−1Σh. (16)

Using the definition Γ(w) := (ρ−1 + γ(w)−1)−1 in equation (16), we obtain equation (8).

Proof of Lemma 1. Recall the definition of market beta βa,mkt := Cov[δa+dpa,x′δ+d(x′p)]
Var[x′δ+d(x′p)] . Note that

dpa = −(Σh)adΓ, so d(x′p) = −(x′Σh)dΓ. Then, the result for beta is

βa,mkt =
(Σx)a + (x′Σh)(Σh)aVar[dΓ]

x′Σx+ (x′Σh)2Var[dΓ]
=

(Σx)a
x′Σx

(x′Σx) + (h′Σh)(x′Σx)Var[dΓ]

x′Σx+ (x′Σh)2Var[dΓ]
=

(Σx)a
x′Σx

.

Then,

εa := dpa − βa,mktd(x′p) = −
[
(Σh)a −

(Σx)a
x′Σx

(x′Σh)
]
dΓ = 0. (17)

Since εa = 0, the residuals must trivially be independent of all shocks.

B.2 Model with Asset Class Segmentation

To write the formulas compactly, we need some notation. Let Σ̃n be the A×A quasi-covariance matrix
pertaining only to assets in An, i.e.,

(Σ̃n)ij =

{
Σij , if i, j ∈ An;

0, otherwise.

Define Σρ :=
∑N

n=1 ρnΣ̃n. Without loss of generality, we can relabel the assets such that classes include
consecutive assets, i.e., An = {an−1 + 1, an−1 + 2, . . . , an} (with a0 = 0 and aN = A). This means
that Σρ is a block-diagonal matrix, which will be convenient. Then, the optimal hedger portfolios are
determined from

θH = Σ−1
ρ (δ̄ − p)− h. (18)

The intermediary portfolio is still given by (15).
Combining (18) with (15) and market clearing (6), we obtain

p = δ̄ − Γ̃Σh, (19)
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where Γ̃ := (γ−1I + ΣΣ−1
ρ )−1. Under the weak cross-class correlation part of Assumption 1, we have

Σ ≈
∑N

n=1 Σ̃n, so that ΣΣ−1
ρ ≈

∑N
n=1 ρ

−1
n 1An , which finally implies

Assumption 1 ⇒ Γ̃ ≈
N∑
n=1

Γn1An ,

where recall Γn := (γ−1 + ρ−1
n )−1 is a composite risk aversion measure. Using this result, the pricing

formula (19) becomes

Assumption 1 ⇒ pi ≈ δ̄i − Γn(i)(Σh)i. (20)

This is result (10) in the text.
Differentiating this result, we obtain

dpi ≈ −Γn(i)(Σh)i

[Γn(i)

ρn(i)
d log ρn(i) +

Γn(i)

γ
d log γ

]
.

For simplicity, recall that we assumed “redistributive supply shocks” in the sense that the market
capital gain d(x′p) has no sensitivity to any of the dρn shocks. In that case,

d(x′p) ≈ −
( A∑
a=1

xa(Σh)a
Γ2
n(a)

γ

)
d log γ.

Thus, the market beta is

βi,mkt ≈
(Σx)i +

(∑A
j=1 xj(Σh)jΓ

2
n(j)

)
(Σh)iΓ

2
n(i)γ

−2νγ

x′Σx+
(∑A

j=1 xj(Σh)jΓ2
n(j)

)2
γ−2νγ

,

where νγ := Var[d log γ] is the variance of intermediary risk aversion shocks. Then,

εi := dpi − βi,mktd(x′p) ≈ Cρ,id log ρn(i) + Cγ,id log γ,

where

Cρ,i := −(Σh)i
ρn(i)

Γ2
n(i)

Cγ,i :=
(Σh)i
γ

∑A
j=1 xj(Σx)j [Γ

2
n(j) − Γ2

n(i)]

x′Σx+
(∑A

j=1 xj(Σh)jΓ2
n(j)

)2
γ−2νγ

.

Before proving Proposition 1, we make the following useful observations. First, the residuals εi are
completely explained (up to the approximation) by two factors: shocks to (local) hedger and interme-
diary risk aversions. Second, clearly both Cρ,i and Cγ,i scale with (Σh)i within asset class n(i). Third,
using Assumption 1 that assets in the same class are positively correlated, we obtain Cρ,i < 0; we also
obtain Cγ,i < 0 if Γn(i) is high relative to enough of the other Γn(j). This condition is equivalent to

saying
∂Γn(i)

∂γ is high relative to other
∂Γn(j)

∂γ (this is the mathematical assumption stated in part (ii)
of the proposition; and it is clear that the weights given in the proposition appear in this formula).
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Proof of Proposition 1. Recall inventory ξ and distress λ are defined in the model by

(Inventory) ξ := log(θI · 1Abond
)

(Distress) λ := log(θI · 1/w).

Using (15) and the approximate pricing formula (19), we may calculate

θI ≈ γ−1Σ−1diag[(Γn(a))
A
a=1]Σh.

Thus,

ξ ≈ log
[
h′Σdiag[(

Γn(a)

γ
)Aa=1]Σ−11Abond

]
(21)

λ ≈ log
[
h′Σdiag[(

Γn(a)

γ
)Aa=1]Σ−11

]
− log(w) (22)

The shocks in Proposition 1 are (s, w), where s := log(ρbonds) represents the bond supply shock and
w is aggregate intermediary wealth. For some extensions, we will want to study a variable z which
measures the degree of regulatory tightness (see Appendix B.4 for implications of regulatory shocks),
so we allow this more general possibility in the following computation of regression slopes on our
factors. In particular, we allow intermediary risk aversion γ = γ(w, z) to be a function of wealth w
and the regulatory tightness z; γ is decreasing in w and increasing in z.

First, by differentiating ξ and λ and then inverting the expressions, we obtain expressions for the
shocks in terms of our empirical proxies:

ds =
(

1− ∂ξ/∂w

∂ξ/∂s

∂λ/∂s

∂λ/∂w

)−1[ dξ

∂ξ/∂s
− ∂ξ/∂w

∂ξ/∂s

dλ

∂λ/∂w
−
(∂ξ/∂z
∂ξ/∂s

− ∂ξ/∂w

∂ξ/∂s

∂λ/∂z

∂λ/∂w

)
dz
]

dw =
(

1− ∂ξ/∂w

∂ξ/∂s

∂λ/∂s

∂λ/∂w

)−1[ dλ

∂λ/∂w
− ∂λ/∂s

∂λ/∂w

dξ

∂ξ/∂s
−
( ∂λ/∂z
∂λ/∂w

− ∂λ/∂s

∂λ/∂w

∂ξ/∂z

∂ξ/∂s

)
dz
]

Using the results above, and the fact that ε := dp − d(x′p) = Csds + Cwdw + Czdz for some A × 1
vectors Cs, Cw, Cz, we obtain a regression-like equation

ε = βξdξ + βλdλ+ βzdz

βξ :=
(

1− ∂ξ/∂w

∂ξ/∂s

∂λ/∂s

∂λ/∂w

)−1[ Cs
∂ξ/∂s

− ∂λ/∂s

∂λ/∂w

Cw
∂ξ/∂s

]
βλ :=

(
1− ∂ξ/∂w

∂ξ/∂s

∂λ/∂s

∂λ/∂w

)−1[ Cw
∂λ/∂w

− ∂ξ/∂w

∂ξ/∂s

Cs
∂λ/∂w

]
βz := Cz −

(
1− ∂ξ/∂w

∂ξ/∂s

∂λ/∂s

∂λ/∂w

)−1[(∂ξ/∂z
∂ξ/∂s

− ∂ξ/∂w

∂ξ/∂s

∂λ/∂z

∂λ/∂w

)
Cs +

( ∂λ/∂z
∂λ/∂w

− ∂λ/∂s

∂λ/∂w

∂ξ/∂z

∂ξ/∂s

)
Cw

]
For the purposes of Proposition 1, we simply set dz = 0 in the formula above. This proves part (i) of
Proposition 1, as long as ε is generically non-zero, which will follow from the subsequent analysis.

Next, let us investigate the properties of βξ and βλ. For bonds, we have that Cs,i = Cρ,i < 0,
because s = log(ρbonds). Also, since γ = γ(w, z) is a function of (w, z), we have Cw,idw + Cz,idz =

Cγ,id log γ = Cγ,i[
∂ log γ
∂w dw + ∂ log γ

∂z dz]. This identifies Cw,i = Cγ,i
∂ log γ
∂w and Cz,i = Cγ,i

∂ log γ
∂z . Using

the assumption that ∂ log γ
∂w < 0 and the previously derived fact that Cγ,i < 0 for bonds, we have

Cw,i > 0 for bonds. Thus, bonds have Cs,i < 0 and Cw,i > 0; furthermore, both of these coefficients
scale with (Σh)i within an asset class.
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Under the stated assumptions ∂ξ/∂s > 0 and ∂λ/∂w < 0, we then immediately see that βξ < 0

and βλ < 0, as long as ∂λ/∂s
|∂λ/∂w| and −∂ξ/∂w

∂ξ/∂s are small enough. This proves part (ii). Part (iii) is a
direct consequence of the scaling properties of Cs,i and Cw,i.

B.3 Generalized Model with Partial Segmentation

Here, we consider a model with only partial asset class segmentation, which is more general than the
baseline. The primary goal is to show that all of our results go through in this more realistic setting.
The secondary objective is to formalize the natural idea that “more segmentation” implies “smaller
spillover effects” (i.e., a more nuanced version of Prediction 2).

In particular, suppose there are N hedgers, indexed by i = 1, . . . , N . Each hedger has risk aversion
ρ̂i, with these risk aversions subject to shocks (to be described later). Hedger i can trade assets in set
Âi, which is a strict subset of all assets {1, . . . , A}. The novelty here is that these trading sets can
overlap with one another (they were disjoint in the baseline model). By contrast, we continue. denote
asset classes by A1, . . . ,AN , where classes these form a partition of all assets.5 The only assumption
we make is that each hedger’s trading set is a collection of asset classes (e.g., their trading sets do not
cut asset classes in half). To formalize this, put

Âi :=
⋃
n∈Ni

An, ∀i, (23)

where Ni is a subset of {1, . . . , N} such that Ni 6= Nj for all i 6= j (different hedgers trade different
assets classes) and such that ∪Ni=1Ni = {1, . . . , N} (all asset classes are traded by someone).

As in the baseline model, we assume hedgers receive an endowment whose risks coincide with their
trading set. This assumption is only for ease of notation in what follows, but it is also sensible given a
hedger would want to pick their trading set to hedge their endowment risks. Mathematically, hedger i
receives endowment ĥ′iδ, where ĥ′i(1−1Âi

) = 0 (endowment can be replicated by the hedger’s trading

set) and
∑N

i=1 ĥi = h (definition of aggregate endowment vector).

Hedger i chooses a portfolio vector θ̂Hi to solve a similar optimization problem as in the baseline
model: i.e., in problem (4), replace Ai, ρi, ha, and θHa by Âi, ρ̂i, ĥi,a, and θ̂Hi,a, respectively. Hedgers

are subject to the constraint that θ̂Hi,a = 0 for all a 6∈ Âi. Intermediaries continue to choose portfolio

vector θI to solve (5). Asset markets are still in zero net supply, so market clearing conditions now
read

θIa +
∑
i

θ̂Hi,a, ∀a.

The hedger FOCs say

δ̄a − pa = ρ̂iΣa(ĥi + θ̂Hi ), for assets a ∈ Âi, (24)

where Σa is the ath row of Σ. The intermediary FOCs are still given by (15).
To rewrite (24) in a more convenient way, we need some additional notation. Define the A× |Âi|

“selection matrix” Ûi whose columns are the non-zero columns of the diagonal matrix diag(1Âi
). In

other words, if we look at the submatrix of Ûi consisting only of rows corresponding to indexes in Âi,
we see the identity matrix I|Âi|. Premultiplying by Û ′i selects from a vector the rows corresponding

to Âi and then shortens the result by truncating entries with zeros (whereas premultiplying by Û ′i
elongates vectors by surrounding existing entries with zeros corresponding to the complement of Âi).

5For all results below, it is inconsequential that the number of asset classes equals the number of investors.
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Then, FOC (24) is equivalent to

Û ′i(δ̄ − p) = ρ̂iÛ
′
iΣÛi(Û

′
i ĥi + Û ′i θ̂

H
i ).

The usefulness of this expression is that Û ′iΣÛi is an invertible matrix (it is the submatrix of covariances
corresponding to assets only in Âi). Thus, we have

ρ̂−1
i (Û ′iΣÛi)

−1Û ′i(δ̄ − p) = Û ′i(ĥi + θ̂Hi ). (25)

We now apply market clearing. To do so, recall that ĥi and θ̂Hi have zeros in the entries outside of
trading set Âi. Since ÛiÛ

′
i = diag(1Âi

), this implies ÛiÛ
′
i ĥi = ĥi and ÛiÛ

′
i θ̂
H
i = θ̂Hi . Premultiplying

expression (25) by Ûi, using the aforementioned results, using market clearing and expression (15) for
the intermediary portfolio, and doing some algebra, we obtain the equilibrium expression

p = δ̄ − Γ̂Σh, (26)

where Γ̂ :=
[
γ−1IA +

N∑
i=1

ρ̂−1
i ΣÛi(Û

′
iΣÛi)

−1Û ′i

]−1
.

Expression (26) is very similar to the complete-segmentation expression (19), but with a modified risk
aversion factor.

To make the analogy extremely precise, we proceed with the weak-correlation Assumption 1 and
perform several steps of matrix algebra. We will need the selection matrix Un, which by analogy to
Ûi, is the A× |An| matrix whose columns are the non-zero columns of the diagonal matrix diag(1An).
Under Assumption 1, Σ is approximately block-diagonal, so we can write it as Σ ≈

∑N
n=1 UnU

′
nΣUnU

′
n.

Therefore,

Û ′iΣÛi ≈ Ûi
( N∑
n=1

UnU
′
nΣUnU

′
n

)
Ûi = Ûi

( ∑
n∈Ni

UnU
′
nΣUnU

′
n

)
Ûi.

The second equality is due to the fact that Û ′iUnU
′
nΣUnU

′
nÛi = 0 for n 6∈ Ni. Furthermore, due to the

block-diagonal nature of UnU
′
nΣUnU

′
n, we can take the inverse of each block separately, so we have

(Û ′iΣÛi)
−1 ≈ Û ′i

( ∑
n∈Ni

Un(U ′nΣUn)−1U ′n

)
Ûi.

Again using the approximate block-diagonal nature of Σ, we have

ΣÛiÛ
′
i ≈

∑
n∈Ni

UnU
′
nΣUnU

′
n.

11



Consequently, we have

ΣÛi(Û
′
iΣÛi)

−1Û ′i =
( ∑
n∈Ni

UnU
′
nΣUnU

′
n

)( ∑
n∈Ni

Un(U ′nΣUn)−1U ′n

)
ÛiÛ

′
i

=
∑
n∈Ni

(
UnU

′
nΣUnU

′
n

)(
Un(U ′nΣUn)−1U ′n

)
ÛiÛ

′
i

=
∑
n∈Ni

diag(An)ÛiÛ
′
i

= diag(Âi)ÛiÛ ′i = diag(Âi).

The second line above comes from the fact that (UnU
′
nΣUnU

′
n)(Um(U ′mΣUm)−1U ′m) = 0 for n 6= m,

since each of these matrices are full of zeros outside of the positions corresponding to asset classes n
and m. The third line recognizes the product of the two matrices in parentheses as block-diagonal
whose non-zero blocks are inverses of each other. The fourth line simplifies.

Using these results, we can rewrite Γ̂ in (26) as

Γ̂ ≈
[
γ−1IA +

N∑
i=1

ρ̂−1
i diag(1Âi

)
]−1

=
[
γ−1IA +

N∑
i=1

ρ̂−1
i

∑
n∈Ni

diag(1An)
]−1

=
[
γ−1IA +

N∑
n=1

( ∑
{i:n∈Ni}

ρ̂−1
i

)
diag(1An)

]−1
.

The last line switches the order of summation. Define the following statistics

ρn :=
( ∑
{i:n∈Ni}

ρ̂−1
i

)−1
(27)

Γn := (γ−1 + ρ−1
n )−1.

Note that ρ−1
n is the sum of risk tolerances for investors that participate in asset class n, whereas Γ−1

n

is a composite risk tolerance measure that includes intermediaries, defined exactly as in the baseline
full-segmentation model. With these statistics, we may write

Γ̂ ≈
N∑
n=1

Γndiag(1An).

Consequently, the approximate pricing formula, obtained by taking the ath row of (26) with the
formula for Γ̂ above, is

pa ≈ δ̄a − Γn(a)(Σh)a.

This formula is identical to the full-segmentation model. The only distinction is that Γ−1
n is a composite

sum of risk tolerances for all agents participating in asset class n. Thus, the interpretation of dρn is
now as a response to shocks to the risk aversions of hedgers participating in class n.

Because hedgers have overlapping portfolios, the sufficient statistics (ρn)Nn=1 will feature more
positive correlation than underlying risk aversions (ρ̂i)

N
i=1. However, in deriving Proposition 1, the

only assumption used regarding cross-correlation of the (ρn)Nn=1 is that they are “redistributive” in
the sense that the aggregate market return features zero loading on these shocks. To obtain this
redistributive feature, and hence generate all the results of Proposition 1 in this more general model,

12



we simply require that the underlying correlations of (ρ̂i)
N
i=1 be appropriately negative on average,

such that a particular weighted average of their shocks is approximately zero. This is always possible,
and so we have shown that Proposition 1 still holds in this more general model.6

As mentioned above, the second objective of this extension is to see how “more segmentation”
implies “smaller spillover effects.” We think of “more segmentation” as less overlap in the portfolios
of hedgers, which in the extreme becomes our full-segmentation baseline model. But based on the
discussion above, the amount of overlap directly dictates the amount of correlation in (dρn)Nn=1.7 Thus,
we think of “more segmentation” as equivalent to “less correlation” in (dρn)Nn=1. Immediately, we can
see how the statement on spillover effects should be true: if ρbonds increases, then ρnon-bonds is less
likely to increase as well when segmentation is more pronounced, meaning that non-bond asset prices
will be less likely perturbed (recall: under Assumption 1, the only non-fundamental factors affecting
asset class n prices are shocks to γ and ρn).

B.4 Regulatory Tightening

With regulatory shocks, we must consider dz terms in Appendix B.2 above. The parameter z should
be thought of as a regulatory object that captures a variety of different types of regulation, and
we will think of an increase in z (which then increases intermediary risk aversion γ) as a regulatory
tightening. For example, under the proprietary trading restriction of the Volcker Rule, one can imagine
that dealers must adapt their intermediation practices (e.g., match buyers and sellers prior to taking
inventory, or be more selective in which inventory they take on). As another example, the various
balance-sheet restrictions embedded in the Dodd-Frank Act and Basel III can be conceptualized as a
general cost to intermediating assets.

We make the intuitive assumptions that regulatory tightening induces intermediaries to sell assets
and deleverage. Mathematically, we assume ∂ξ

∂z < 0 and ∂λ
∂z < 0; since dz > 0 increases γ, these

conditions will be true under most model parameterizations (see the formulas (21)-(22) for ξ and λ
above, and note that an increase in γ reduces Γn/γ for all n). Recall that Proposition 1, part (ii), also

made the assumptions ∂ξ
∂s > 0 and ∂λ

∂w < 0, as well as assuming ∂λ/∂s
|∂λ/∂w| and −∂ξ/∂w

∂ξ/∂s are small enough.
We maintain these assumptions here.

6In particular, one can show that the market portfolio return features the following dρ̂i terms:

d(x′p) ≈ dγ term +

N∑
i=1

( ∑
a∈Âi

xa(Σh)aΓ2
n(a)

)
dρ̂−1i .

So as an example design, let (dzi)
N
i=1 be a sequence of independent shocks, and then put

dρ̂−1i := dzi −
N∑
j=1

∑
a∈Âj

xa(Σh)aΓ2
n(a)∑N

k=1

∑
a∈Âk

xa(Σh)aΓ2
n(a)

dzj .

One can easily verify that d(x′p) only loads on dγ and not (ρ̂i)
N
i=1, or equivalently not (ρn)Nn=1.

7To see this clearly, consider an example where (dρ̂−1i )Ni=1 are iid shocks with common variance νρ. Then,

corr[dρ−1n , dρ−1m ] =

∑
i∈In∩Im ρ̂−2i

(
∑
j∈In ρ̂

−2
j )1/2(

∑
k∈Im ρ̂−2k )1/2

,

where In := {i : n ∈ Ni} denotes the investors in asset class n. With more overlap in In and Im, the correlation
increases.
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Revisit the formula for the regression coefficient on z:

βz := Cz −
(

1− ∂ξ/∂w

∂ξ/∂s

∂λ/∂s

∂λ/∂w

)−1[(∂ξ/∂z
∂ξ/∂s

− ∂ξ/∂w

∂ξ/∂s

∂λ/∂z

∂λ/∂w

)
Cs +

( ∂λ/∂z
∂λ/∂w

− ∂λ/∂s

∂λ/∂w

∂ξ/∂z

∂ξ/∂s

)
Cw

]
Recall that Cz,i = Cγ,i

∂ log γ
∂z . Since Cγ,i < 0 for bonds and since ∂ log γ

∂z > 0, we have Cz,i < 0.
Also recall that Cw,i > 0 and Cs,i < 0. Using these facts, as well as all of the sign and magnitude
assumptions from the previous paragraph, we obtain βz < 0, consistent with the results of Table A.13.
Furthermore, given ∂ξ

∂z < 0 and ∂λ
∂z < 0, standard formulas for omitted variable bias imply our

estimates of (βξ, βλ) from Section 1.3 will be biased toward zero, and possibly with the wrong sign if
the regulatory tightening is the dominant shock in some period of time (i.e., we could obtain βξ > 0
and βλ > 0 if dz is the dominant shock, relative to ds and dw). This explains why we obtain larger
magnitude estimates in Table 10 (IV regressions) than in Table 4 (OLS regressions with z omitted).

B.5 Intermediary-Based Segmentation

As mentioned in footnote 25, the presence of segmentation in both hedger and intermediation sectors
would generate similar results without the need for Assumption 1 that fundamentals are weakly
correlated across asset classes.

We formalize intermediary segmentation as follows. Let wn denote the initial intermediary wealth
in asset class An (the asset class divisions are the same as those across which hedgers are segmented).
The representative intermediary in segment n solves

max
θI

E[WI,n]− γ(wn)

2
Var[WI,n] where WI,n := wn +

∑
a∈An

θI,a(δa − pa).

All intermediaries have the same risk aversion function γ(·), but because of heterogeneity in their
wealths, there is cross-sectional heterogeneity in intermediary risk aversion. The optimal intermediary
portfolio is given by

θI = Σ−1
γ (δ̄ − p), (28)

where Σγ :=
∑N

n=1 γnΣ̃n, and recalling that Σ̃n is the A×A quasi-covariance matrix pertaining only
to assets in An.

Combining (28) with (18) and market clearing (6), we obtain

p = δ̄ − (Σ−1
γ + Σ−1

ρ )−1h. (29)

Under the labeling convention that assets in the same class are numbered consecutively, both Σγ and
Σρ are block-diagonal matrices with a common structure. This allows us to write

pa = δ̄a − Γn(a)(Σ̃h)a, (30)

where Γn := (γ−1
n + ρ−1

n )−1 and Σ̃ :=
∑N

n=1 Σ̃n. Formula (30) is exactly equal to (20), so all the
baseline analysis goes through even without Assumption 1.8

8Note that we would need to continue to consider a shock to aggregate intermediary wealth w := w1+ . . . wN .
To recover identical results as the baseline model, we would assume that this shock is segment agnostic in the
sense that d logwn = d logw for all n.
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Figure A.1: Summary of Institutional Holdings
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Note: This figure plots quarterly time series, based on eMAXX data of institutional holdings, of the

number of institutional investors (top left panel) and the number of bonds in thousands (top right

panel), by insurance companies, mutual funds, pension funds, and all institutions separately, as well

as an average bond’s outstanding balance (in $millions) and ratio of total holding amount by all

institutions to outstanding balance (bottom panel). The number of bonds held by all institutions is

lower than the sum of the number of bonds held by insurance companies, mutual funds, and pension

funds because different institutions can hold the same bond. The average bond’s total holding amount

is calculated by first summing the holding amounts by all institutions for each bond in each quarter and

then taking an average across all the bonds in each quarter. The average bonds’ outstanding balance

is computed by taking the average of outstanding balance across all the bonds in each quarter. The

average bond’s ratio of holding to outstanding is computed by dividing its total holding amount by

outstanding balance in each quarter. The sample period is from 2005:Q1 through 2015:Q2.
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Table A.2: Summary of Institutional Holdings

mean sd min p25 p50 p75 max

A: Number of Institutional Investors

Insurance Company 2797 74 2653 2756 2801 2826 2965

Mutual Fund 2345 436 1593 1912 2504 2672 3099

Pension Fund 529 92 392 453 515 582 696

All 5670 392 4886 5340 5842 5971 6327

B: Number of Bonds

Insurance Company 12873 525 12049 12477 12748 13249 14125

Mutual Fund 10652 843 9072 9925 10523 11561 11943

Pension Fund 8629 945 7189 7826 8254 9590 10150

All 14910 673 14109 14465 14579 15392 16424

C: Aggregate Holding Amount ($trillion)

Insurance Company 1.02 0.16 0.74 0.91 0.96 1.16 1.30

Mutual Fund 0.67 0.27 0.28 0.39 0.70 0.91 1.13

Pension Fund 0.11 0.02 0.07 0.10 0.11 0.12 0.15

All 1.80 0.41 1.28 1.40 1.68 2.18 2.54

D: Average Bond Holding Amount and Outstanding Balance ($million)

Average Bond Holding Amount 116.54 27.18 80.94 87.99 114.74 143.35 162.04

Average Bond Outstanding Balance 480.32 59.80 365.62 439.65 486.27 519.65 578.31

Average Bond Holding/Outstanding 0.32 0.02 0.26 0.31 0.33 0.33 0.35

Notes: This table reports summary statistics of quarterly time series, based on eMAXX data of

institutional holdings, of the number of institutional investors (in panel A), the number of bonds (in

panel B), and aggregate holding amount in $trillions of principal value (in panel C), by insurance

companies, mutual funds, pension funds, and all institutions separately, as well as an average bond’s

holding amount (in $millions), outstanding balance (in $millions) and ratio of holding amount by all

institutions to outstanding balance (in panel D). The number of bonds held by all institutions is lower

than the sum of the number of bonds held by insurance companies, mutual funds, and pension funds

because different institutions can hold the same bond. The average bond’s total holding amount is

calculated by first summing the holding amounts by all institutions for each bond in each quarter and

then taking an average across all the bonds in each quarter. The average bonds’ outstanding balance

is computed by taking the average of outstanding balance across all the bonds in each quarter. The

average bond’s ratio of holding to outstanding is computed by dividing its total holding amount by

outstanding balance in each quarter. The sample period is from 2005:Q1–2015:Q2.
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Table A.3: Summary of Institutional Holdings by Rating Categories

Insurance Companies Mutual Funds Pension Funds

Amount ($billion) Fraction (%) Amount ($billion) Fraction (%) Amount ($billion) Fraction (%)

AAA 17.18 1.69 16.72 2.71 3.75 3.24

AA 76.45 7.37 37.74 6.05 6.24 5.79

A 368.03 35.45 128.05 18.27 23.57 21.23

BBB 435.67 41.91 193.01 26.76 34.99 31.39

BB 79.40 7.73 103.45 14.77 14.95 13.54

B 33.92 3.30 121.19 17.68 15.76 14.24

CCC 24.84 2.54 90.19 13.76 11.49 10.56

Total 1035.48 690.34 110.75

Note: This table reports the average (over time) amount in $billions and fraction in percent of the eMAXX

quarterly corporate bond holdings of insurance companies, mutual funds, and pension funds, respectively, broken

down into seven rating groups. The sample period is from 2005:Q1 through 2015:Q2.
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Table A.4: Summary of Yield Spreads and Returns of Non-Corporate-Credit Assets

N mean sd p25 p50 p75

A: Agency MBS

FN30y 42 0.158 0.212 -0.045 0.150 0.344

FN15y 42 0.161 0.237 -0.037 0.100 0.317

FG30y 42 0.188 0.227 -0.028 0.176 0.353

FG15y 42 0.223 0.229 0.044 0.175 0.356

B: Non-agency CMBS

Duper 39 1.536 1.686 0.730 0.990 1.850

AM 39 2.964 4.026 0.630 1.330 3.410

AJ 39 4.390 6.082 1.210 2.100 4.500

C: ABS

Credit Card Loan 5y 40 0.791 0.679 0.470 0.540 0.635

Auto Loan 3y: AAA 37 0.506 0.672 0.190 0.270 0.360

Auto Loan 3y: A 36 1.214 1.366 0.565 0.740 1.225

Auto Loan: 3y BBB 34 1.547 1.367 1.000 1.210 1.750

D: S&P 500 index options

Call: 0.90 85 0.088 4.410 -2.043 0.509 2.284

Call: 0.95 85 0.017 4.300 -1.841 0.301 2.048

Call: ATM 85 -0.115 4.136 -1.751 0.036 1.646

Call: 1.05 85 -0.265 3.936 -1.775 -0.139 1.707

Call: 1.10 85 -0.487 3.643 -1.776 -0.353 0.815

Put: 0.90 85 -0.888 7.787 -4.555 -1.948 1.626

Put: 0.95 85 -0.741 6.949 -3.962 -1.576 1.369

Put: ATM 85 -0.537 6.283 -3.340 -1.123 1.779

Put: 1.05 85 -0.382 5.715 -2.999 -0.859 1.678

Put: 1.10 85 -0.318 5.375 -2.825 -0.936 1.703

Note: This table reports summary statistics of quarterly time series of option-adjusted spreads of agency MBS,

yield spreads of non-agency CMBS, and yield spreads of ABS in panels A, B, and C, respectively, as well as

summary statistics of monthly series of one-month (unannualized) return of leverage-adjusted S&P 500 index

option portfolios. All series are in percent. The series of yield spreads are provided by major Wall Street dealers,

whereas the option returns are those used in Constantinides, Jackwerth, and Savov (2013). The sample period

of yield spreads is 2005:Q1–2015:Q2 overall, with variation across different series depending on data availability.

The sample period is January 2005 through January 2012 for options.
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Table A.5: Quarterly Series by Leverage Cohort

Groups A: Sample B: PC C: Regressions of Residuals

Maturity Leverage Bond # Obs First Second ∆Inventory ∆Distress R2
adj FVE

Short <15% 295 3430 0.094 -0.008 0.052* 0.077*** 0.299 0.299

(1.793) (2.747)

Short 15-25% 476 5707 0.131 0.008 0.059 0.096*** 0.202

(1.305) (2.797)

Short 25-35% 414 4686 0.175 -0.043 0.113** 0.125** 0.279

(2.321) (2.540)

Short 35-45% 212 2110 0.259 -0.047 0.159** 0.215*** 0.312

(2.302) (3.013)

Short >45% 249 2345 0.424 -0.158 0.279*** 0.316** 0.303

(2.673) (2.386)

Medium <15% 276 2684 0.113 -0.016 0.080*** 0.097*** 0.376 0.548

(2.849) (2.807)

Medium 15-25% 453 4053 0.202 0.037 0.131** 0.221*** 0.557

(2.542) (4.117)

Medium 25-35% 436 3917 0.217 0.015 0.140*** 0.228*** 0.528

(3.251) (4.028)

Medium 35-45% 255 2331 0.267 0.058 0.208*** 0.269*** 0.465

(3.439) (4.865)

Medium >45% 263 2268 0.433 -0.067 0.330*** 0.492*** 0.595

(4.615) (3.594)

Long <15% 361 5050 0.081 0.006 0.041** 0.073** 0.336 0.324

(2.100) (2.089)

Long 15-25% 506 7049 0.073 0.979 -0.120 0.159*** 0.126

(-1.221) (4.302)

Long 25-35% 418 6029 0.132 0.036 0.080** 0.126*** 0.382

(2.561) (2.961)

Long 35-45% 174 1883 0.198 0.058 0.163*** 0.220*** 0.536

(4.182) (6.146)

Long >45% 166 1789 0.518 -0.045 0.282** 0.475** 0.392

(2.108) (2.167)

Pct Explained 0.751 0.124 0.388

Notes: This table reports results using 15 cohorts based on time-to-maturity and firm leverage. Panel A reports

the number of bonds and observations for each cohort. Panel B reports the loadings of the first two PCs on

the 15 regression residuals and the fraction of total variation these two PCs account for. Panel C reports

quarterly time series regressions of each of the 15 residuals of quarterly credit spread changes (in percentage) on

∆Inventory (in panel A) and ∆Distress, with robust t-statistics based on Newey and West (1987) standard

errors using the optimal bandwidth choice in Andrews (1991) reported in parentheses. Significance levels are

represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the p-value. The last column of Panel C

reports the fraction of the total variation of residuals that is accounted for by the two intermediary factors,

denoted as FVE and computed as in (3) for short, medium, and long term bonds, as well as all bonds. The

sample period is from 2005:Q1 through 2015:Q2.
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Table A.6: Excluding the 2008 Crisis

Groups A: PC B: Regression of Residuals

Maturity Rating First Second ∆Inventory ∆Distress R2
adj FVE

Short AA 0.062 -0.019 0.023 0.057*** 0.158 0.228

(0.862) (2.798)

Short A 0.079 -0.026 0.033 0.067*** 0.168

(1.464) (2.706)

Short BBB 0.125 -0.022 0.054* 0.120*** 0.235

(1.755) (2.647)

Short BB 0.154 -0.136 0.080 0.079 0.081

(1.563) (0.819)

Short B 0.459 -0.394 0.294*** 0.364 0.237

(2.899) (1.642)

Medium AA 0.050 -0.061 0.012 0.054*** 0.122 0.554

(0.680) (3.260)

Medium A 0.100 -0.020 0.061** 0.132*** 0.413

(2.087) (5.117)

Medium BBB 0.159 -0.023 0.092** 0.196*** 0.424

(2.397) (3.925)

Medium BB 0.172 0.099 0.128*** 0.228*** 0.467

(3.310) (4.081)

Medium B 0.443 0.041 0.313*** 0.313*** 0.606

(3.875) (3.875)

Long AA 0.055 0.006 0.018 0.072*** 0.307 0.481

(1.578) (4.395)

Long A 0.077 -0.009 0.035* 0.097*** 0.359

(1.691) (3.766)

Long BBB 0.069 0.880 -0.106 0.207*** 0.165

(-1.374) (4.341)

Long BB 0.181 0.102 0.109*** 0.219*** 0.330

(3.360) (3.438)

Long B 0.656 0.156 0.336*** 0.938*** 0.566

(3.010) (3.912)

Pct Explained 0.798 0.082 0.430

Note: This table reports results using 15 cohorts based on time-to-maturity and credit rating excluding the

2008 crisis period, defined as 2007:Q3–2009:Q1. Panel A reports the loadings of the first two PCs on the 15

regression residuals and the fraction of total variation these two PCs account for. Panel B reports quarterly time

series regressions of each of the 15 residuals of quarterly credit spread changes (in percentage) on ∆Inventory

and ∆Distress, with robust t-statistics based on Newey and West (1987) standard errors using the optimal

bandwidth choice in Andrews (1991) reported in parentheses. Significance levels are represented by * p < 0.1,

** p < 0.05, and *** p < 0.01 with p as the p-value. The last column of panel B reports the fraction of the total

variation of residuals that is accounted for by the two intermediary factors, denoted as FVE and computed as

in (3) for short, medium, and long term bonds, as well as all bonds.
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Table A.7: Regressions of Credit Spread Changes Residuals on Liquidity Factor

Groups A: ∆ILiq B: ∆Inventory+∆Distress+∆ILiq

Maturity Rating ∆ILiq R2
adj ∆Inventory ∆Distress ∆ILiq R2

adj

Short AA 0.042*** 0.131 0.038 0.033*** 0.037*** 0.256

(2.981) (1.627) (2.593) (6.381)

Short A 0.026 0.034 0.048* 0.058*** 0.016** 0.231

(1.061) (1.944) (2.908) (2.228)

Short BBB 0.038 0.034 0.065* 0.105*** 0.018 0.304

(0.828) (1.915) (3.446) (1.596)

Short BB 0.032 0.006 0.145 0.176*** 0.002 0.225

(0.708) (1.538) (3.039) (0.073)

Short B 0.042 0.003 0.339*** 0.332** -0.010 0.299

(0.243) (2.981) (2.531) (-0.164)

Medium AA 0.034*** 0.070 0.035** 0.044*** 0.026*** 0.208

(2.784) (1.987) (4.186) (3.156)

Medium A 0.048 0.080 0.074*** 0.085*** 0.033*** 0.391

(1.230) (2.692) (3.469) (2.777)

Medium BBB 0.045 0.034 0.106*** 0.141*** 0.020 0.414

(0.653) (2.930) (3.447) (0.950)

Medium BB 0.027 0.004 0.198*** 0.266*** -0.020 0.467

(0.377) (2.871) (4.812) (-0.598)

Medium B 0.101 0.022 0.339*** 0.495*** 0.010 0.594

(0.444) (5.092) (4.698) (0.160)

Long AA 0.042** 0.168 0.026** 0.031** 0.037*** 0.279

(2.321) (2.199) (2.248) (5.024)

Long A 0.049 0.130 0.044** 0.057*** 0.038*** 0.337

(1.632) (2.036) (2.585) (3.334)

Long BBB 0.065 0.023 -0.068 0.141*** 0.025 0.161

(1.321) (-0.919) (4.794) (1.335)

Long BB -0.002 0.000 0.170*** 0.262*** -0.051* 0.431

(-0.030) (2.688) (4.960) (-1.737)

Long B 0.214 0.045 0.426*** 0.680*** 0.086 0.520

(0.643) (2.857) (3.126) (0.870)

FVE 0.029 0.432

Notes: This table reports quarterly time series regressions of each of the 15 residuals of quarterly credit spread

changes (in percentage), for cohorts based on time-to-maturity and credit rating, on ∆ILiq in univariate re-

gressions (in panel A) and in multivariate regressions along with ∆Inventory and ∆Distress (in panel B),

respectively. Robust t-statistics based on Newey and West (1987) standard errors using the optimal bandwidth

choice in Andrews (1991) are reported in parentheses. Significance levels are represented by * p < 0.1, **

p < 0.05, and *** p < 0.01 with p as the p-value. The last column in each panel reports the fraction of the

total variation of residuals that is accounted for, denoted as FVE and computed as in (3) for short, medium,

and long term bonds, as well as all bonds. The sample period is from 2005:Q1 through 2015:Q2.
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Table A.8: Measures of Intermediary Distress

Groups A: ∆Noise B: ∆NLevHKM

Maturity Rating ∆Noise R2
adj ∆NLevHKM R2

adj

Short AA 0.045** 0.149 0.015 0.016

(2.226) (0.955)

Short A 0.071** 0.245 0.020 0.020

(2.345) (1.341)

Short BBB 0.112*** 0.291 0.054* 0.069

(3.116) (1.880)

Short BB 0.255*** 0.381 0.001 0.000

(2.804) (0.020)

Short B 0.307** 0.180 0.150 0.043

(2.161) (1.075)

Medium AA 0.060*** 0.215 0.015* 0.014

(2.759) (1.831)

Medium A 0.077** 0.206 0.058** 0.119

(2.289) (2.493)

Medium BBB 0.118** 0.235 0.096** 0.156

(2.566) (2.427)

Medium BB 0.292*** 0.493 0.090 0.047

(3.211) (1.546)

Medium B 0.381*** 0.312 0.359*** 0.278

(3.417) (3.288)

Long AA 0.040** 0.154 0.019 0.035

(2.100) (0.954)

Long A 0.064** 0.226 0.035 0.069

(2.032) (1.642)

Long BBB 0.159*** 0.141 0.106*** 0.063

(3.481) (6.061)

Long BB 0.278*** 0.458 0.092 0.051

(3.523) (1.452)

Long B 0.609*** 0.365 0.447** 0.196

(2.656) (2.497)

FVE 0.315 0.139

Notes: This table reports quarterly time series regressions of each of the 15 residuals of quarterly credit spread

changes (in percentage), for cohorts based on time-to-maturity and credit rating, on ∆Noise (in panel A),

on ∆NLevHKM (in panel B), and on both (in panel C). Robust t-statistics based on Newey and West (1987)

standard errors using the optimal bandwidth choice in Andrews (1991) are reported in parentheses. Significance

levels are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the p-value. The last row reports the

fraction of the total variation of residuals that is accounted for by ∆Noise, ∆NLevHKM and both, respectively,

denoted as FVE and computed as in (3) for all cohorts. The sample period is from 2005:Q1 through 2015:Q2.
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Table A.9: AEM Leverage Measure and TED Spread

Groups A: AEM Leverage Measure B: TED spread

Maturity Rating ∆Inventory ∆Distress ∆NLevAEM R2
adj ∆Inventory ∆Distress ∆TED R2

adj

Short AA 0.034 0.043** 0.009 0.165 0.036 0.049*** 0.040*** 0.276

(1.387) (2.328) (0.465) (1.633) (4.146) (5.458)

Short A 0.047* 0.062** -0.003 0.220 0.047** 0.067*** 0.029** 0.259

(1.906) (2.301) (-0.142) (2.096) (3.735) (2.305)

Short BBB 0.064* 0.107** -0.013 0.301 0.065** 0.116*** 0.037* 0.329

(1.916) (2.465) (-0.499) (2.078) (3.981) (1.833)

Short BB 0.144* 0.173*** -0.019 0.227 0.144 0.185*** 0.045 0.236

(1.656) (2.745) (-0.561) (1.627) (3.289) (1.224)

Short B 0.336*** 0.330** 0.003 0.299 0.337*** 0.338** 0.044 0.302

(3.134) (2.152) (0.034) (3.115) (2.327) (0.505)

Medium AA 0.032* 0.053*** 0.014 0.179 0.034** 0.057*** 0.037*** 0.249

(1.734) (4.384) (1.257) (2.031) (5.487) (4.897)

Medium A 0.071** 0.094*** 0.005 0.355 0.072*** 0.102*** 0.050*** 0.438

(2.553) (2.856) (0.211) (2.881) (4.684) (3.638)

Medium BBB 0.103*** 0.147*** 0.009 0.409 0.105*** 0.153*** 0.043* 0.438

(2.907) (2.939) (0.269) (3.125) (3.783) (1.682)

Medium BB 0.199*** 0.257*** -0.021 0.468 0.199*** 0.271*** 0.055* 0.482

(2.915) (4.123) (-0.414) (3.116) (5.466) (1.808)

Medium B 0.333*** 0.500*** 0.015 0.595 0.336*** 0.508*** 0.056 0.601

(5.417) (3.979) (0.156) (5.410) (4.480) (0.863)

Long AA 0.022 0.043*** 0.019 0.189 0.025* 0.048*** 0.047*** 0.358

(1.543) (2.652) (1.142) (1.949) (4.642) (5.436)

Long A 0.040* 0.067** 0.006 0.263 0.042** 0.076*** 0.051*** 0.398

(1.820) (2.063) (0.266) (2.227) (3.775) (4.492)

Long BBB -0.068 0.146*** -0.005 0.158 -0.067 0.158*** 0.064** 0.180

(-0.927) (4.298) (-0.144) (-0.953) (4.646) (2.010)

Long BB 0.176*** 0.237*** -0.065 0.439 0.172*** 0.252*** 0.015 0.417

(2.787) (3.341) (-1.281) (2.727) (4.918) (0.449)

Long B 0.411*** 0.713*** 0.065 0.517 0.421*** 0.735*** 0.193 0.548

(3.101) (2.849) (0.436) (3.255) (3.362) (1.468)

FVE 0.429 0.448

Note: This table reports quarterly time series regressions of each of the 15 residuals of quarterly credit spread changes (in per-

centage), for cohorts based on time-to-maturity and credit rating, on our nonlinear version of the Adrian, Etula, and Muir (2014)

measure of broker-dealer leverage ∆NLevAEM (panel A) and the TED spread ∆TED (panel B), together with ∆Inventory and

∆Distress. Robust t-statistics based on Newey and West (1987) standard errors using the optimal bandwidth choice in Andrews

(1991) are reported in parentheses. Significance levels are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the

p-value. The last column of both panels reports the fraction of the total variation of residuals that is accounted for, denoted as

FVE and computed as in (3), for short, medium, and long term cohorts, as well as all cohorts. The sample period is from 2005:Q1

through 2015:Q2.
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Table A.10: Monthly Series by Rating Group

Groups A: Sample B: PC C: Regression of Residuals

Maturity Rating Bond # Obs First Second ∆Inventory ∆Distress R2
adj FVE

Short AA 87 2611 0.058 0.117 0.016* 0.013 0.040 0.146

(1.671) (0.834)

Short A 525 15871 0.086 0.141 0.009 0.035** 0.103

(0.865) (2.341)

Short BBB 881 25114 0.142 0.163 0.006 0.049** 0.105

(0.563) (2.185)

Short BB 401 7835 0.279 0.261 0.044* 0.115*** 0.161

(1.782) (3.102)

Short B 485 10061 0.466 0.020 0.059* 0.160*** 0.150

(1.707) (4.161)

Medium AA 73 1680 0.057 0.109 0.013* 0.020** 0.069 0.104

(1.862) (2.211)

Medium A 448 9885 0.084 0.164 0.015** 0.013 0.034

(2.214) (0.818)

Medium BBB 880 18088 0.142 0.224 0.022** 0.042** 0.086

(2.110) (2.029)

Medium BB 491 8989 0.271 0.260 0.054** 0.113*** 0.203

(2.169) (3.446)

Medium B 593 13111 0.405 0.210 0.032 0.094*** 0.064

(0.856) (2.713)

Long AA 119 4495 0.053 0.107 0.016*** 0.009 0.050 0.189

(2.815) (0.922)

Long A 638 24132 0.076 0.128 0.014** 0.023* 0.084

(2.238) (1.669)

Long BBB 1049 33504 0.104 0.225 0.015 0.028* 0.024

(1.421) (1.842)

Long BB 352 6768 0.226 0.238 0.028 0.062*** 0.080

(1.182) (2.885)

Long B 277 5715 0.580 -0.732 0.109* 0.243*** 0.237

(1.830) (2.620)

Pct Explained 0.752 0.086 0.152

Notes: This table reports results at the monthly frequency using 15 cohorts based on time-to-maturity and

credit rating. Panel A reports the number of bonds, number of observations, and mean adjusted R2s for each

cohort. Panel B reports the loadings of the first two PCs on the 15 regression residuals and the fraction of total

variation these two PCs account for. Panel C reports monthly time series regressions of each of the 15 residuals

of monthly credit spread changes (in percentage) on ∆Inventory and ∆Distress, with robust t-statistics based

on Newey and West (1987) standard errors using the optimal bandwidth choice in Andrews (1991) reported

in parentheses. Significance levels are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the

p-value. The last column of Panel C reports the fraction of the total variation of residuals that is accounted

for by the two intermediary factors, denoted as FVE and computed as in (3) for short, medium, and long term

bonds, as well as all bonds. The sample period is from 2005:Q1 through 2015:Q2.

25



Table A.11: Credit Default Swaps

Groups A: Sample B: PC C: Regression of Residuals

Maturity Rating Firm # Obs First Second ∆InventoryA ∆Distress R2
adj FVE

1y AA 20 939 0.039 -0.029 0.019 0.029* 0.127 0.291

(1.438) (1.943)

1y A 111 5742 0.041 0.042 0.044*** 0.042*** 0.502

(5.205) (5.957)

1y BBB 200 7942 0.067 0.062 0.059*** 0.057*** 0.394

(4.099) (3.503)

1y BB 128 2309 0.149 0.151 0.125*** 0.144*** 0.364

(3.819) (4.381)

1y B 64 1377 0.651 0.686 0.284*** 0.455* 0.283

(2.827) (1.732)

5y AA 21 1140 0.031 -0.010 0.023*** 0.026*** 0.215 0.304

(3.091) (2.751)

5y A 112 5688 0.043 0.035 0.053*** 0.045*** 0.487

(3.646) (6.916)

5y BBB 208 7995 0.067 0.003 0.078*** 0.069*** 0.468

(3.619) (3.734)

5y BB 132 2377 0.127 0.072 0.055 0.114*** 0.176

(1.376) (3.939)

5y B 71 1601 0.583 -0.643 0.308*** 0.422** 0.313

(3.085) (2.128)

10y AA 20 1117 0.023 -0.018 0.020** 0.012 0.094 0.369

(2.573) (1.553)

10y A 111 5611 0.036 0.035 0.047*** 0.042*** 0.436

(2.983) (7.023)

10y BBB 198 8071 0.055 -0.001 0.057** 0.060*** 0.410

(2.443) (4.704)

10y BB 127 2426 0.094 0.039 0.066* 0.080*** 0.166

(1.729) (6.106)

10y B 65 1409 0.413 -0.277 0.265*** 0.339** 0.397

(2.702) (2.037)

Pct Explained 0.830 0.070 0.312

Note: This table reports results using 15 cohorts of CDS based on the CDS maturity and credit rating of the underlying

entity. Panel A reports the number of firms and observations for each cohort. Panel B reports the loadings of the first two

PCs on the 15 regression residuals (computed from time series regressions of quarterly CDS spread changes in percentage

similar to (1)) and the fraction of total variation these two PCs account for. Panel C reports quarterly time series

regressions of each of the 15 residuals of quarterly CDS spread changes (in percentage) on ∆Inventory and ∆Distress,

with robust t-statistics based on Newey and West (1987) standard errors using the optimal bandwidth choice in Andrews

(1991) reported in parentheses. Significance levels are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as

the p-value. The last column of Panel C reports the fraction of the total variation of residuals that is accounted for by

the two intermediary factors, denoted as FVE and computed as in (3) for 1-year, 5-year, and 10-year CDS cohorts, as

well as all cohorts. The sample period is from 2005:Q1 through 2015:Q2.
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Table A.12: Changes in Institutional Holdings and Dealers’ Inventories of Down-
graded Bonds

A: Changes of Holdings in Quarter t

Insurance Mutual Pension Dealer

(1) (2) (3) (4)

Fallen −0.665∗∗∗ −0.219 −0.058 1.607∗∗

(−3.383) (−0.574) (−0.270) (1.980)

Downgrade −0.480∗∗∗ 0.509∗∗ 0.363∗∗∗ −0.127

(−4.007) (2.310) (2.811) (−0.158)

Obs 423,766 348,092 306,971 705,516

R2
adj 0.070 0.013 0.036 0.0004

Bond Controls Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

B: Changes of Holdings in Quarter t+ 1

Insurance Mutual Pension Dealer

(1) (2) (3) (4)

Fallen −0.326∗ −0.010 −0.088 −0.447∗∗∗

(−1.654) (−0.028) (−0.434) (−3.187)

Downgrade −0.795∗∗∗ −0.073 0.069 0.124

(−7.125) (−0.332) (0.590) (1.371)

Obs 424,413 348,266 307,265 630,957

R2
adj 0.071 0.013 0.036 0.001

Bond Controls Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

Note: The first three columns report panel regressions in (12) of changes in institutional holdings of

bond i in quarter t+τ (τ equals 0 in in panel A and 1 in panel B) on indicator variables Downgradei,t,

which equals 1 if bond i is downgraded from IG rating to either IG or HY rating in quarter t and 0

otherwise and indicator Falleni,t that equals 1 if bond i is downgraded from IG rating to HY rating

in quarter t and 0 otherwise, for insurance companies, mutual funds, and pension funds, respectively.

Similar panel regressions of changes in dealers’ inventories ∆Inventoryi,t+τ are reported in the last

column. Bond controls include the log of outstanding balance in $thousands (log(Amti,t+τ )), the

log of issue size in $millions (log(Sizei)), bond age in years (Agei,t+τ ), and time-to-maturity in years

(Time-to-Maturei,t+τ ). For simplicity, we suppress the coefficients on these controls and the intercept.

The sample includes observations of bonds downgraded from investment grade to either investment

grade or high yield and of bonds with no rating change. Robust t-statistics based on clustered standard

errors at the bond level are reported in parentheses with significance levels represented by * for p < 0.1,

** for p < 0.05, and *** for p < 0.01, where p is the p-value. The sample period is from 2005:Q1–

2015:Q2.

27



Table A.13: Regulatory Shocks and Intermediary Factors

AA A BBB BB B
A: Short

∆Inventory 0.028 0.039 0.050 0.133 0.292***
(1.143) (1.577) (1.574) (1.413) (2.973)

∆Inventory ×DRegShock -0.005 -0.059 0.032 -0.498*** -0.443**
(-0.134) (-0.914) (0.323) (-3.845) (-2.350)

DRegShock 0.002 0.024 0.041 0.016 0.062
(0.060) (0.531) (0.638) (0.182) (0.320)

∆Distress×DRegShock -0.236*** -0.396*** -0.423** -1.426*** -2.524***
(-3.915) (-3.690) (-2.560) (-9.783) (-7.178)

∆Distress 0.045** 0.067*** 0.116*** 0.190*** 0.361***
(2.155) (3.000) (3.393) (3.873) (2.748)

R2
adj 0.233 0.328 0.398 0.327 0.450

B: Medium
∆Inventory 0.025 0.060** 0.089*** 0.203*** 0.301***

(1.275) (2.213) (2.579) (2.773) (5.545)
∆Inventory ×DRegShock -0.058 0.066 0.073 -0.497*** -0.259***

(-1.131) (1.133) (0.659) (-3.918) (-2.847)
DRegShock 0.021 0.013 0.042 -0.058 -0.064

(0.402) (0.233) (0.467) (-0.741) (-0.610)
∆Distress×DRegShock -0.427*** -0.275*** -0.403** -0.851*** -1.693***

(-6.788) (-3.419) (-2.549) (-5.281) (-7.945)
∆Distress 0.056*** 0.098*** 0.153*** 0.266*** 0.518***

(4.650) (2.772) (3.143) (5.490) (4.340)
R2
adj 0.325 0.440 0.490 0.490 0.670

C: Long
∆Inventory 0.023 0.035 -0.024 0.183*** 0.389***

(1.622) (1.510) (-0.463) (2.986) (2.690)
∆Inventory ×DRegShock -0.067*** -0.041 -0.810* -0.363** -0.133

(-3.009) (-1.483) (-1.937) (-2.570) (-0.334)
DRegShock 0.017 0.007 -0.458 0.048 0.097

(0.660) (0.249) (-1.473) (0.552) (0.359)
∆Distress×DRegShock -0.196*** -0.314*** 0.217 -0.487** -1.406**

(-4.733) (-6.628) (0.346) (-2.086) (-2.177)
∆Distress 0.041* 0.070** 0.128*** 0.252*** 0.719***

(1.870) (2.127) (3.899) (5.774) (2.836)
R2
adj 0.202 0.335 0.461 0.440 0.544

Note: This table reports quarterly time series regressions of each of the 15 residuals of quarterly credit spread

changes (in percentage), for cohorts based on time-to-maturity and credit rating, on ∆Inventory, ∆Distress,

the dummy variable DRegShock (= 1 in 2010Q1–2010Q4 and 2013Q4–2014Q3), and their interactions. Robust

t-statistics based on Newey and West (1987) standard errors using the optimal bandwidth choice in Andrews

(1991) are reported in parentheses. Significance levels are represented by * p < 0.1, ** p < 0.05, and ***

p < 0.01 with p as the p-value. The sample period is from 2005:Q1 through 2015:Q2.
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Table A.14: Regressions of Bond-Return Factors on Intermediary Factors

MKTBond DRF CRF LRF

A: Regressions on Dealer Inventory

∆Inventoryt -0.025 -0.030 -0.010 -0.176

(-0.227) (-0.132) (-0.048) (-0.703)

R2
adj 0.001 0.000 0.000 0.017

B: Regressions on Intermediary Distress

∆Distresst -0.429*** -1.025*** -0.744*** -1.215***

(-3.408) (-5.098) (-5.378) (-5.928)

R2
adj 0.261 0.337 0.228 0.589

C: Regressions on Dealer Inventory and Intermediary Distress

∆Inventoryt 0.104 0.281 0.218 0.176

(0.934) (1.294) (1.221) (0.954)

∆Distresst -0.470*** -1.134*** -0.828*** -1.284***

(-3.699) (-4.849) (-5.855) (-6.386)

R2
adj 0.281 0.369 0.253 0.605

Note: This table reports quarterly time series regressions of return-based factors, including corporate bond

market return (MKTBond), downside risk factor (DRF), credit risk factor (CRF), and liquidity risk factor

(LRF) of Bai, Bali, and Wen (2019), on ∆Inventory and ∆Distress. The original series of return factors

are one-month returns (in percent) of monthly rebalanced portfolios, and we construct quarterly return factors

using geometric mean of the three monthly returns for each quarter. We orthogonalize both the return factors

and intermediary factors against the six time series structural factors as used in (1). Robust t-statistics based

on Newey and West (1987) standard errors using the optimal bandwidth choice in Andrews (1991) are reported

in parentheses. Significance levels are represented by * p < 0.1, ** p < 0.05, and *** p < 0.01 with p as the

p-value. The sample period is from 2005:Q1 through 2015:Q2.
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