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Abstract

We study financial markets in which strategic traders can acquire information at
a cost. In the context of large markets (as the number of traders n → ∞), we develop
a sufficient statistic for aggregate information collection that depends on the infor-
mation technology only through the marginal cost of signal precision at the prior. In
contrast to Grossman and Stiglitz (1980), the large-market limit can be information-
ally efficient, which happens if and only if the marginal cost of signal precision at
the prior is zero. Unlike the previous literature, our framework can deliver any level
of price informativeness. We obtain closed-form expressions for liquidity, volume,
price volatility, and price informativeness, and we show how these measures co-
move in ways that are at odds with Noisy Rational Expectations Equilibria. Finally,
we develop a method to identify time-variation in price informativeness by decom-
posing changes in observables into changes in fundamental and non-fundamental
uncertainty.
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1 Introduction

What determines whether or not financial markets are informationally-efficient? This
question poses a challenge to the standard theoretical framework. On the one hand,
efficiency is precluded in noisy rational expectations models (Grossman and Stiglitz,
1980): traders would not incur costs to acquire information in a fully efficient market,
because they could simply obtain the information from market prices for free; but if no
trader acquires information, then markets cannot be informative. In much of the rest of
finance, on the other hand, information efficiency is assumed, with the microfoundations
and microstructure ignored. Neither of these two approaches is able to address the
information efficiency question, making them ill-suited to explain when markets reveal
information and what information they reveal.

We provide a simple framework to understand information efficiency. For that, we
study information-acquisition in the large-market limit of a strategic trading model
(Kyle, 1985; Lambert et al., 2018) rather than a perfectly competitive Noisy Rational
Expectations Equilibrium (NREE). This seemingly minor difference leads to a vastly
different result. Depending on the information technology, any amount of aggregate
information-acquisition and price informativeness can be justified, from completely un-
informative to fully-informative prices. By not arbitrarily capping price informativeness,
we are able to answer the question of what makes markets efficient and informative. Our
framework also bears implications that are substantively different from the previous the
literature: price informativeness, market liquidity, and volatility can sometimes exhibit
patterns opposite to those in an NREE. Finally, our framework allows us to map these
objects to their critical determinants, where we find a special role for the marginal cost
of an initial piece of information.

Model and Results. There are n ex-ante identical and risk-neutral strategic traders, as
well as some noise traders and an uninformed, competitive, market maker trading a
risky asset. Strategic traders have access to an information technology allowing them
to learn about the asset value at a cost. After acquiring information, strategic traders
submit market orders, anticipating their price impact, and competitive market makers
set a break-even price upon observing the order flow. We are interested in the large-
market limit of this model (n → ∞), in which individual price impacts vanish, resembling
perfectly competitive markets.

In our model, the information technology is represented by the cost of obtaining a
signal with precision z above the prior, given by c(z). In small markets, the details of the
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information technology matter to determine equilibrium. However, we show that when
the number of traders approaches infinity, the critical object that characterizes price in-
formativeness is χ := c′(0)—the marginal cost of precision at the prior. More generally,
we show that the large-market quantity of aggregate information is an increasing func-
tion of the following sufficient statistic:

Γ :=
fundamental volatility × noise trader volatility

χ

Our main result is that prices are fully informative if and only if χ = 0. In a large
market, each trader ends up acquiring a small amount of information z. Intuitively,
this is a consequence of the strategic substitutability of information: when there are
more traders who learn the same, prices are more revealing, reducing individual in-
centives for acquisition. When prices are arbitrarily revealing, information acquisition
incentives are virtually absent. Therefore, it is immediate that a necessary condition for
efficiency would be that a small piece of information can be obtained at a vanishingly
small marginal cost. The key contribution is to show this is also sufficient: regardless of
the details of the cost function, as long as the marginal cost of information at the prior
is zero, prices will become arbitrarily informative as the market grows. Although each
individual trader acquires virtually no information, the aggregate level of information is
high. In this case, liquidity and volume are also infinite. Through this result, our paper
provides a renewed sense of the “magic of markets” when information is costly.

We proceed to show that our model can produce any level of price informativeness.
To that end, we characterize the large-market equilibrium for all values of Γ. As Γ
falls, the aggregate level of information declines monotonically and can take any value
between 0 and ∞. The fact that the level of information is increasing in both fundamental
volatility and noise is intuitive: both uncertainties allow strategic traders to “conceal”
their information when trading, allowing greater information rents, thereby augmenting
incentives for information acquisition.

Finally, we highlight model predictions which are at odds with NREE. We start by
obtaining closed-form expressions for the trading volume, liquidity, price informative-
ness, and price volatility. The co-movement of these quantities differs markedly with
and without strategic incentives. For example, while an increase in noise trading volatil-
ity reduces informativeness in NREE models, it always increases informativeness in our
model. The reason is that strategic incentives boost information-acquisition incentives
when noise is increased, leading to larger trades, which in turn reveal more information.
Moreover, liquidity is non-monotonic in information costs in our model: it is decreasing
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when information costs are low, as in NREE, but it positively co-moves with information
cost when those are high. This is because when information costs are high, there is little
private information in the market, and therefore very low adverse selection. As adverse
selection vanishes, all the order flow is uninformed and the market maker is willing
to trade against any quantity of demand at the uninformed price—that is, liquidity is
again infinite. These results call attention to a broader implication of our model: the
microfoundation of price-taking behavior matters for equilibrium variables.

Applications. We conclude with two applications that illustrate how one could lever-
age our framework to learn about time-variation in informativeness. First, we show that
price volatility can be used to proxy for informativeness under some circumstances, justi-
fying a common empirical practice (e.g., Roll, 1988; Campbell et al., 2023). Specifically, as
long as fundamental uncertainty remains fixed, price informativeness is strictly increas-
ing in price volatility. That this monotonicity property fails in NREE models (Dávila and
Parlatore, 2023) emphasizes the importance of microfounding competition in addressing
questions of market efficiency.

Our second application identifies the dynamics of informativeness when both fun-
damental and non-fundamental uncertainty vary. Suppose the researcher has access to
a high-frequency dataset of price volatility and trading volume, which are two readily
available quantities. From this hypothetical data, we show how to obtain time series for
(i) the underlying fundamental uncertainty and noise trader volatility; (ii) the market
liquidity; and (iii) the level of price informativeness. Thus, our framework allows the re-
searcher to infer the degree of market efficiency. Under the arguably empirically-relevant
assumption of information-rich markets, a setting our framework accommodates easily,
our identification argument provides a clean set of equations for the evolution of the
variables of interest, which can be straightfowardly computed from observables.

Related literature. A vast literature studies whether prices aggregate “dispersed infor-
mation”, starting from the formulation of NREE in Grossman and Stiglitz (1980). These
papers investigate what determines price informativeness when information is exoge-
nous (Grossman, 1976; Hellwig, 1980) or endogenous (Verrecchia, 1982). We depart
from this literature by defining competitive equilibrium as the large-market limit of a
strategic trading model a la Kyle (1985) and, more recently, Lambert et al. (2018).1 The

1Recent contributions to this strategic trading literature include the study of belief disagreement (Han
and Kyle, 2018; Kyle et al., 2018); more general payoff distributions (Glebkin et al., 2020); wealth effects
in preferences (Glebkin et al., 2023); heterogeneous oligopoly trade (Kacperczyk et al., 2023); the trade-off
between speculation and hedging (Lee and Kyle, 2018); and information externalities (Pavan et al., 2022).
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trading side of our model is a special case of the latter paper, which we extend by al-
lowing endogenous information acquisition. Our main results show that, by considering
large-market limits of strategic equilibria, prices can aggregate dispersed endogenous
information, in contrast to Grossman and Stiglitz (1980).

While we study what makes financial markets efficient, Lee and Kyle (2018) and Kyle
(1989) are concerned with what makes them perfectly competitive. Their definition of
perfect competition is more stringent than ours: it requires investors to trade the same
amount in the large-market limit of a strategic market as they would in NREE. Lee and
Kyle (2018) show that strategic markets become perfectly competitive if and only if the
number of traders grows to infinity and the incentives to speculate vanish relative to
risk-sharing motives. Similarly, in a model with noise traders in place of risk-sharing
needs, Kyle (1989) shows that a strategic model can only become perfectly competitive if
the number of strategic traders grows while the amount of noise also explodes. Viewed
through their lens, our finding of fully-informative prices can be seen as an instance
of imperfect competition vanishing slowly. Importantly, our efficiency result does not
require noise to increase as the market grows.

Because the behavior of price informativeness is remarkably different in our strategic-
trading model compared to NREE, our work has implications for various strands of the
literature, theoretical and empirical. On the theory side, many papers in the NREE
tradition examine how policy changes and structural shifts might impact market effi-
ciency (e.g., Vives, 2017, Dávila and Parlatore, 2021, Buss and Sundaresan, 2023). Our
result suggest some of their conclusions may depend on the competitive environment.
In fact, Kacperczyk et al. (2023) use an oligopoly model to show that equilibrium price
informativeness does depend critically on the distribution of market power.

Empirically, there has been a long history of efforts to identify informativeness from
other market data. One common method is to proxy informativeness by price variation,
particularly its idiosyncratic or firm-specific component (Roll, 1988; Campbell et al.,
2023). Whereas this practice my backfire in NREE models (Dávila and Parlatore, 2023),
we show it is justified in our strategic-trading setting. A second method to identify
informativeness is to consider how well prices forecast future fundamentals (Kothari
and Sloan, 1992; Bai et al., 2016; Kacperczyk et al., 2021; Dávila and Parlatore, 2025).
In this forecasting method, a key assumption is that the “fundamental” to be learned
is precisely a real cash flow (i.e., not inclusive of future prices); by contrast, we do not
need to restrict “fundamentals” to be cash flows alone, because our approach does not
employ cash flow data. This forecasting method also cannot easily accommodate both
time-series and cross-sectional variation without additional assumptions; by contrast,
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our approach does allow arbitrary time-series and cross-sectional dynamics.
Finally, we complement the research on information aggregation in strategic envi-

ronments with common value, such as auctions (Atakan and Ekmekci, 2023) and voting
(Martinelli, 2006). Like us, these papers obtain conditions for aggregate levels of ac-
quired information to be high even when individual incentives for learning vanish. In
the finance literature, three main approaches have also proved successful in circumvent-
ing the Grossman-Stiglitz paradox: adding a source of private value for information
(Vives, 2011, 2014); preventing traders from conditioning trade on prices (Dubey et al.,
1987; Hellwig, 1982; Milgrom, 1981); or explicitly modeling the price-formation pro-
cess (Jackson, 1991). Our paper falls closer to the third tradition, despite adopting very
different assumptions.

2 Model: Strategic Trading with Information Acquisition

We study a static strategic trading model, in the style of Kyle (1985) with endogenous
information-acquisition. After information is acquired, there is an ex-post equilibrium
that is a special case of the results in Lambert et al. (2018). Information-acquisition is
decided ex-ante, subject to a cost for signal precision. In this ex-ante stage, we will study
symmetric equilibria, unless otherwise specified.

A single risky asset with random payoff v is trader in a market with n risk-neutral
strategic traders. In this market, there are also a (competitive) and uninformed market
maker and unmodeled noise traders that submit demand u. We assume that noise trader
demand and fundamentals are independently normally distributed with zero mean (as
a normalization): v ∼ Normal(0,σv), u ∼ Normal(0,σu), and u ⊥ v.

Before trading, traders have an opportunity to collect information about v, which we
will describe shortly. After information collection, strategic trader i has access to a signal
about the security value, θi = v + εi, where εi is the noise in the signal. We assume the
signals θ := (θ1, . . . ,θn) are jointly normally distributed, with noises which are mutually
independent of each other and fundamentals: εi ⊥ ε j and εi ⊥ v. Finally, let σi be the
variance of θi, and note that σi ≥ σv.

The trading protocol is as follows. Each trader submits a market order di, and noise
trader demand u realizes. The market-maker observes aggregate demand D = ∑i di + u
and sets a break-even price given the information in the order flow:

p = E[v|D]. (1)
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If trader i demands di units of the asset and market prices are p, her ex-post profit is:

di (v − p) .

Trader i chooses di to maximize expected profits, conditional on her signal θi. Let Ṽi be
the maximized conditional expected profits in equilibrium, i.e.,

Ṽi := max
di

E [di (v − p) | θi] (2)

A linear trading equilibrium is an equilibrium in which di = αiθi and p = βD, for some
constants αi and β. Lambert et al. (2018) solve for the unique linear trading equilibrium
in this setting, which we describe in the next section.

Prior to trading, information is gathered subject to a cost. For convenience, we will
let traders choose a normalization of information precision, zi. zi ∈ [0,1] is defines as
follows, using the signal variance σi:

σi =
1
2

σv

(
z−1

i + 1
)

(3)

If zi = 0, then σi = +∞, representing a completely uninformative signal. If zi = 1, then
σi = σv, implying that the signal contains no error at all. Indeed, the precision of an
agent’s signal is a monotonic function of zi. The trader solves the following information-
gathering problem maximizing her ex-ante expected profits, net of information costs:

max
zi∈[0,1]

E
[
Ṽi
]
− c(zi), (4)

where c(z) : [0,1] 7→ R+ is a continuously differentiable and strictly convex function
satisfying c(0) = 0, c′(0) ≥ 0, and c′(1−) = +∞. The latter condition is not necessary
for any result, but simplifies the exposition by guaranteeing an interior solution. An
information equilibrium is a collection z := (zi)

n
i=1 such that zi solves (4) for each i.

2.1 Linear trading equilibrium

For any information choice decision, z, we can use the results in Lambert et al. (2018) to
compute the unique linear trading equilibrium.

Lemma 1. (Lambert et al., 2018) There is a unique linear trading equilibrium, which satisfies
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di = αiθi and p = βD, with α := (αi)
n
i=1 and β given by

β =

√
A⊤ΣdiagA

σu
and α =

1
β

A,

where

A = Λ−1Σθv

Λ = 2Σdiag − σv I + σv11⊤

and where

Σdiag = Cov(ε, ε⊤) =


σ1 0 · · · 0
0 σ2 · · · 0
...

... . . . ...
0 0 · · · σn


Σθv = Cov(θ,v) = σv1

Armed with Lemma 1, we can write expected trader profits explicitly. Obtaining a
convenient expression for this ex-ante indirect utility function is critical to solving the
information-gathering problem (4) analytically. The proofs of Lemma 2 and all subse-
quent theoretical results of this section are contained in Appendix A.

Lemma 2. In the unique linear trading equilibrium, we may write ex-ante expected profits

Vi := E[Ṽi] =

√
σvσu

2
zi + z2

i

(1 + z · 1)
√

z · 1 + ∥z∥2
,

where z := (zi)
n
i=1 denotes the vector of normalized signal precisions, i.e., zi =

(
1 + 2σi−σv

σv

)−1.

The indirect utility Vi captures the following, opposing, economic forces. On the one
hand, the individual trader benefits from acquiring information, as they can use that
information to submit informed market orders, which are not perfectly detected by the
market maker due to noise trader demand. Therefore, there is a direct, positive effect of
zi on Vi. On the other hand, there is strategic substitution in information acquisition: the
higher the level of private information, the harder it is to disguise informed order flow as
uninformed demand, reducing the profitability of private information and, as a conse-
quence, information acquisition incentives. This is evident in the denominator Vi. More
deeply, the strategic substitutability in information collection traces back to strategic
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substitutability in trading behavior (other traders’ aggressive trades magnifies the price
impact faced by trader i), as discussed in Hellwig and Veldkamp (2009). The degree of
strategic substitutability matters for our results. Intuitively, if agents view information-
acquisition as only moderately substitutable, then traders will continue collecting it even
if all other traders are well-informed, leading to a large quantity of aggregate informa-
tion.

Before proceeding, let us define the aggregate information content as ∑n
i=1 zi = z · 1.

Many substantive properties will depend on whether this aggregate information is large
or small. For example, we derive price informativeness below as a strictly increasing
function of z · 1. In addition, other statistics like excess volatility, volume, and liquidity
depend critically on aggregate information.

2.2 Information equilibrium

Next, we describe the information equilibrium, where traders choose zi ∈ [0,1] to solve
(4). Recall from Lemma 2 the individual trader’s ex-ante value Vi = V(zi;z), which we
write as a function of zi and z.

Here, we are interested in a symmetric equilibrium, in which z = z∗n1 for some scalar
z∗n. The subscript n in this case indexes the size of the market, rather than the nth trader.
Thus, nz∗n is the “aggregate information” in the economy. Later, we will be interested
in a large market, so we ask what happens to nz∗n as n grows large. In particular, we
denote the situation where limn→∞ nz∗n = +∞ as “full information” because the pooled
version of agents’ information yields an infinitely precise signal. Before taking n → ∞,
let us write down the symmetric equilibrium conditions. As it will be very important in
the remainder of the analysis, let us define

χ := c′(0),

the marginal cost of information at the prior—i.e. the cost of the first unit of precision.
Differentiate V with respect to zi to get

d
dzi

V(zi;z) =

√
σvσu

2

(1 + z · 1)
√

z · 1 + ∥z∥2

[
1 + 2zi − zi(1 + zi)

( 1
1 + z · 1

+
1
2(1 + 2zi)

z · 1 + ∥z∥2

)]
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Define the function fn, n ∈ N, as:

fn(z) :=
d

dzi
V(z;z1)

Then, fn(z∗n) is the marginal benefit of information of all n-traders in a trading equilib-
rium with symmetric information. At an information equilibrium, traders must be on
their first-order condition, so z∗n must satisfy

fn(z∗n) ≤ c′(z∗n), with equality if z∗n > 0. (5)

Notice that limz→0 fn(z) = +∞, so that χ = c′(0) < ∞ guarantees z∗n > 0 for any economy
of size n. On the other hand, if χ = ∞, while individual traders’ FOCs need not hold
with equality, condition (5) still trivially holds with equality, i.e., fn(0) = c′(0) = ∞.

Before studying the large-n limiting economy, let us show that such an asymptotic
analysis is, in some sense, necessary to obtain large information-gathering (hence, price
informativeness and other related results). To do this, we will verify that, as noise van-
ishes and, with it, the benefits of private information, the aggregate amount of acquired
information collapses to zero.

Proposition 1. For any n, aggregate information vanishes if noise vanishes, limσu→0 nz∗n → 0.

The remainder of this section studies the large-n limit and shows that information
collection remains possible in the limit. This includes the possibility that aggregate in-
formation can be arbitrarily large, in contrast to Proposition 1. But first, we recognize the
general result that “large” individual information-collection by itself never occurs. In-
stead, aggregate information efficiency must come from the aggregation of many pieces
of small information.

Proposition 2. As n → ∞, individual information-gathering in a symmetric equilibrium van-
ishes: z∗n → 0.

Proposition 2 results from the strategic substitutability in information-gathering. As
previously argued, as the aggregate level of information converges to infinity, it becomes
impossible for individual traders to disguise their demand among noise, which leads the
benefit of information acquisition to go to zero. Despite the fact that individuals collect
vanishingly-small information in a large economy, our main result shows that aggregate
information can be arbitrarily large.
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Theorem 1. As n → ∞, aggregate information nz∗n satisfies the following:

1. If χ = ∞, then nz∗n → 0.

2. If χ ∈ (0,∞), then nz∗n → Z∗, where Z∗ is the unique positive solution to Z(1 + Z)2 =

χ−2 σvσu
2 .

3. If χ = 0, then nz∗n → ∞.

Theorem 1 delivers the key result that any level of aggregate information is achievable
in the large market equilibrium. It shows that aggregate information is an increasing
function of the following sufficient statistic:

Γ :=
√

σvσu

χ
. (6)

By moving χ from 0 to ∞, the statistic Γ spans all possibilities, and so similarly Z∗ can
take any value. Note that the equilibrium level of aggregate information is independent
of the details of information cost, c(·), up to the marginal cost of information around the
prior, χ. This has two major implications. The first one is substantive: it is possible to
generate a very high level of price informativeness even when it is arbitrarily expensive
to produce a precise signal, as long as the first piece of information is relatively cheap.
The second one is technical: as information costs are difficult to observe, this detail-free
characterization of the level of information is advantageous, compared to expressions
that rely heavily on the shape of c(·)—which arise in the case of NREE models. Theorem
1 adds to the literature by establishing an equilibrium with arbitrarily large information,
and completely characterizing informativeness as a function of χ.

It is instructive to understand why χ = 0 is necessary and sufficient for an arbitrar-
ily informative equilibrium. Although the details in Theorem 1 naturally depend on
the simple environment we study, the possibility of full information is more general.
First, the necessity of χ = 0 is straightforward: as the level of aggregate information
goes to infinity, information swamps the effect of noise and traders cannot hide their
informed trades anymore, leading the value of information to decline to zero. Therefore,
the only way that aggregate information can be obtained in the limit is if it is always
worthy to acquire a small bit of information, even when the profits of doing so approach
zero—implying that the cost of a small piece of information must be arbitrarily small.
On its turn, sufficiency follows from a very general property of trading equilibria: the
marginal value of the first piece of information remains positive for any level of aggre-
gate information. Under this property and sufficient continuity of the marginal value

10



of information, one can obtain that any sequence of symmetric-information equilibria
converges to an unbounded level of acquired information.2

Fixed information costs. For comparison, Appendix B studies the same model with a
fixed information cost. With fixed costs, an equilibrium with a large quantity of aggre-
gate information can only emerge if the entire cost function vanishes. This stands in stark
contrast to our result here that only the marginal cost at zero matters. The reason: with
fixed costs, the number of informed traders stabilizes as n → ∞, and so the quantity of
aggregate information stabilizes too.

How fast does aggregate information grow? In the results above, what matters for the
speed of aggregate information accumulation is the rate at which information-collection
vanishes at the individual level. We characterize this rate of convergence in Appendix
A.6. This then directly tells us how fast aggregate information nz∗n explodes as the
market grows. For example, we show that quadratic information costs imply aggregate
information explodes at the same rate as n3/5. A takeaway from this analysis is that,
if χ = 0, full information can obtain in a large economy even if noise vanishes as the
economy grows.3

3 Liquidity, Efficiency, Volatility, and Volume

This section accomplishes two main goals. First, it establishes how important market
quantities—liquidity, price informativeness, price volatility and trading volume—co-
move in our model, which is helpful to understand the implications of our framework
to the functioning of markets. Second, it contrasts the behavior of those variables in our
large-limit equilibrium with their behavior in NREE models.

2To see that this property is sufficient, let d
dz Vn(z; Z) denote the individual trader marginal value func-

tion in a symmetric equilibrium with n traders, where z is the trader’s private information choice and Z
is the aggregate information. For any compact set, assume the sequence ( d

dz Vn) is uniformly convergent
and each of the functions is continuous. Finally, assume infn

d
dz Vn(0; Z) > 0, for any finite Z.

If (a subsequence of) the aggregate level of information converges to a finite constant, i.e., nzn → Z∗ < ∞,
and thus zn → 0, we obtain the following contradiction: 0 < limn→∞

d
dz Vn(0; Z∗) = limn→∞

d
dz Vn(zn;nzn) =

limn→∞ c′(zn) = c′(0) = 0, where the first limit holds by uniform convergence of d
dz Vn, and the second

equality follows since c′(0) = 0 implies that zn > 0 along any sequence.
3In particular, a model with χ = 0 has full information emerging as n → ∞ even if noise

√
σu vanishes

at any rate slower than n−3/2. This sharply contrasts with the case χ ∈ (0,∞), in which case vanishing
noise implies vanishing information. For related reasons, García and Urošević (2013) and Kovalenkov and
Vives (2014) resort to the study of large-market limits where noise grows large with the market rather than
vanishing or remaining constant.
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We start by deriving a set of results for prices, demand, and other objects that hold
for any symmetric equilibrium z∗n.

Lemma 3. Let z∗n denote a symmetric equilibrium information acquisition in the economy with
n strategic traders. Then,

βn =

√
σv

2σu

√
nz∗n(1 + z∗n)
(1 + nz∗n)2

Dn =

√
2σu

σv

√
nz∗n

1 + z∗n

( 1
n

n

∑
i=1

θi

)
+
√

σueu

pn =
nz∗n

1 + nz∗n

( 1
n

n

∑
i=1

θi

)
+

√
σv

2

√
nz∗n(1 + z∗n)
1 + nz∗n

eu,

where eu = u/
√

σu ∼ Normal(0,1). Let Z∗ := limn→∞ nz∗n ∈ [0,∞] be the large-n limit of
aggregate information. Then, we have that

1
n

n

∑
i=1

θi → v +

√
σv

2Z∗ eθ,

in distribution, where eθ ∼ Normal(0,1) is independent of v and u. Consequently, the large-n
limiting equilibrium objects are, in distribution,

lim
n→∞

βn =

√
σv

2σu

√
Z∗

1 + Z∗

lim
n→∞

Dn =
√

2σu

[√
Z∗ v√

σv
+

eθ + eu√
2

]
lim

n→∞
pn =

√
σv

√
Z∗

1 + Z∗

[√
Z∗ v√

σv
+

eθ + eu√
2

]
.

In Appendix B.1, we also prove an analogous version of Lemma 3 for an asymmetric
equilibrium where each trader chooses to be fully-informed with probability π∗

n, which is
the type of equilibrium that arises with fixed information costs. The results are identical.

We now define the following key measures. For simplicity, we define them directly
in the large-n economy, as all of our analysis will be done there.

Definition 1. Liquidity L is the inverse of the price impact of demand, i.e.,

L :=
1

limn→∞ βn
.
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Definition 2. Price informativeness I is the precision of the fundamental given the price, i.e.,

I :=
1

Var
[
v | limn→∞ pn

]
Definition 3. Price volatility V is the unconditional variance of the price, i.e.,

V := Var
[

lim
n→∞

pn
]

Definition 4. Trading volume D is the expected absolute equilibrium demand, in dollars:

D := E
[∣∣ lim

n→∞
pnDn

∣∣]
By combining the results of Lemma 3 with the definitions above, and using properties

of the bivariate normal distribution, we immediately obtain the next proposition.

Proposition 3. In the large-n limit of symmetric equilibria, the measures of liquidity, price
informativeness, price volatility, and trading volume are given by the following:

(liquidity) L =

√
2σu

σv

1 + Z∗
√

Z∗

(informativeness) I =
1 + Z∗

σv

(volatility) V = σv
Z∗

1 + Z∗

(volume) D =
√

2σuσvZ∗

We use the results above to characterize markets across various specifications for
information costs, noise, and fundamental uncertainty.

The magic of markets. In a full-information economy, Z∗ = ∞, the results of Proposi-
tion 3 specialize to L = ∞ (perfect liquidity), I = ∞ (fully informative prices), V = σv (all
information embedded in prices), and D = ∞ (infinite volume). These results hold re-
gardless of the amount of fundamental uncertainty σv and the amount of noise σu, even
if they are arbitrarily small. We refer to our collection of results, which arise when χ = 0
characterizes information costs, as restoring the “magic of markets.” If χ = 0, markets
generically aggregate dispersed information, despite information being endogenous.

Given the novelty of this “magical markets” outcome, let us pause to highlight the
differences from perfectly competitive noisy rational expectations equilibria (NREEs).

13



Appendix C studies a version of such an NREE with endogenous information, as in
Verrecchia (1982), and shows that L = ∞ (perfect liquidity), I = ∞ (fully informative
prices), and V = σv (all information embedded in prices) only arise in some limiting
cases. In particular, the magical markets outcomes only arise in the risk-neutral limit,
or if σv → 0, or if σu → 0 (and additionally the information cost function has c′(0) = 0).
That is, no information cost leads to generically magical markets in an NREE.4

Markets under partial efficiency. We continue the analysis by next considering the
partial efficiency case in which χ > 0. We investigate the inter-relationships between the
various market-based measures through a series of exercises. To do this, we will use the
expressions for the measures in Proposition 3, along with Theorem 1’s characterization
of Z∗ as a monotonic function of the sufficient statistic Γ :=

√
σvσu
χ .

First, Figure 1 illustrates how the market measures vary with χ = c′(0). As χ in-
creases, holding all else equal, aggregate information Z∗ falls. The patterns in the other
market-based measures follow: liquidity L is U-shaped in χ, while informativeness I ,
volatility V , and volume D are strictly decreasing.

For instance, liquidity L is U-shaped in χ for the following reason. High information-
acquisition (low χ) implies a minimal amount of adverse selection because noise traders
are impounding a minimal impact on the price relative to informed traders. Market
makers know this and set the price appropriately, leading to liquid markets. Low
information-acquisition (high χ) also means minimal adverse selection and liquid mar-
kets, because the market maker is sure that most trades are uninformed.

Let us compare these results to a competitive NREE with endogenous information.
Additional details on this NREE are contained in Appendix C, including our calculation
of corresponding market measures for price informativeness I , volatility V , and liquidity
L (in the NREE, volume is not well-defined). Note that the NREE additionally has a risk
aversion parameter γ that we set to 3 always.

4 These limiting results are already known in one way or another. For instance, regarding price in-
formativeness in competitive NREEs: either equilibrium ceases to exist for σu small enough (Grossman
and Stiglitz, 1980), or equilibrium informativeness is bounded above for all σu (Verrecchia, 1982). Verrec-
chia (1982) says, for instance, “As V [equivalent to our σu] approaches infinity, price communicates no
information despite traders’ corresponding increased information acquisition activities. As V approaches
zero, only the most risk tolerant of traders will continue to acquire information because of the increased
informativeness of price; at some point the private incentives to acquire information are eliminated, which
implies the nonexistence of a competitive equilibrium. Therefore, the informativeness of price is bounded
away from infinity even as noise goes to zero” (p. 1425). The reason we, unlike Verrecchia (1982), find
that price informativeness can be unbounded in an NREE as σu → 0 is that we allow information costs to
satisfy c′(0) = 0. In that case, it is true that information-collection vanishes as σu → 0, but the noise in the
price vanishes faster, allowing fully-revealing prices asymptotically.

14



Figure 1: Measures as a function of χ = c′(0). The volatility measure is scaled to fit on the same scale as
the other measures. Baseline parameters: σu = 0.5, σv = 0.5.

Figure 2 displays the NREE for two different information cost functions:

NREE, left panel: c(z) =
κ

2
( z

1 − z
)2

NREE, right panel: c(z) = χ
( z

1 − z
)

The left panel thus uses a cost function that satisfies c′(0) = 0 for any κ, and yet “magical
markets” do not emerge, except as κ → 0. To be clear, this is substantially more extreme
than our strategic-trading model with χ → 0, because κ scales the entire cost function;
essentially, taking κ → 0 reduces all information costs to zero. The right panel uses a
cost function that satisfies c′(0) = χ, hence serving as a reasonable comparison to the
strategic-trading model with partial efficiency (again, this comparison is not perfect be-
cause the parameter χ in the strategic-trading model is only the marginal cost at z = 0,
whereas χ in the NREE scales the entire information technology). Despite these differ-
ences in the left and right panels’ cost functions, the results are qualitatively identical: in
an NREE, price informativeness and liquidity are falling in the information cost, while
volatility is rising except in highly efficient markets. Comparing this to the strategic-
trading model in Figure 1, the behavior of liquidity and volatility is exactly the opposite
in an NREE, except in the case of highly efficient markets (i.e., when information costs
are low). Thus, one potential “test” of our model, distinguishing it from an NREE, is to
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Figure 2: Measures as a function of information costs in an NREE. In the left panel, information costs are
parameterized by κ. In the right panel, information costs are parameterized by χ. The volatility measure
is scaled to fit on the same scale as the other measures. Baseline parameters: σu = 0.5, σv = 0.5, γ = 3 (risk
aversion). Note that equilibrium in the right panel requires χγ < 1, where γ is risk aversion, which is why
the upper limit of χ is 0.3. See Appendix C for more details on the NREE.

identify a shock to information technology and observe the response of volatility and (if
it is available) a price-impact measure of liquidity.

Price informativeness and volatility. We now focus on price informativeness, because
it is a natural measure of market efficiency. Given that informativeness is not directly
observable, how might one infer it from market data?

A common thread in the various empirical literatures is that price variation, particu-
larly its idiosyncratic or firm-specific component, proxies well for price informativeness.
Dávila and Parlatore (2023) challenge this approach, arguing that price volatility and
price informativeness are non-monotonically related in a class of NREEs. We show next
that considering strategic trading reestablishes the common empirical wisdom: price
volatility V is positively correlated with informativeness I under some conditions.5

5Technically, our price informativeness measure differs from the one used in Dávila and Parlatore
(2023), but this is immaterial. They first define an “unbiased signal about the innovation to the asset
payoff contained in the price” (p. 554). In our large-n strategic-trading model this signal would be

p̃ := v +
√

σv
Z∗
( eθ+eu√

2

)
. (In their notation, this is denoted by π.) Based on this price-based signal, they then
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In our strategic-trading model, the relation between I and V is straightforward. Com-
bining the expressions for the two objects, we obtain

V = σv −
1
I (7)

Since σv is independently present in equation (7), let us ignore it for now as a potential
driver, instead considering only variation caused by shifts in σu or χ. Ignoring σv, equa-
tion (7) immediately implies that volatility is strictly increasing in price informativeness
when the shifter is either σu or χ or a combination of the two. Dávila and Parlatore
(2023) perform an analogous exercise in an NREE and, in contrast to our model, report a
non-monotonic V-I relation that we will reproduce shortly (see their Propositions 2-3).6

Figure 3 displays the volatility-informativeness relation in our model (left panel) and
an NREE (middle and right panels). The left panel documents the result proved above:
whether the driver is σu or χ, the V-I relation is a unique strictly increasing curve. The
middle panel, which is an NREE with exogenous information a la Dávila and Parlatore
(2023), displays the non-monotonicity inherent to NREEs. (To make this plot, note that
we have separately shifted noise σu and signal precision z∗, which is exogenously given
for that model.)

There are two key differences between our strategic-trading model and an exogenous-
information NREE. One difference is the competitive environment (strategic trading ver-
sus perfect competition), and the other difference is the information-acquisition (endoge-
nous versus exogenous). To pinpoint the source of discrepancy in the V-I relations, we
add endogenous information to the NREE. The right panel of Figure 3 shows the result:
a very similar non-monotonic pattern emerges in an endogenous-information NREE.7 In

define informativeness as

Ĩ := Var[ p̃ | v]−1 =
Z∗

σv

(In their notation, this is denoted by τπ .) Notice that Ĩ is one-to-one with our measure I = 1+Z∗
σv

. Thus,
the discrepancy in our informativeness measures cannot explain the opposite volatility-informativeness
relation we find relative to Dávila and Parlatore (2023).

6In unreported results, we examine how V and I co-move when σv is the shifter. We show that
the two measures always move inversely, across both the strategic-trading and NREE models. Hence,
any discrepancies between these classes of models must come from the other drivers, namely noise and
information technology. Section 4 allows both σu and σv to be time-varying and shows how to extract
price informativeness under such conditions.

7To create the third panel of Figure 3, we have used the information cost function c(z) = κ
2 (

z
1−z )

2, which
satisfies c′(0) = 0. In earlier exercises involving the NREE, we also explored the alternative cost function
c(z) = χ( z

1−z ), which satisfies c′(0) = χ. The reason for picking this particular cost function here is purely
technical and aesthetic: if c′(0) > 0 in an NREE, then price informativeness I as a function of σu will be
bounded. In that case, the non-monotonicity in the V-I relation would not easily be observed graphically,
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Figure 3: Volatility-informativeness relation. Baseline parameters: σu = 0.5, σv = 0.5, χ = 0.1. In the
NREE, risk aversion is γ = 3 and the information cost parameter is κ = 1. For the NREE with exogenous
information, the signal precision z∗ is held fixed whenever σu varies. See Appendix C for more details on
the NREE.

summary, our V-I relation is substantively different from similar results in the NREE
literature, and the source of discrepancy is the nature of competition in trade.

To explore this differential competition in more detail, let us now dive into one im-
portant comparative static behind Figure 3, namely the two environments’ responses to
noise σu. Figure 4 plots the various market measures by varying σu in the strategic-
trading model (left panel) versus the NREE (right panel).

A critical observation from Figure 4 is that price informativeness behaves oppositely
across the two environments. In an NREE, more noise increases information collec-
tion but not sufficiently to offset the direct effect of noise introduced into the price (see
Verrecchia, 1982, Corollary 3). In our model, noise similarly raises incentives to collect
information, but it also scales strategic incentives to trade more aggressively on infor-
mation. The second force, unique to strategic-trading models, increases trader profits,
which then further encourages more information-acquisition ex-ante. A way to see this
second force mathematically is to notice that the price pn in Lemma 3 is independent
of σu, holding information fixed; as more noise traders arrive, strategic traders trade
aggressively enough to keep the information content in prices fixed. Because of this
aggressive trading, the net effect of noise on prices comes solely through information,
meaning I is increasing in σu via Z∗.

since the solid blue curve would simply be truncated at its nadir.

18



Figure 4: Measures as a function of σu. The volatility measure is scaled to fit on the same scale as the other
measures. Baseline parameters: σu = 0.5, σv = 0.5, χ = 0.1. In the NREE, risk aversion is γ = 3 and the
information cost parameter is κ = 1. See Appendix C for more details on the NREE.

Now, consider price volatility V in Figure 4. In our model, higher σu unambiguously
raises information Z∗ and thus unambiguously raises V . In an NREE, higher σu can have
an ambiguous effect on V , but we know that it must increase volatility at high enough
levels of noise. At such high levels of noise, further increases in σu raise volatility V
in both the Kyle and NREE models but push informativeness I in different directions.
By contrast, at low levels of noise, volatility responds oppositely to σu in the Kyle and
NREE models, meaning the volatility-informativeness relations coincide between the
environments only because both volatility and informativeness behave oppositely.

4 Identifying Price Informativeness

The discussion on the relationship between price volatility and informativeness, at the
end of the last section, reveals an important tension. On one hand, as shown in Figure
3, if changes in price volatility are due to non-fundamental noise, we can identify from
these changes whether prices have become less or more informative. On the other hand,
if changes to volatility arise from movements in fundamental uncertainty, one could
derive the wrong conclusions: indeed, when σv increases, our model predicts a decrease
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in informativeness. A natural question, then, is how can one use observable data to
identify price informativeness in our model? In this section, we provide an answer to
that question that differs from the extant literature.

Disentangling changes in fundamental and non-fundamental uncertainty is essential
to measure changes in informativeness. In what follows, we will demonstrate how to de-
compose variation in widely available data into these underlying, unobservable shocks.
To formalize this approach, we consider an econometrician who can observe a dataset
consisting of time series of trading volume D and price volatility V . The goal of the
econometrician is to estimate, from the shifts in the two available variables, shocks to fun-
damental and non-fundamental volatility, as well as changes in price-informativeness—
i.e., variation in σv, σu and I , respectively.

A first observation is that price volatility, trading volume, and liquidity are tightly
connected by the shape of the pricing function. Indeed, the expressions in Proposition 3
imply

L =
D
V .

Given data on volatility and volume, we can use our model to infer liquidity, even though
it may be hard to measure directly.

Going forward, it is thus equivalent to assume that the dataset contains observations
of liquidity and volatility, rather than volume and volatility. Formally, we will define
the set of observables to be {Lt,Vt}t∈{0,1,...,T}. Our results will rely on two identifying
assumptions, imposed in sequence. The first assumption allows us to describe exactly
the evolution of the variables of interest as a function of the evolution of observables, up
to the level of aggregate precision in the market, which is unobservable.

Assumption 1. Information costs—χ—do not change throughout the dataset.

Assumption 1 allows us to attribute any changes in observables to variation in fun-
damental and non-fundamental noise. It states that while beliefs about fundamentals
and non-fundamental demand may change at a high frequency, the same does not hold
for information costs, which tend to move only slowly.

Proposition 4. Under Assumption 1, the evolution of informativeness, fundamental uncertainty,
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non-fundamental noise, and aggregate information follows:

d logI = − Z
1 + 2Z

d logV +
1 + Z

1 + 2Z
d logL, where I0 =

Z0

V0
(8)

d logσv =
2Z

1 + 2Z
d logV − 1

1 + 2Z
d logL, where σv,0 =

1 + Z0

Z0
V0 (9)

d logσu =
1 + Z
1 + 2Z

d logV +
2 + 3Z
1 + 2Z

d logL, where σu,0 =
V0L2

0
2(1 + Z0)

(10)

d log Z =
1 + Z
1 + 2Z

d logV +
1 + Z

1 + 2Z
d logL, given Z0 (11)

Proposition 4 provides a method to calculate precisely how price informativeness,
uncertainty, and aggregate information vary using observable variables. Given the ob-
servable dataset {Lt,Vt}, the only additional object one needs to implement Proposition
4 is the initial level of aggregate information, Z0. While Z0 may be hard, if not im-
possible, to observe or estimate directly, one can perform sensitivity analyses: sample
the input Z0 from a statistical prior, compute paths for (It,σv,t,σu,t, Zt)t≥0, and then ask
whether the range of paths (one path for each Z0) shares some common properties. Of
course, the outcome depends on the data for {Lt,Vt} as well as the choice of prior for
Z0, but the process is easily implementable with Proposition 4.

What are some reasonable choices for Z0? To get a sense, consider the following back-
of-the-envelope calculation. Suppose there are n = 100 traders, each of whom obtains
information with signal-to-noise ratio of 1

50 (this is z
2(1−z) in the model). In this case,

which is a case of a small market with small information-collection, total information is
Z = nz = 100 × 1

26 ≈ 4. Using calculations of this type, one can reason toward a lower
bound for Z0.

Conversely, Z0 could be very high. A second identifying assumption allows us to
approximate the dynamics of informativeness in an information-rich market.

Assumption 2. The level of aggregate information in the market is high—i.e. Z ≈ ∞.

Corollary 1. Under Assumption 1 and Assumption 2, the evolution of informativeness, funda-
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mental uncertainty, and non-fundamental noise can be approximated as follows:

d logI = −1
2

d logV +
1
2

d logL+ o(Z−1) (12)

d logσv = d logV + o(Z−1) (13)

d logσu =
1
2

d logV +
3
2

d logL+ o(Z−1) (14)

These expressions allow for immediate implementation of the empirical strategy on
readily available data. Assumption 2 begs the question of what assuming high Z entails
about individual traders’ information level. Another back-of-the-envelope calculation
is as follows: consider what level of individual signal precision one needs to obtain

Z
1+2Z > 0.495 (which ensures that the approximation of d logI deviates at most 1% from
its exact value). To obtain this level of aggregate information Z ≈ 50 in a market with
n = 1000 traders, each trader’s information needs only to have a signal-to-noise ratio
of 1

40 . Even with the previous back-of-the-envelope calculation with Z ≈ 4, the exact
expression for d logI in only deviates from its high-Z approximation by 5.5%. Thus,
Corollary 1 gives a reasonably accurate representation of informativeness dynamics.

It is instructive to compare our results with Dávila and Parlatore (2025). That paper
develops a strategy to identify the level of price informativeness by running a regression
of current prices on future asset payoffs, a valid approach in a large class of models—
including ours—when primitives are assumed to be constant. Our approach differs
from theirs in two ways. First, we are interested in identifying time-variation in price
informativeness, which arises exactly from changes in primitives: our key assumption
is that movements in informativeness follow from high-frequency shifts in fundamental
uncertainty and non-fundamental noise. Second, instead of using the level of prices and
asset payoffs, we use two observable quantities—volatility and volume—to disentangle
the effects of each shock on informativeness.

5 Conclusion

We examine information efficiency in the large-market limit of a strategic trading model.
Our key theoretical results characterize explicitly the mapping between information tech-
nology and aggregate information. In particular, if the marginal cost of information is
zero at the prior, then aggregate information is infinitely-large and prices are efficient.
We think of this result as restoring the “magic of markets” because it captures the well-
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understood potential for prices to aggregate dispersed information, but in a setting with
endogenous information-acquisition. This core result also implies our framework is
better-suited to study the determinants of information efficiency than perfectly compet-
itive models that preclude such a “magic of markets” result.

We go on to characterize additional differences between our framework and the liter-
ature on noisy rational expectations equilibria, focusing on the co-movements between
conventional measures like price informativeness, liquidity, and volatility. The differ-
ences we uncover highlight a novel sense in which the assumption of perfect competition
is not innocuous.

Finally, we illustrate how to identify price informativeness from the data, using one
of two approaches: (i) proxying it by price volatility, which is valid assuming fundamen-
tal risk is constant; or (ii) using volatility and volume, two easily observable variables,
paired with an assumption of information-rich markets, to back out the dynamics of
fundamental risk and non-fundamental noise, hence the dynamics of informativeness.
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A Proofs and derivations

A.1 General expressions for equilibrium objects

We collect here some formulas for important equilibrium objects. We have the following
general formulas from Lemma 1:

β =

√
A⊤ΣdiagA

σu

α =
1
β

A

D = α · θ + u

p = βD

where θ is the vector of all agents’ signals. And in the process of proving Lemma 2, we
proved that

A =
z

1 + z · 1

A⊤ΣdiagA =
σv

2
z · 1 + ∥z∥2

(1 + z · 1)2

For reference, note that plugging these expressions for A into the expressions for α and
β delivers

β =

√
σv

2σu

√
z · 1 + ∥z∥2

1 + z · 1

α =

√
2σu

σv

z√
z · 1 + ∥z∥2

A.2 Indirect utility function (Proof of Lemma 2)

We now use Lemma 1 to calculate β and α explicitly. Applying the Sherman-Morrison
formula to the definition of Λ, we obtain:

Λ−1 = ∆−1 − σv

1 + σv ∑n
k=1

1
δk

∆−111⊤∆−1

where:
∆ = diag(δ1,δ2, . . . ,δn) and δi = 2σi − σv

1



We can then compute A:

A = Λ−1Σθv = σv∆−11 − σ2
v

1 + σv ∑n
k=1

1
δk

∆−111⊤∆−11

This can be simplified as follows. The first term is:

σv∆−11 = σv


1
δ1
1
δ2
...
1
δn


For the second term, recall that 1⊤∆−11 = tr(∆−1) = ∑n

i=1
1
δi

. Thus, the second term is:

σ2
v ∑n

i=1
1
δi

1 + σv ∑n
i=1

1
δi


1
δ1
1
δ2
...
1
δn


Putting these pieces together, we have

A =
σv

1 + σv ∑n
i=1

1
δi


1
δ1
1
δ2
...
1
δn


We can now easily calculate A⊤ΣdiagA:

A⊤ΣdiagA =
σ2

v(
1 + σv ∑n

i=1
1
δi

)2

n

∑
i=1

σi

δ2
i

To obtain the formulas for A and A⊤ΣdiagA in Appendix A.1, we need to write them in
terms of zi and z := (zi)

n
i=1. To do this, simply note from equation (3) that

σv

δi
=

σv

2σi − σv
= zi

σiσ
2
v

δ2
i

= σiz2
i =

1
2

σv

(
zi + z2

i

)

2



Making these replacements, we obtain the formulas in Appendix A.1.
We can finally recover the ex-ante expected profits Vi. To do this, we will use the law

of iterated expectations, implying that Vi = E[Ṽi] = E
[
E[di(v − p) | θi]

]
= E

[
di(v − p)

]
.

Using the expressions for di, p, and D in Appendix A.1, we may write the ex-post
realized profit

di(v − p) = αiθi

[
v − β

( n

∑
k=1

αkθk + u
)]

Take the prior expectation of this realized profit:

Vi = αi

{
E[vθi]− β

n

∑
k=1

αkE[θiθk]− βE[uθi]

}

= αi

{(
1 − β∑

k,i
αk

)
σv − βαiσi

}

where we have used the statistical properties of the signals. Now, plug in α and β from
the expressions in Appendix A.1. Substituting those objects and doing extensive algebra
yields:

Vi =

√
σvσu

2
zi + z2

i

(1 + z · 1)
√

z · 1 + ∥z∥2

A.3 Grossman-Stiglitz paradox (Proof of Proposition 1)

For clarity, let us write z∗n(σu) and fn(z;σu) to emphasize the dependence on noise. Note
that limσu→0 fn(z;σu) = 0 for any fixed z > 0. Note also that fn(z;σu) is uniformly con-
tinuous in z on [ϵ,1] for any ϵ > 0.

Now suppose, leading to contradiction, that z∗n(0+) := limσu→0 z∗n(σu) > 0. Because of
the above facts on fn, and using the conjecture z∗n(0+) > 0 we have limσu→0 fn(z∗n(σu);σu) =

fn(z∗n(0+);0) = 0. But this can only be consistent with the equilibrium condition (5) if
z∗n(0+) = 0, since c′(z) > 0 for all z > 0. This contradiction shows that nz∗n(0+) =

z∗n(0+) = 0.

A.4 Vanishing individual information (Proof of Proposition 2)

First, consider the case χ = ∞. Given strict convexity of c and the fact that fn(z) < ∞ for
all z > 0, the only possible solution to equation (5) is z∗n = 0.
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Now, suppose χ < ∞, so that z∗n > 0 for each n. Consider a convergent sub-sequence
(nt)t≥0 such that limt→∞ z∗nt

= z∗∞ , 0. If so, we have limt→∞ ntz∗nt
= +∞. Thus, we

have limt→∞ fnt(z
∗
nt
) = 0. By equation (5), we must also have limt→∞ c′(z∗nt

) = 0. Since c
is strictly convex, we have by the monotone convergence theorem 0 = limt→∞ c′(z∗nt

) =

c′(z∗∞). But strict convexity also implies c′(z) > 0 for all z > 0, contradicting z∗∞ > 0. This
argument works for any sub-sequence, and so limn→∞ z∗n exists and is equal to zero.

A.5 Aggregate information characterization (Proof of Theorem 1)

Claim 1 is already proved in Proposition 2, which showed that z∗n = 0 for each n when
χ = ∞.

Next, we prove claim 3 by contradiction. By Proposition 2, we know that z∗n is a
positive sequence that converges to zero. Suppose nz∗n → Z < ∞. Then, we have
limn→∞ fn(z∗n) > 0. On the other hand, the fact that z∗n → 0 implies by the monotone
convergence theorem that c′(z∗n) → χ = 0. But, along the sequence, we have that (5)
holds with equality, which contradicts the fact that fn(z∗n) and c′(z∗n) have different limit
points.

Finally, we prove claim 2 using a similar method. By Proposition 2, we have c′(z∗n)→
χ > 0, which implies fn(z∗n)→ χ by equation (5). Now, let us show that Z := limn→∞ nz∗n =

Z∗. Suppose, leading to contradiction, that Z , Z∗. Taking the limit n → ∞ of fn(z∗n),
using z∗n → 0 and nz∗n → Z, we obtain

lim
n→∞

fn(z∗n)

= lim
n→∞

√
σvσu

2 (1 + 2z∗n)

(1 + nz∗n)
√

nz∗n(1 + z∗n)

[
1 − z∗n(1 + z∗n)

1 + 2z∗n

( 1
1 + nz∗n

+
1
2(1 + 2z∗n)

nz∗n(1 + z∗n)

)]
=

√
σvσu

2
1

(1 + Z)
√

Z

If Z , Z∗, then this result differs from χ, a contradiction.

A.6 Rate of convergence if χ = 0

Here, we characterize the rate at which information-collection vanishes at the individual
level. To formalize this question, note that there exists some ζ̃ ≥ 0 such that z∗nnζ̃ → 0 (by
Proposition 2). Let ζ be the largest such parameter, i.e., ζ := sup{ζ̃ ≥ 0 : limn→∞ z∗nnζ̃ =

0}; this ζ is the relevant convergence rate. By Theorem 1, we have that ζ = 1 if χ ∈ (0,∞),
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whereas ζ ∈ (0,1] if χ = 0. And based on the results in the paper, this is all we can say
about the rate of convergence in the χ = 0 case.

To characterize ζ when χ = 0, we will specialize to a class of cost functions that
share the following property: limz→0

c′(z)
zγ → κ, for some γ > 0 and κ > 0. This class of

functions automatically satisfies c′(0) = 0 and includes, for instance, all power function
costs c(z) ∝ z1+γ, for γ > 0, or any function such that the dominant term as z → 0 is such
a power. In that case, we find ζ = 3

3+2γ , so that the rate of convergence depends on the

curvature of information costs at the prior, namely γ = limz→0
zc′′(z)
c′(z) .

Proposition A.1. Let c(z) be such that limz→0
c′(z)

zγ = κ for some γ > 0 and κ > 0. Then,
z∗n → 0 at the rate n−3/(3+2γ), in the following sense:

n3/(3+2γ)z∗n → κ−2/(3+2γ)
(σvσu

2

)1/(3+2γ)
.

Proof. By Proposition 2, we have c′(z∗n)/(z∗n)γ → κ. By equation (5), this implies fn(z∗n)/(z∗n)γ →
κ must hold.

Let Z ∈ (0,∞), and let ζ ∈ (0,1) be an arbitrary constant. Substitute z = n−ζ Z into
fn(z)/zγ to get

fn(n−ζ Z)
n−γζ Zγ

=

√
σvσu

2 (nγζ Z−γ + 2n−(1−γ)ζ Z1−γ)

(1 + n1−ζ Z)
√

n1−ζ Z(1 + n−ζ Z)

[
1 − n−ζ Z(1 + n−ζ Z)

1 + 2n−ζ Z

( 1
1 + n1−ζ Z

+
1
2(1 + 2n−ζ Z)

n1−ζ Z(1 + n−ζ Z)

)]
.

By inspection, the term in square brackets converges to 1. The leading term converges
to κ if and only if ζ = 3

3+2γ and Z = [κ−2(σvσu/2)]1/(3+2γ). [Algebra: we need

σvσu

2
(nγζ Z−γ + 2n−(1−γ)ζ Z1−γ)2 ∼ κ2(1 + n1−ζ Z)2n1−ζ Z(1 + n−ζ Z)

σvσu

2
n2γζ Z−2γ ∼ κ2n3−3ζ Z3

σvσu

2
∼ κ2n3−3ζ−2γζ Z3+2γ

which delivers the result.

Proposition A.1 tells us how fast aggregate information nz∗n explodes as the market

grows. The answer: nz∗n ∼ (σvσu
2κ2 )

1
3+2γ n

2γ
3+2γ for large n. If the information technology is

highly curved (high γ), we should expect to see market information grow quickly with
market size.
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An additional takeaway from Proposition A.1 is that full information can obtain in
a large economy even if noise vanishes as the economy grows. In particular, a model
with χ = 0 has full information emerging as n → ∞ even if noise

√
σu vanishes at any

rate slower than n−3/2. This sharply contrasts with the case χ ∈ (0,∞), as discussed
following Theorem 1. If χ ∈ (0,∞), vanishing noise implies vanishing information.

A.7 Symmetric equilibrium (Proof of Lemma 3)

In a symmetric equilibrium, z = z∗n1, and so z · 1 = nz∗n and ∥z∥2 = n(z∗n)2. Substituting
these results into the expressions in Appendix A.1, we obtain

βn =

√
σv

2σu

√
nz∗n(1 + z∗n)
(1 + nz∗n)2

αn =
1
n

√
2σu

σv

√
nz∗n

1 + z∗n
1

Then, noting eu := u/
√

σu ∼ Normal(0,1), we have

Dn =

√
2σu

σv

√
nz∗n

1 + z∗n

θ · 1
n

+
√

σueu

pn =
nz∗n

1 + nz∗n

θ · 1
n

+

√
σv

2

√
nz∗n(1 + z∗n)
1 + nz∗n

eu

We will now take the limit n → ∞. First, note the fact that θ = v1 + ε, where

ε ∼ Normal
(

0,
1
2

σv
1 − z∗n

z∗n
In

)
in a symmetric equilibrium. Therefore,

ε · 1
n

∼ Normal
(

0,
1
2

σv
1 − z∗n

nz∗n

)
and so using the definition Z∗ := limn→∞ nz∗n and the result that z∗n → 0 (Proposition 2),
we have by the Central Limit Theorem,

θ · 1
n

→ v +

√
σv

2Z∗ eθ

in distribution, where eθ ∼ Normal(0,1). Consequently, regardless of whether Z∗ is finite
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or infinite, we have the following limits in distribution,

Dn →
√

2σu

(√
Z∗ v√

σv
+

eθ + eu√
2

)
pn →

√
σv

√
Z∗

1 + Z∗

(√
Z∗ v√

σv
+

eθ + eu√
2

)
This proves Lemma 3.

A.8 Identification (Proof of Proposition 4)

Start with the observable metrics:

V = σv
Z

1 + Z

L =
σu

χZ

Z(1 + Z)2 =
1
2

σuσv

χ2

Differentiate these objects, assuming dχ = 0, and using the chain rule to replace d log(1+
Z) = Z

1+Z d log Z, to get

d logV = d logσv +
1

1 + Z
d log Z

d logL = d logσu − d log Z
1 + 3Z
1 + Z

d log Z = d logσu + d logσv

Substitute the third equation into the first two to get

d logV = d logσv +
1

1 + 3Z

(
d logσu + d logσv

)
d logL = d logσu −

1 + Z
1 + 3Z

(
d logσu + d logσv

)
Stacking this gives (

d logV
d logL

)
=

1
1 + 3Z

(
1 2 + 3Z

2Z −(1 + Z)

)(
d logσu

d logσv

)
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Invert this system to obtain

d logσu =
1 + Z

1 + 2Z
d logV +

2 + 3Z
1 + 2Z

d logL (A.1)

d logσv =
2Z

1 + 2Z
d logV − 1

1 + 2Z
d logL (A.2)

Augment this with the evolution of Z, so that we have a closed dynamical system:

d log Z =
1 + Z

1 + 3Z

(
d logσu + d logσv

)
=

1 + Z
1 + 2Z

(
d logV + d logL

)
(A.3)

We also differentiate the price informativeness measure I = 1+Z
σv

to get

d logI =
Z

1 + Z
d log Z − d logσv

= Zd logV − (1 + Z)d logσv

= − Z
1 + 2Z

d logV +
1 + Z
1 + 2Z

d logL (A.4)

Thus, if we are given initial values (Z0,σu,0,σv,0), we can simulate the entire system
forward. We can simplify this problem by noting that we observe V0 and L0, meaning
we can essentially observe two of these initial conditions, leaving only one unobservable.
In particular, using the expressions V = σv

Z
1+Z and L2 = 2σu

σv

(1+Z)2

Z , and conjecturing a
value for Z0, we may solve for

σu,0 =
1
2
L2

0V0
1

1 + Z0
(A.5)

σv,0 = V0
1 + Z0

Z0
(A.6)

Thus, the entire problem boils down to forming a statistical prior for Z0.

B Alternative: fixed cost of information

Now, let’s assume the information cost satisfies χ̄ := c(z) > 0 for all z. There is a fixed
cost of acquiring any information. The fact that there is no additional variable cost
simplifies the analysis so that either zi = 0 or zi = 1 for each trader i (none or perfect
information).
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One concern with fixed costs, suggested by the analysis of Grossman and Stiglitz
(1980), is that an equilibrium may fail to exist. We will show that this is not the case
here. In fact, there is a well-defined equilibrium for any χ̄. First, we will consider
symmetric equilibria, followed by asymmetric equilibria. The key statistic, which is
exactly analogous to (6), is

Γ :=
√

σvσu

χ̄
. (B.1)

Whether Γ is greater or less than 2 determines the type of equilibrium. And the level of
Γ determines the level of aggregate information in a large market.

In a symmetric equilibrium, the pre-information-cost utility value of each trader,
assuming all other traders collect information z∗n, is the same as before:

Vn(z;z∗n) =
√

σvσu

2
z(1 + z)

(1 + (n − 1)z∗n + z)
√
(n − 1)z∗n(1 + z∗n) + z(1 + z)

.

Notice that Vn(0;0) = Vn(0;1) = 0. The key criterion for equilibrium is optimality: in an
equilibrium with information collection, trader utility must satisfy

Vn(1;1)− Vn(0;1) ≥ χ̄, if z∗n = 1. (B.2)

On the other hand, for an equilibrium with ignorance, trader utility must satisfy

Vn(1;0)− Vn(0;0) ≤ χ̄, if z∗n = 0. (B.3)

An asymmetric equilibrium is more complicated. To set it up, let π∗
n denote the

equilibrium probability a trader acquires any information. Because each trader only
acquires either zi = 0 or zi = 1, aggregate information in the market will be equal to the
total number of informed traders, which is the binomial random variable Binom(n,π∗

n).
The pre-cost value of a single trader, assuming the fraction of the other n − 1 traders
acquiring information is πn, is

Vn(z;πn) =

√
σvσ̄u

2
E
[ z(1 + z)
(1 + (n − 1)πn + z)

√
2(n − 1)πn + z(1 + z)

]
,

where the expectation is over the possible realizations of πn. By rational expectations,
this random variable has probability distribution (n − 1)πn ∼ Binom(n − 1,π∗

n). In equi-
libria of the large-n economy, the amount of randomness in πn vanishes, i.e., πn −π∗

n → 0

9



almost-surely, by the law of large numbers. In a mixed-strategy equilibrium with π∗
n > 0

being the information probability, it must be the case that

Vn(1;πn)− χ̄ = Vn(0;πn) = 0, if πn ∈ (0,1),

i.e., the trader is indifferent between acquiring information or not.
Based on this characterization, we can prove the following theorem, which is roughly

speaking the fixed cost version of Theorem 1.

Theorem B.1. An equilibrium with fixed information costs always exists in the large-n limit
and satisfies the following:

1. If Γ ≤ 2, then the equilibrium is symmetric and features nz∗n = 0 for all n large enough.

2. If Γ > 2, then the equilibrium is asymmetric and features nπ∗
n → Π∗, where Π∗ is the

unique positive solution to (Π + 2)2(Π + 1) = Γ2.

Proof. 1. Suppose Γ ≤ 2. First, we prove that, assuming a symmetric equilibrium exists,
nz∗n = 0 for all n large enough. This is a direct consequence of limn→∞ Vn(1;1) = 0,
implying Vn(1) < χ̄ for all n large enough, so (B.2) cannot hold. Second, we prove
existence of a symmetric equilibrium with z∗n = 0 for large n. The utility from deviating
from z∗n = 0 is V(1;0) = 1

2
√

σvσu. Thus, Vn(1;0)−Vn(0;0)− χ̄ = 1
2
√

σvσu − χ̄ ≤ 0, so (B.3)
holds, and the equilibrium is confirmed.

2. Suppose Γ > 2. As a consequence of the argument for claim 1, a symmetric
equilibrium cannot occur if Γ > 2, because in such case neither (B.2) nor (B.3) can hold.
Moving to asymmetric equilibria, it is easy to see that nπ∗

n ̸→ ∞ as n → ∞. Indeed, if
nπ∗

n → ∞ occurred, then Vn(1;π∗
n) → 0, and so Vn(1;πn) → 0 a.s. (recall πn − π∗

n → 0
by the law of large numbers). In fact, writing Π∗ := limn→∞ nπ∗

n and then evaluating
Vn(1;πn) = χ̄ in the large-n limit, we find that Π∗ must solve the cubic equation

(Π + 2)2(Π + 1) =
σvσu

χ̄2 .

This has a unique positive solution Π∗ > 0 if and only if Γ > 2. Thus, an asymmet-
ric equilibrium exists if Γ > 2, but not if Γ ≤ 2, and the aggregate information in this
equilibrium is Π∗ as n → ∞.

B.1 Asymmetric equilibrium

In this section, we prove a result analogous to Lemma 3 but for the fixed information
cost case covered above in Theorem B.1 (with Γ > 2). In such case, an “asymmetric
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equilibrium” arises where each trader chooses to be fully-informed with probability π∗
n.

Lemma B.1. Let π∗
n denote the probability of information acquisition in an asymmetric equilib-

rium with n strategic traders, and let Πn := Binom(n,π∗
n) be the aggregate number of informed

traders. Then,

βn =

√
σv

σu

Πn

(1 + Πn)2

Dn =

√
σu

σv
Πnv +

√
σueu

pn =
√

σv

( Πn

1 + Πn

v√
σv

+

√
Πn

1 + Πn
eu

)
where eu = u/

√
σu ∼ Normal(0,1). Let Π∗ := limn→∞ nπ∗

n ∈ [0,∞] be the large-n limit of
aggregate information. Then, we have the following limiting equilibrium objects, almost-surely,

lim
n→∞

βn =

√
σv

σu

√
Π∗

1 + Π∗

lim
n→∞

Dn =
√

σu

[√
Π∗ v√

σv
+ eu

]
lim

n→∞
pn =

√
σv

√
Π∗

1 + Π∗

[√
Π∗ v√

σv
+ eu

]
Proposition B.1. In the large-n limit of asymmetric equilibria, the measures of liquidity, price
informativeness, excess price volatility, and trading volume are given by the following:

(liquidity) L =

√
σu

σv

1 + Π∗
√

Π∗

(informativeness) I =
1 + Π∗

σv

(volatility) V = σv
Π∗

(1 + Π∗)2

(volume) D = σu(1 + Π∗)

Proof. Suppose in the size-n economy, each trader obtains a perfect signal with probabil-
ity π∗

n, and otherwise remains uninformed. In this case, z is a vector of zeros and ones,
with the probability of each non-zero entry being an independent Bernoulli draw. Then,
z · 1 = ∥z∥2 := Πn ∼ Binom(n,π∗

n). Substituting this into formulas in Appendix A.1, we
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have

βn =

√
σv

σu

Πn

(1 + Πn)2 and αn · θ =

√
σu

σv
Πnv,

and so

Dn =

√
σu

σv
Πnv +

√
σueu

pn =
√

σv

( Πn

1 + Πn

v√
σv

+

√
Πn

1 + Πn
eu

)
To take the limit n → ∞, note that Πn/(nπ∗

n) converges to 1 almost-surely, by the
Strong Law of Large Numbers. Hence, denoting Π∗ := limn→∞ nπ∗

n, we have Πn → Π∗

almost-surely. Using this fact, we have

Dn →
√

σu

(√
Π∗ v√

σv
+ eu

)
pn →

√
σv

√
Π∗

1 + Π∗

(√
Π∗ v√

σv
+ eu

)
This proves Lemma B.1.

Proposition B.1 is proved by combining the results of Lemma B.1 with the definitions
of the measures, contained in Definitions 1-4.

Comparing lem:symmetric-eqm and lem:asymmetric-eqm, we see that the limiting
objects are very similar across the symmetric and asymmetric equilibria (which recall
arise with variable and fixed costs, respectively). In particular, modulo some

√
2 con-

stants, the formulas are identical in distribution. For instance, compare the limiting price
in the two equilibrium types:

(symmetric equilibrium) lim
n→∞

pn =
√

σv

√
Z∗

1 + Z∗

[√
Z∗ v√

σv
+

eθ + eu√
2

]
(asymmetric equilibrium) lim

n→∞
pn =

√
σv

√
Π∗

1 + Π∗

[√
Π∗ v√

σv
+ eu

]
Since Z∗ and Π∗ have similar interpretations, as aggregate information (in units of preci-
sion), the formulas are almost identical. The only difference is that the noise eθ+eu√

2
in the

symmetric equilibrium price is replaced by eu in the asymmetric equilibrium price. But
since both are standard normal random variables, the prices are identical in distribution.
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For this reason, the measures in Proposition 3 and Proposition B.1, for symmetric and
asymmetric equilibria, are identical.

Theorem B.1 proves that equilibrium exists generically. In competitive models like
Grossman and Stiglitz (1980), equilibrium non-existence is a problem: neither a fully-
informed nor a fully-uninformed equilibrium can exist. But here, we can obtain either
of these extreme cases depending on the size of the statistic Γ. If Γ ≤ 2, we have a fully-
uninformed equilibrium. But if Γ → ∞, we have a fully-informed equilibrium, in the
sense that aggregate information becomes maximal. The characterization of the result
in terms of Π∗ = limn→∞ nπ∗

n is intuitive: Π∗ represents the number of informed traders in
the large-n limit, which necessarily remains finite for any fixed cost χ̄.

C Comparison to Competitive NREE

We compare our results to a competitive Noisy Rational Expectations Equilibrium (NREE)
setting along the lines of Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980),
and Verrecchia (1982). Because we will ignore strategic considerations, we now need
traders to be risk averse. We assume trader i’s utility function is of the CARA type:

Ṽi := −exp
(
− γ[di(v − p)− c(zi)]

)
,

where zi is the signal precision acquired, and c(·) its cost, analogous to the baseline
model. In the trading stage, traders receive their signal θi = v + εi and solve

max
di

E
[
Ṽi | θi, p

]
In the information stage, traders choose their precision zi by solving

max
zi

E
[

max
di

E
[
Ṽi | θi, p

]]
As in the baseline model, we assume signal errors εi are independent across traders and
independent of both the fundamental v and the noise u. Furthermore, recall that the
precision zi is defined to be related to the overall signal variance σi := Var[θi] in that

σi = σ(zi) :=
1
2

σv(z−1
i + 1)

To keep the proper comparison to the baseline model, traders pay a cost to increase zi,
but the results would be very similar if the cost was defined over the precision of the
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signal error (σi − σv)−1 = 2
σv

zi
1−zi

.8 The equilibrium asset price is determined via the
market clearing condition

lim
n→∞

1
n

n

∑
i=1

di + u = 0

It is standard in the NREE literature to clear markets based on the average demand,
by analogy to the continuum limit, rather than the total demand; equivalently, some
versions explicitly model the noise u grow with the number of traders (i.e., u is the noise
per capita).9 Finally, conjecture (and later verify) that the equilibrium pricing function
takes the form

p = βvv + βuu,

for some βv and βu.
In this setup, joint normality of (v,u,θi) implies the distribution of (θi, p) is

(θi, p) ∼ Normal
(
0, Σ̃i

)
,

where Σ̃i :=

(
σi βvσv

βvσv β2
vσv + β2

uσu

)
8Note that Verrecchia (1982) defines a cost function c̃(s) over the error precision s(z) := 2

σv
z

1−z . Given
our chosen cost function c(z), this is implemented simply by putting c̃(s) := c(z−1(s)) = c( σvs

2+σvs ). How-
ever, notice that c̃′(0) = 1

2 σvc′(0), so the critical object—the marginal cost at zero precision—is invariant to
this transformation.

9One could consider an alternative economy in which the noise is given by un ∼ Normal(0,σu/n2). In
this specification, analogously to our baseline model, write the market clearing condition in levels:

n

∑
i=1

di + nun = 0

The aggregate noise nun has constant size σu by construction. Dividing the market clearing condition by
n and taking the limit, we have

lim
n→∞

( 1
n

n

∑
i=1

di + un

)
= 0

By the law of large numbers, the result is limn→∞
1
n ∑n

i=1 di = 0 almost-surely, i.e., the asymptotic economy
is noise-less. Therefore, a way to analyze a competitive model analogous to our baseline model is to study
the small-noise limit after having derived the equilibrium for each σu.
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Furthermore, the conditional distribution of v given (θi, p) is

(v | θi, p) ∼ Normal(µ̃vi, σ̃vi),

where µ̃vi :=
σv

(σi − σv)β2
vσv + σiβ2

uσu

(
β2

uσuθi + (σi − σv)βv p
)

σ̃vi := σv −
σ2

v
(σi − σv)β2

vσv + σiβ2
uσu

(
1
βv

)⊤(
β2

vσv + β2
uσu −βvσv

−βvσv σi

)(
1
βv

)

= σv
(σi − σv)β2

uσu

(σi − σv)β2
vσv + σiβ2

uσu

Then, the standard CARA solution for asset demand is

di =
µ̃vi − p

γσ̃vi

Before continuing, note that if agents collect a symmetric amount of information, zi = z∗

for all i so that σi = σ∗, then market clearing implies by the law of large numbers

p =
σv

(σ∗ − σv)β2
vσv + σ∗β2

uσu

(
β2

uσuv + (σ∗ − σv)βv p
)
+ γσv

(σ∗ − σv)β2
uσu

(σ∗ − σv)β2
vσv + σ∗β2

uσu
u

Rearranging this expression, we have

p =
1

1 − σv(σ∗−σv)βv
(σ∗−σv)β2

vσv+σ∗β2
uσu

[ σvβ2
uσu

(σ∗ − σv)β2
vσv + σ∗β2

uσu
v + γσv

(σ∗ − σv)β2
uσu

(σ∗ − σv)β2
vσv + σ∗β2

uσu
u
]

=
1

(σ∗ − σv)β2
vσv + σ∗β2

uσu − σv(σ∗ − σv)βv

[
σvβ2

uσuv + γσv(σ
∗ − σv)β2

uσuu
]

Matching the loadings on v and u with βv and βu, respectively, we obtain the system of
two equations in the two unknowns (βv, βu):

βv =
σvβ2

uσu

(σ∗ − σv)β2
vσv + σ∗β2

uσu − σv(σ∗ − σv)βv

βu =
γσv(σ∗ − σv)β2

uσu

(σ∗ − σv)β2
vσv + σ∗β2

uσu − σv(σ∗ − σv)βv
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The solution is

βv =
σv[1 + γ2σu(σ∗ − σv)]

σv + γ2σ∗σu(σ∗ − σv)

βu = γ(σ∗ − σv)βv

Thus, we have solved (βv, βu) in terms of the symmetric equilibrium information-acquisition
z∗, or equivalently σ∗. These results so far also match the limiting economy of Hellwig
(1980) for the case of identical risk aversions.

C.1 Equilibrium information-acquisition

Let us now drop i subscripts everywhere, and use the notation σ(z) := 1
2 σv(z−1 + 1) for

the individual-specific signal variance. To solve the information choice, a la Verrecchia
(1982), first compute the ex-ante utility

V(z) := E
[

max
d

E
[
Ṽ | θ, p

]]
= −E

[
exp

(
− 1

2
(µ̃v − p)2

σ̃v
+ γc(z)

)]
To compute this unconditional expectation, note that µ̃v is linear in (θ, p), which has a
normal distribution. The joint density is of (θ, p) is

φ(θ, p) =
1

2π
K1/2

0 exp
[
− 1

2
(
kθθ2 + 2kθpθp + kp p2)]

K0 :=
1

det(Σ̃)
=

1
(σ(z)− σv)β2

vσv + σ(z)β2
uσu

kθ = Σ̃−1
11 = K0(β2

vσv + β2
uσu)

kθp = Σ̃−1
12 = Σ̃−1

21 = −K0βvσv

kp = Σ̃−1
22 = K0σ(z)

Furthermore, write −1
2
(µ̃v−p)2

σ̃v
= a(bθθ + bp p)2 where we define

a := − 1
2σ̃v

= −1
2

K−1
0

1
(σ(z)− σv)β2

uσvσu

bθ := K0β2
uσuσv

bp := K0[(σ(z)− σv)βvσv − K−1
0 ]

16



Using this expression and the normal density, compute

E
[

exp
(
− 1

2
(µ̃v − p)2

σ̃v

)]
= E[ea(bθθ+bp p)2

]

=
1

2π
K1/2

0

"
ea(bθθ+bp p)2

e−
1
2 (kθθ2+2kθpθp+kp p2)dθdp

=
1

2π
K1/2

0

"
exp

[
− 1

2
(

θ
p
)⊤Ω−1( θ

p
)]

dθdp,

where

Ω−1 :=

(
kθ − 2ab2

θ kθp − 2abθbp

kθp − 2abθbp kp − 2ab2
p

)

Since the integral above involves a normal kernel, we obtain

V = −exp[γc(z)]
K1/2

0
det(Ω−1)1/2

After a lengthy amount of algebra, we obtain

Ω−1 =

 (σ(z)− σv)−1 −(σ(z)− σv)−1

−(σ(z)− σv)−1 σ−1
v + (σ(z)− σv)−1 + (1−βv)2

β2
uσu


Therefore,10

K0

det(Ω−1)
=
(

σ−1
v + (σ(z)− σv)

−1 +
β2

v
β2

uσu

)−1(
β2

uσu + (1 − βv)
2σv

)−1
.

It is equivalent to maximize − log(−V), so we solve

max
z

−γc(z) +
1
2

log
(

σ−1
v + (σ(z)− σv)

−1 +
β2

v
β2

uσu

)
+

1
2

log
(

β2
uσu + (1 − βv)

2σv

)
10Note that Verrecchia (1982) makes an algebra mistake in deriving his equation (7). Indeed, in deriving

his ex-ante value function, he obtains (after translating into our notation)

K0

det(Ω−1)
=
(

σ−1
v + (σ(z)− σv)

−1 +
β2

v
β2

uσu

)−1 1
β2

uσu
.

One can check that the mistake originates in his appendix, where he uses (his notation) a3 + a6 = h0 + s

rather than the correct expression a3 + a6 = h0 + s + (1−β)2

γ2V . That said, this mistake is inconsequential,
because it is multiplicatively separable from the information choice, as can be seen in the subsequent
derivations.
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Notice that the final term is irrelevant, given z is absent. Also, at this point let us make
the replacement (σ(z)− σv)−1 = 2σ−1

v
z

1−z . The FOC for z is

γ(1 − z)2c′(z)
[
1 + 2

z
1 − z

+
β2

vσv

β2
uσu

] 
≥ 1, if z = 0;

= 1, if z ∈ (0,1);

≤ 1, if z = 1.

(C.1)

In a symmetric equilibrium where agents choose z∗, we may use the expressions for
βv/βu = 2γ−1σ−1

v z∗/(1 − z∗) to rewrite (C.1) as the equilibrium condition

γ(1 − z∗)2c′(z∗)
[
1 + 2

( z∗

1 − z∗
)
+

4
γ2σuσv

( z∗

1 − z∗
)2
] 

≥ 1, if z∗ = 0;

= 1, if z∗ ∈ (0,1);

≤ 1, if z∗ = 1.

(C.2)

again with equality if z∗ > 0. Under some conditions on the cost function, Verrecchia
(1982) proves that a solution exists to this condition, hence an NREE exists with endoge-
nous information acquisition. Notice that γc′(0) < 1 suffices to ensure that the solution
necessarily satisfies z∗ > 0.

Let us, for reference, also write the pricing function in terms of z∗ rather than the
variance σ∗. We have

p = βvv + βuu (C.3)

where βv =
1 + γ2

2 σvσu
1−z∗

z∗

1 + γ2

4 σvσu
1−z∗

z∗
1+z∗

z∗

βu =
γσv

2
1 − z∗

z∗
βv

Next, we will examine equilibrium information and its pricing consequences in two
limits, σu → 0 and γ → 0. These are relevant for a comparison to our baseline economy,
which has bounded aggregate noise (hence vanishing per-capita noise in the large-n
limit) and has risk-neutral agents. As we will show, the small-noise limit bears a closer
analogy to our main results, in the sense that a fully-revealing equilibrium can emerge
if c′(0) = 0 but not if c′(0) > 0. By contrast, the risk-neutral limit always features a
fully-revealing equilibrium.
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C.2 Small-noise limit

As a first result, notice that as noise vanishes (σu → 0), the left-hand-side of (C.2) blows
up for any z∗ > 0. Hence, a requirement is z∗ → 0 as σu → 0, assuming an equilibrium
exists for each σu along this sequence.11 This proves right away that, in a competitive
model, individual information collection requires the noise to be growing with the num-
ber of traders, such that per-capita noise remains non-trivial. This is why the literature
universally adopts this setup.

What happens to the price in this small-noise limit? Although information-collection
vanishes individually, so does per-capita noise, and so it is theoretically possible that the
price becomes informative. In other words, it becomes a delicate balance of limits. Let
us consider the case 0 < γc′(0) < 1, which ensures that z∗ > 0 along the sequence of
equilibria (if γc′(0) ≥ 1, then z∗ would just collapse to zero for any small enough noise).
We will consider the case c′(0) = 0 afterward.

If 0 < γc′(0) < 1, inspection of condition (C.2) shows that σu/(z∗)2 must not explode
as σu → 0. We can also show that σu/(z∗)2 cannot be vanishing, because if it did, the left-
hand-side of (C.2) would necessarily exceed 1 for all small enough σu (given we know
z∗ > 0 along the sequence). Hence, σu/(z∗)2 has a finite, non-zero limit. Now, returning
to the equilibrium price in (C.3), and using this fact, we find that βv and

√
σuβu both

converge to a finite constants. The limiting value for βv is necessarily positive but less
than 1. The limiting value for

√
σuβu is also necessarily positive and finite. Therefore,

we have proven that the small-noise limit, if such equilibrium exists, must still have a
noisy price. In particular, prices can never be fully revealing.

If c′(0) = 0, the analysis is more delicate. Suppose z∗ ∼ Aσ
ζ/2
u for some A > 0 and

ζ > 0. The left-hand-side of (C.2) behaves asymptotically like

4A2

γσv
c′(Aσ

ζ/2
u )σζ−1

u + o(σu)

For this expression to remain non-trivial, hence remain consistent with (C.2), we see that
ζ < 1 is required. In that case, βv → 1 and

√
σuβu → 0, so that p → v. Thus, assuming

an equilibrium exists along this sequence, the economy approaches one with a fully-
revealing price and nevertheless traders acquire information all along the sequence.

To develop an understanding, let’s assume that c(z) = κ
1+ρ z1+ρ for some ρ > 0. Then,

11We conjecture this existence is in fact true. Studying the equilibrium condition (C.2), all that is required
is for z∗ to vanish at the order of σ−1/2

u if c′(0) > 0, or potentially at any slower rate if c′(0) = 0.
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c′(z) = κzρ, so

4A2

γσv
c′(Aσ

ζ/2
u )σζ−1

u =
4A2+ρκ

γσv
σ

ζ−1+ζρ/2
u

This expression needs to remain non-zero and finite, so we need ζ = (1 + ρ/2)−1, which
is appropriately below 1. This shows that there exists a sequence z∗(σu) vanishing at rate
ζ = (1 + ρ/2)−1 such that the equilibrium condition (C.2) holds with equality for every
σu small enough. Consequently, equilibria with information-acquisition exist for all σu

small enough, and these converge to a fully-revealing equilibrium.

C.3 Risk-neutral limit

Second, consider what happens if agents become asymptotically risk-neutral, γ → 0.
Going back to the equilibrium price, and assuming any information is gathered at all
(i.e., z∗ converges to a non-zero limit), this makes the price become fully-revealing, i.e.,
noise-free with βu → 0 and βv → 1. However, the left-hand-side of equilibrium condition
(C.2) explodes unless z∗ → 0. Thus, a requirement is z∗ → 0 as γ → 0.

How fast does z∗ → 0? As a first possibility, assume z∗ = 0 for γ sufficiently close to
zero, i.e., information vanishes before risk aversion does. This cannot be an equilibrium,
because for γ sufficiently small, equilibrium condition (C.2) will also be smaller than 1,
a contradiction.

As a second possibility, suppose z∗ ∼ Aγζ as γ → 0, with some A > 0 and some
ζ > 0. Note that the left-hand-side of equilibrium condition (C.2) asymptotically looks
like

4A2

σuσv
c′(0)γ2ζ−1 + o(γ)

If ζ > 1/2, then this expression vanishes in the γ → 0 limit, which from (C.2) implies
z∗ = 1 eventually, contradicting the fact that z∗ → 0. Therefore, the appropriate rate of
convergence for z∗ is ζ ≤ 1/2. There are two cases. If c′(0) > 0, then clearly ζ = 1/2
is required. If c′(0) = 0, then ζ < 1/2 is required, with the exact rate of convergence
determined by c′′ near zero. In either case, the fact that ζ ≤ 1/2 means that βv → 1 and
βu → 0 as γ → 0. Therefore, we have proven that as γ vanishes, equilibrium becomes
fully-revealing, if it exists.
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C.4 Price informativeness, volatility, and liquidity

Analogous to the baseline model, define the following measures of price informative-
ness, volatility, and liquidity:

I := Var[v | p]−1

V := Var[p]

L := [∂p/∂u]−1

The informativeness and volatility measures are exactly analogous to our baseline model.
The liquidity measure deserves discussion. Note that L−1 is the price response to an ex-
ogenous increase in demand, whereas it was the loading of price on aggregate demand
in our baseline model. The definition is written this way for the NREE because “ag-
gregate demand” is not well-defined here—it is zero by market clearing. But a noise
shock represents an exogenous increase in asset demand that must be absorbed by the
informed traders, and hence generates a price impact. As an alternative way to justify
our definition of L−1, recall that price impact in the baseline model comes out exactly
equal to the price loading on the noise shock u. That is, the result for price impact in
our baseline model coincides with ∂p/∂u here. By contrast, volume is not well-defined
in the competitive economy, so we do not examine it.

Using expression (C.3) and properties of the joint normal distribution, compute

I = σ−1
v

(β2
vσv + β2

uσu

β2
uσu

)
V = β2

uσu + β2
vσv

L = β−1
u

Recall that in the limits σu → 0 or γ → 0, the equilibrium can become fully-revealing (for
σu → 0, recall this additionally required c′(0) = 0). The consequences on these measures
is intuitive. For the risk-neutral limit, taking γ → 0 with z∗ ∼ γζ and ζ ≤ 1/2, notice
that I → +∞ and V → σv. For the small-noise limit, taking σu → 0 with z∗ ∼ σ

ζ
u and

ζ < 1/2, notice that I → +∞ and V → σv. Unlike our strategic-trading model, these
limiting cases are the only ones where the fully-efficient “magical markets” outcomes
arise in an NREE.
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C.5 Two examples: zero and positive marginal cost at zero

We will evaluate the equilibrium for two different cost functions, the first representing a
zero marginal cost (i.e., c′(0) = 0) and the second having positive marginal cost at zero
(i.e., c′(0) > 0).

Example 1 (quadratic cost). Consider the cost function

c(z) =
κ

2
( z

1 − z
)2. (C.4)

This function satisfies c′(0) = 0 and therefore is capable of generating infinite price
informativeness in our baseline Kyle model in the text. To provide an interpretation,
recall that the chosen precision over the signal error εi satisfies si =

2
σv

zi
1−zi

. Hence, the
function (C.4) represents quadratic costs over this signal error precision.

Evaluating the equilibrium condition (C.2) for this case, we have

γκ
[ z∗

1 − z∗
+ 2
( z∗

1 − z∗
)2

+
4

γ2σuσv

( z∗

1 − z∗
)3
]
= 1 (C.5)

Thus, z∗/(1 − z∗) solves a cubic equation. There is exactly one root satisfying z∗ ∈ (0,1).

Example 2 (linear cost). Now, consider the cost function

c(z) = χ
( z

1 − z
)
, (C.6)

where we assume γχ < 1. This function satisfies c′(0) = χ > 0 and therefore is compa-
rable to the case analyzed for our baseline Kyle model in the text. (One has to be careful
to make comparisons by varying χ, however, because here χ modulates the entire cost
function in addition to the marginal cost at the prior c′(0).) This also means that the
information costs are “larger” here than for the quadratic case above. Indeed, given
that the chosen precision over the signal error εi satisfies si =

2
σv

zi
1−zi

, the function (C.6)
represents linear costs over this signal error precision.

Evaluating the equilibrium condition (C.2) for this case, we have

γχ
[
1 + 2

( z∗

1 − z∗
)
+

4
γ2σuσv

( z∗

1 − z∗
)2
]
= 1 (C.7)

Thus, z∗/(1 − z∗) solves a quadratic equation. Assuming γχ < 1, there exists a unique
positive solution z∗. (If γχ > 1, then there is no positive solution, so z∗ = 0 is the
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Figure C.1: Measures as a function of σu. The volatility measure is scaled for aesthetic purposes. Baseline
parameters: σu = 0.5, σv = 0.5, and γ = 3. For the information cost functions, we use κ = 1 for the
quadratic cost and χ = 0.1 for the linear cost.

equilibrium.) This unique solution is

z∗

1 − z∗
=

γσuσv

4χ

[
− γχ +

√
(γχ)2 + (1 − γχ)

4χ

γσuσv

]
(C.8)

Market measures in the examples. Figures C.1-C.3 display informativeness, volatility,
and liquidity in the two examples. We vary σu, σv, and γ one at a time in the figures.
Broadly speaking, the examples generate similar behavior qualitatively. Furthermore,
note that the figures confirm the limiting theoretical analysis from earlier. As γ → 0 or
σv → 0, the equilibrium becomes fully-revealing, with I → +∞ and V → σv. As σu → 0,
the equilibrium becomes fully-revealing only if c′(0) = 0 but not if c′(0) > 0.

23



Figure C.2: Measures as a function of σv. The volatility measure is scaled for aesthetic purposes. Baseline
parameters: σu = 0.5, σv = 0.5, and γ = 3. For the information cost functions, we use κ = 1 for the
quadratic cost and χ = 0.1 for the linear cost.

Figure C.3: Measures as a function of γ. The volatility measure is scaled for aesthetic purposes. Baseline
parameters: σu = 0.5, σv = 0.5, and γ = 3. For the information cost functions, we use κ = 1 for the
quadratic cost and χ = 0.1 for the linear cost.
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