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Abstract

I model a shock whereby financial intermediaries can better diversify borrowers’
idiosyncratic risks. A sector-specific diversification improvement induces intermedi-
aries to reallocate funds toward the shocked sector. As lending spreads fall, inter-
mediaries build up leverage over time. The result is a fragile sectoral boom that can
end in an economy-wide bust. Among other financial shocks – relaxed borrowing
constraints, lower capital requirements, higher risk tolerance, lower uncertainty, and
foreign safe-asset demand – none generate both sectoral reallocation and financial
leveraging. I apply the model quantitatively to the recent housing cycle. Feeding in
a novel mortgage diversification index, the model generates the measured increase
in household credit coincident with a 1-2% decline in mortgage spreads. In the sub-
sequent bust, spreads in all sectors spike by 2% as aggregate output drops.
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1 Introduction

Many booms feature a sectoral bias – for example, a US “railroad boom” in the 1850s,
an “agriculture boom” in the 1880s, and a “housing boom” in the 2000s. Sectoral booms,
however, can end in economy-wide busts. The aforementioned booms ended with the
“Panic of 1857,” the “Panic of 1893,” and the “Great Recession.” Securitization is a
factor connecting these three episodes. In each case, loans to the booming sector were
increasingly pooled and sold to investors.1 Motivated by these observations, this paper
offers a financial theory that links sectoral booms to economy-wide busts.

I present a model in which financiers provide funds to two distinct productive sectors.
A critical function of financiers’ is to diversify within-sector idiosyncratic risks, which
they accomplish by holding a large portfolio of loans. In practice, financiers diversify by
making a variety of loans or holding securitized portfolios.

Suppose financiers’ diversification improves within one of the sectors, as might occur
with the advent of securitization. In the short run, a reallocation effect arises: facing an
improved risk-reward trade-off, financiers redirect funds toward the sector with newly
improved diversification, which raises sectoral investment. The reallocation effect helps
explain why many booms feature a sectoral bias. Indeed, both the boom and its sectoral
bias originate from sector-specific diversification improvements.

Meanwhile, better diversification reduces sectoral risk premia. A series of low risk
premia earned by financiers results in a redistribution of wealth from financiers toward
the rest of the economy. To maintain their funding activities, financiers must borrow
more, which I call the leverage effect. If financial leverage is destabilizing, the leverage
effect explains why a sectoral boom can lead to an economy-wide bust.

I adopt a particular connection between leverage and stability. Assume financiers face
a leverage constraint. If the leverage effect is strong enough, financiers endogenously hit
their constraint, at which point they must de-lever. A less-qualified type of financier,
whom I call distressed investors, purchases financiers’ liquidated loan portfolios and
serves as the marginal supplier of any new loans. The de-leveraging thus disturbs both

1See Riddiough and Thompson (2012) and Calomiris and Schweikart (1991) for an account of the
securitization of railroad-adjacent farm loans in the 1850s. See Eichengreen (1984), Snowden (1995), and
Snowden (2007) for an account of farm mortgage securitizations in the 1880s. See below for evidence
pertaining to the 2000s housing cycle. There is also an emerging notion that 1830s lending to plantations,
backed by slaves as collateral, was responsible for a rapid cotton boom, followed by the “Panic of 1837”
after the cotton slowdown. Indeed, Matthew Desmond notices the “parallels between the Panic of 1837
and the 2008 financial crisis. All the ingredients are there: mystifying financial instruments that hide risk
while connecting bankers, investors and families around the globe...” See https://www.nytimes.com/
interactive/2019/08/14/magazine/slavery-capitalism.html

2

https://www.nytimes.com/interactive/2019/08/14/magazine/slavery-capitalism.html
https://www.nytimes.com/interactive/2019/08/14/magazine/slavery-capitalism.html


sectors, not only the booming sector. Lending spreads in both sectors rise sharply at the
constraint, resembling a financial crisis.

A financial crisis might generate a bust in “real variables” like consumption and
investment for several reasons. In the baseline model, I assume the participation of
distressed investors triggers deadweight losses. Such losses might be justified by dis-
tressed investors’ lower productivity in the advisory, monitoring, and screening activities
that the financial sector typically provides. With deadweight losses, the de-leveraging
episode triggers an inefficient bust. In the appendix, I explore alternatives linking a
financial crisis to an economy-wide bust.

Given this inefficiency, why do financial crises occur in equilibrium? The answer is a
risk-taking externality in financiers’ portfolio decisions. When individual financiers take
risk, they do not account for the downward pressure they put on risk premia and, by
extension, the profitability of other financiers. Lower financier profitability raises the
prospect of future binding constraints, and hence a crisis. Financiers privately ignore
this socially-undesirable prospect.

The entire cycle is amplified if diversification improves in a lower-quality sector, i.e.,
a sector that is higher-risk or more reliant on external financing. Low-quality borrowers
offload more risk onto financier balance sheets, and diversification has a larger marginal
benefit when applied to a riskier balance sheet. This generates larger reallocation and
leverage effects, meaning a larger and more asymmetric boom, but also a higher chance
of a broad bust.

In a quantitative exercise, I apply the model to the recent US housing cycle. I create
a novel index of idiosyncratic mortgage banking risk, in order to measure mortgage
diversification. My approach has two key advantages relative to the existing empirical
literature. First, the index encapsulates deregulation, financial innovations, and mergers,
which tend to have similar qualitative effects but are difficult to compare quantitatively.2

Second, the index has risk-based units, useful for calibrating economic models. Using
this index, I extract a time series measure of mortgage diversification, which increased
substantially from 1990 to 2006.3

2For example, deregulations that allowed banks to operate across state borders clearly improved loan
portfolio diversification, but how does the magnitude of this improvement compare to the rise of securiti-
zation?

3I do not measure diversification in non-mortgage lending markets. But several facts suggest that
deregulations and securitization were geared primarily towards household finance. First, the results of
Rice and Strahan (2010) and Favara and Imbs (2015) together provide causal evidence that bank branching
deregulations in the late 1990s and early 2000s disproportionately affected mortgage finance, relative
to firm finance. Second, mortgage securitization grew must faster than commercial loan securitization:
the ratio of outstanding mortgage securities to corporate securities grew by 50% from 1990-2006. See
Appendix F.1.
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Figure 1: “HH Credit Share” de-
notes households’ share of total
non-financial corporate credit,
from the Flow of Funds; “In-
termediary Leverage” denotes
broker-dealer leverage, from
Adrian et al. (2014).

Figure 1 shows the 1990-2006 increase in diversification is correlated with the reallo-
cation and leverage effects. Reallocation is proxied by the household credit share, and
leverage is proxied by broker-dealers’ assets-to-equity ratio. Inserting my diversification
time series into the calibrated model, I match the household credit share in figure 1 and
the 2% drop in mortgage rates documented in the literature.4 Model-implied financier
leverage also rises in the boom, qualitatively in line with figure 1. Because leverage con-
straints start binding in the bust, financiers’ implied funding costs increase by over 2%,
in line with data on financial crises.5 The credit spreads of both sectors, not just housing,
spike by the same magnitude of financiers’ funding costs. In a counterfactual exercise
without diversification improvements, there is no episode resembling a financial crisis,
with spikes in funding costs or credit spreads.

While diversification improvements trigger a cycle characterized by sectoral realloca-
tion and financier leveraging, other financial shocks might do the same. Motivated by
the literature, I study five other financial shocks in the model – a loan-to-value shock,6 a
capital-requirement shock,7 a risk-tolerance shock,8 an uncertainty shock,9 and a foreign-
savings shock.10 Among these, none generate both reallocation and leverage. The core

4See Justiniano et al. (2017).
5See Fleckenstein and Longstaff (2018).
6LTV-type shocks are studied by Jermann and Quadrini (2012), Kiyotaki et al. (2011), Justiniano et al.

(2015b), Favilukis et al. (2017), and Greenwald (2016).
7This resembles the relaxation of banks’ “lending constraints” in Justiniano et al. (2015a).
8For example, Kindleberger (1978) says, “The monetary history of the last four hundred years has been

replete with financial crises. The pattern was that investor optimism increased as economies expanded,
the rate of growth of credit increased and economic growth accelerated, and an increasing number of
individuals began to invest for short-term capital gains...” See Kaplan et al. (2017) for an analysis of
optimism shocks on housing markets.

9See Di Tella (2017) for a model of intermediation with idiosyncratic volatility shocks.
10See the “global savings glut” hypothesis of Bernanke (2005) and Favilukis et al. (2017) for a model.
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rationale for this result is, unlike other shocks, a diversification improvement differen-
tially impacts one sector and differentially improves financiers’ investment-opportunity
set relative to other agents’. This intuition applies to any multi-sector intermediated
macroeconomy.

This paper contributes to three literatures: (1) the literature on the effects of finan-
cial intermediation on the macroeconomy; (2) the literature on diversification and other
financial shocks; and (3) the literature on the recent housing cycle.

By focusing on the financial sector, my framework shares many features with the
“financial accelerator” literature on macroeconomic dynamics with financial frictions.
Net worth of borrowers, producers, or financiers acts as a buffer to fundamental eco-
nomic shocks in these models, building off of insights by Bernanke and Gertler (1989)
and Kiyotaki and Moore (1997). Like He and Krishnamurthy (2013) and Brunnermeier
and Sannikov (2014), I employ continuous-time methods, to extend these ideas to study
crisis dynamics and other nonlinearities.

My model’s structure differs from this literature differ in three aspects. First, a key
role of financiers in my model is to diversify idiosyncratic risks. Most of this litera-
ture studies financial intermediaries who are more productive investors but in fact less
diversified than other agents. Second, I include two sectors, to study financiers’ real-
location between them. Third, I study diversification improvements, a type of financial
shock, which lead to interesting and different boom-bust dynamics. Most financial-
accelerator papers focus on standard fundamental shocks, which are amplified by the
endogenous concentration of risk in the financial sector. These models generate a bust
only after a long sequence of negative fundamental shocks, because intermediaries are
well-capitalized following a boom.11

By contrast, my economy can experience an endogenous bust which is then amplified
by small negative fundamental shocks, because of the “leverage effect” and the presence
of the financier leverage constraint. The leverage effect, whereby diversification lowers
fundamental risk but is offset by higher risk-taking, relates to the “Peltzman effect” in
automobile safety (Peltzman, 1975) or the “volatility paradox” in macro-finance (Brun-
nermeier and Sannikov, 2014).12 The leverage constraint means that booms characterized

11Some models not based on net worth can generate busts following few adverse shocks. For example,
Boissay et al. (2016) present a model based on information asymmetries that generates a finance-centric
boom-bust cycle. Gorton and Ordoñez (2016) generates cycles based on the interaction between real
productivity and financiers’ incentives to accept collateral.

12Demsetz and Strahan (1997) document this effect empirically for larger bank holding companies,
whose better diversification is offset by increased risk-taking. Adrian et al. (2015) argue the negative
correlation between financial sector ROE and expected returns supports the profitability mechanism in
my paper. Also related, Wagner (2008, 2010, 2011) develops a series of theoretical models to illustrate
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by rising financial leverage can destabilize the economy, as in Minsky (1992).13

The theoretical possibility that financial innovation may be inefficient is well-known
(Hart, 1975). In my paper, better financier diversification is a form of financial inno-
vation. Welfare can decrease through exacerbation of a pecuniary externality, whereby
individual financiers do not internalize how their risk-taking decisions reduce the total
equity of the financial system (Acharya et al., 2017).

My approach to modeling diversification is related to the model in Gârleanu et al.
(2015), which uses a Brownian bridge on a circle of locations to model correlated shocks.
Investors allocate funds along arcs on the circle, which prevents full diversification of
idiosyncratic risks. I use the theory of Gaussian processes to develop a new stochastic
process, which I call a Brownian cylinder, that maintains cross-sectional correlations on
a circle but accommodates an infinite-horizon, continuous-time setting. This apparatus
could be useful in other settings where continuous-time methods are fruitful (e.g., opti-
mal stopping problems, occasionally-binding portfolio constraints, heterogeneous-agent
macro models).

In my quantitative analysis, I apply the framework to the recent US housing boom.
Motivating this exercise is a large empirical literature arguing credit-supply increases
were the key driver of the boom.14 For example, Favara and Imbs (2015) study the
effect of credit on house prices using bank-branching deregulations of the late 1990s
and early 2000s as a credit-supply instrument. The deregulations plausibly allowed
banks to achieve better-diversified loan portfolios. My paper argues better mortgage
diversification is an important credit-supply shock driving the boom and bust.

Regarding the bust, most of this quantitative literature incorporating financial shocks
generates a bust only after applying a negative financial shock (e.g., Favilukis et al. (2017)
and Kaplan et al. (2017) generate busts with constraint and pessimism shocks). Missing

downsides of financial diversification. Closest to my paper is Wagner (2008), in which the banking sector
features a risk-taking externality. A banks does not internalize that high-risk, low-liquidity portfolio
choices increase other banks’ probability of inefficient liquidation. Better diversification improves risk-
reward trade-offs, thereby worsening the externality.

13For example, Minsky (1992) says, “...Over periods of prolonged prosperity, the economy transits from
financial relations that make for a stable system to financial relations that make for an unstable system.”

14Adelino et al. (2012) use a regression-discontinuity design to show that (conforming) mortgage secu-
ritization reduces lending rates and raises house prices. Mian and Sufi (2018) provide causal evidence that
the abrupt increase in private-label MBS activity dramatically increased house prices and led to the bust.
See also Mian and Sufi (2009), Mian and Sufi (2011), and Di Maggio and Kermani (2017). This credit-
supply view is not uncontroversial. For example, Haughwout et al. (2011), Chinco and Mayer (2015), and
Albanesi et al. (2017) point to housing investors (who mortgage multiple properties) as a driver of the
2000s boom-bust cycle. Adelino et al. (2016) argue that mortgage credit increased proportionally in all in-
come groups. These findings are at odds with the traditional rationing-based view, in which lower-quality
borrowers are the largest beneficiaries of the credit-supply increase.
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from this literature is the idea that the nature of the boom can make the subsequent bust
more likely and larger. Specifically, my model differs in that a diversification-induced
boom creates financial instability.

Even under the narrative of a deterioration of household balance sheets (Mian and
Sufi, 2015), the timing and extreme severity of the Great Recession are puzzling. Bernanke
(2018) uses such arguments to conclude that the housing bust is not enough; the 2008
financial panic is key to a coherent narrative. My paper provides a model taking this
finance view.

The paper is organized as follows. Section 2 studies the reallocation and leverage ef-
fects. Section 3 extends the model to allow for financial crises. Section 4 quantifies diver-
sification improvements in the recent US housing cycle. Section 5 concludes. Appendix
A details construction of the Brownian cylinder. Appendix B contains microfoundations.
Appendix C contains equilibrium derivations and proofs. Appendix D analyzes other
financial shocks. Appendix E contains model extensions. Appendix F contains empirical
analysis.

2 Two-Sector Model: Reallocation and Leverage

The model of this section is meant to introduce the primary mechanisms of my frame-
work: reallocation and leverage. I introduce two sectors that produce with their own
capital stocks. I will show that an increase in diversification of one sector’s risks leads
to reallocation towards that sector and, in the long run, to increased overall leverage by
financial intermediaries.

2.1 Setup

Time is continuous t ≥ 0. The model features two groups of agents: insiders and
financiers. Insiders are additionally split into two groups, depending on which of two
productive sectors they inhabit, A or B. These insiders invest in capital, and consume.
To finance their capital purchases, insiders issue outside securities and put up some of
their own net worth. These outside securities are held by financial intermediaries, which
are operated by financiers. To finance their investment activities, financiers use their
own net worth as well as risk-free debt. Agents in each group are indexed by i ∈ [0, 1],
which will represent an agent’s location, to be described below.
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Preferences. Agents have logarithmic utility over the single consumption good:

Ut := Et

[ ∫ ∞

t
ρe−ρ(s−t) log(cs)ds

]
. (1)

Locations and Idiosyncratic Risk. Agents are arranged on a circle, which has locations
indexed by i ∈ [0, 1]. Locations will be special because they feature different idiosyncratic
shocks. These shocks directly hit the evolution of productive capital. Mathematically,
capital held by an insider at location i evolves as

dkA
i,t = dIA

i,t + kA
i,tσ̂AdWA

i,t (2)

dkB
i,t = dIB

i,t + kB
i,tσ̂BdWB

i,t. (3)

In (2)-(3), dIA, dIB are desired investment, and WA, WB are idiosyncratic shocks (more
on these processes below). There are no aggregate shocks for now.

For two reasons, I assume no investment adjustment costs, as in Cox et al. (1985).
First, my focus is on incomplete financial markets rather than investment frictions. A
minimal number of frictions affords maximum theoretical clarity, and my results on
boom-bust cycles must be attributed to the financing frictions. Second, zero adjustment
costs allows me to obtain analytical solutions to the equilibrium of this economy.

I assume the idiosyncratic shocks WA
i,t and WB

i,t are independent copies of a stochastic
process with the following properties.

Assumption 1 (Shocks). Assume the following for W := {Wi,t : i ∈ [0, 1], t ≥ 0}.

(i) Fixing a location i ∈ [0, 1], Wi,t is a standard Brownian motion.

(ii) For any two locations i, j ∈ [0, 1], the shock correlation is

corr(dWi,t, dWj,t) = 1− 6dist(i, j)(1− dist(i, j)), (4)

where dist(i, j) := min(|i− j|, 1− |i− j|) is a distance metric on the circle of circumference
1.

(iii) Wi,t is continuous in (i, t) almost-surely, under the Euclidean distance metric on the cylin-
der d̃ist((i, s), (j, t)) := [|s− t|2 + dist(i, j)2]1/2.

Given part (i) of Assumption 1, the increment dWi,t is iid over time, for fixed location
i. Part (ii) of Assumption 1 means the shock correlations between locations decrease with
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their distance from one another.15 Nearby locations have nearly perfect shock correlation.
Two locations that are far away from one another have negative correlation. Does any
such stochastic process exist?

Lemma 2.1. A stochastic process exists which satisfies Assumption 1.

The key step in Lemma 2.1 is proving W can be constructed as a Gaussian process
with the appropriate covariance function, which needs to be symmetric and positive
semi-definite. Because W evolves on a circle over time, which looks like a cylinder, I call
it a Brownian cylinder.

With Assumption 1, we can establish some distributional properties of the Brownian
cylinder, in particular that it contributes no aggregate risk.

Lemma 2.2. Under Assumption 1, there is no aggregate risk, i.e.,
∫ 1

0 (dWi,t)di = 0 almost-
surely. More generally, the local variance of a unit investment divided amongst the shocks along
an arc of length ∆ is equal to (1− ∆)2, i.e.,16

Vart

( ∫ i+∆

i
∆−1dWj,tdj

)
= (1− ∆)2dt.

Consequently, W∆
i,t := (1− ∆)−1∆−1

∫ i+∆
i Wj,tdj is a standard Brownian motion.

Given Lemma 2.2, the shock dWi,t is correlated across locations but washes out in the
aggregate, the sense in which it is idiosyncratic. The surprising part of this result is that
we only needed to specify the covariance structure of the shocks, and this property alone
pins down the integral of all the shocks. Figure 2 plots a simulation of the Brownian
cylinder.17

Asset Markets. Sectoral capital is homogeneous, which implies the location-invariant
unit prices qA,t and qB,t. With zero adjustment costs, we will have qA,t ≡ qB,t ≡ 1 in
equilibrium. Finally, there is a zero-net-supply riskless bond market that returns rtdt.
All agents can access this bond market frictionlessly.

15This shock correlation owes to Gârleanu et al. (2015). Using the Brownian bridge on a “circle,” they
construct discrete-time idiosyncratic shocks that are cross-sectionally correlated but contain zero aggregate
risk. They find the dividend correlation is exactly 1− 6dist(i, j)(1− dist(i, j)). My proof of Lemma 2.1
would apply for any appropriate correlation function v(i, j) that depends only on dist(i, j) (i.e., stationary
correlation function).

16My notation convention is that “i + ∆” represents i + ∆ − bi + ∆c when indexing a position on the
circle.

17Because W is a Gaussian process, a simulation can be obtained by drawing a normal random vector
with the appropriate covariance matrix.
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Figure 2: One shock realization of the
Brownian cylinder {Wi,t : t ∈ [0, 1]},
for i at 500 evenly spaced locations.
Each cross-section of the cylinder is
the circle of locations. Colors repre-
sent the size of Wi,t/

√
t.

Insider Problem. Because of symmetry between the two sectors and their insiders, I
describe the problem of an insider in generic sector z ∈ {A, B}. On the asset side,
insiders hold capital in their firm, which produces according to an “AK” technology. The
representative insider at location i produces Gzkz

i,t for z ∈ {A, B}. Due to the absence of
adjustment costs, the return on capital is given by

dRz
i,t = Gzdt + σ̂zdWz

i,t, z ∈ {A, B}. (5)

Insiders are also marginal in the risk-free debt market, at the interest rate rt. On the
liability side, insiders can obtain funding from financiers against their capital, by signing
a contract promising the return of

dR̃z
i,t := (rt + sz

i,t)dt +
(
dRz

i,t −Et[dRz
i,t]
)
, z ∈ {A, B}.

This liability is a way for insiders to shed some of the idiosyncratic risk associated with
production. The “spread” charged by financial intermediaries is given by sz

i,t.
I assume insiders finance a fixed fraction φz of the value of their enterprise from

financiers in the form of outside equity, paying φzkz
i,tdR̃z

i,t to financiers. In Appendix B.1,
I demonstrate that this risk-sharing arrangement is an optimal solution to a standard
moral-hazard problem.

Combining the assumptions above, insider net worth nz
i,t evolves as

dnz
i,t = (nz

i,trt − cz
i,t)dt

︸ ︷︷ ︸
consumption-savings

+ kz
i,t(dRz

i,t − rtdt)
︸ ︷︷ ︸

capital ownership

− φzkz
i,t(dR̃z

i,t − rtdt)
︸ ︷︷ ︸

outside funding

, z ∈ {A, B}. (6)

Given the inability to frictionlessly trade the idiosyncratic risk of capital, one can think
of the differential kz

i,tEt[dRz
i,t− rtdt− φz(dR̃z

i,t− rtdt)] as a compensation for idiosyncratic
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risk. Mathematically, households solve

max
nz

i ,cz
i ,kz

i

U z
i,t, z ∈ {A, B}, (7)

subject to (6), nz
i,t ≥ 0, kz

i,t ≥ 0, where U z
i,t is given by the logarithmic utility functional

(1).

Financier Problem. Financiers serve a diversification and safe-asset-creation role. Fi-
nanciers hold a partially-diversified portfolio of equity in each of the two sectors. They
fund these activities by borrowing in riskless debt and using their own net worth.

Location iLocation i + �

Financier i portfolio

Insiders j 2 [i, i + �]

Figure 3: Circle of locations and fi-
nanciers’ partially diversified portfo-
lios. Financiers have potentially differ-
ent diversification parameters ∆A and
∆B for each sector.

I model diversification as follows. Financiers are tied to locations, just as insiders
are. A financier located at i ∈ [0, 1] invests in a portfolio of insiders’ securities located
“nearby” in the sense that they lie in a connected interval adjacent to location i. Define
∆z ∈ [0, 1] to be the length of this interval for insiders in sector z ∈ {A, B}. Insiders
financed by finanicer i are those with j ∈ [i, i + ∆z] mod [0, 1]. Here, the ∆z are exoge-
nously fixed numbers, not choices by financiers. This partial but imperfect diversification
arc on the circle may be visualized in figure 3.

For simplicity, I assume financiers fund all insiders within their investment arc sym-
metrically. Let λz

i,t represent location-i financiers’ funding, per unit of their net worth,
of sector-z insiders. In other words, location-i financiers supply λz

i,t∆
−1
z nF

i,t of funds to
each sector-z insider j ∈ [i, i + ∆z] mod [0, 1], rather than allowing λz

i,t to also vary by
destination.18

18Relaxing this assumption does not change the results significantly.
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Putting everything together, the financier’s net worth evolves dynamically as follows:

dnF
i,t = (nF

i,trt − cF
i,t)dt︸ ︷︷ ︸

consumption-savings

+ λA
i,tn

F
i,t∆
−1
A

∫ i+∆A

i
(dR̃A

j,t − rtdt)dj
︸ ︷︷ ︸

funding portfolio (sector A)

+ λB
i,tn

F
i,t∆
−1
B

∫ i+∆B

i
(dR̃B

j,t − rtdt)dj
︸ ︷︷ ︸

funding portfolio (sector B)

.

(8)

Financiers solve
max

nF
i ,cF

i ,λA
i ,λB

i

U F
i,t (9)

subject to (8), nF
i,t ≥ 0, λA

i,t ≥ 0, λB
i,t ≥ 0, where U F

i,t is given by (1).

Free Mobility. At this point, I make an important technical assumption that keeps
the equilibrium construction tractable. Specifically, I assume a free-mobility condition
between locations, which allows us to study a symmetric equilibrium.

Assumption 2 (Mobility). Insiders and financiers are freely mobile among locations i.

Under Assumption 2, idiosyncratic shocks will wash out in aggregate, but their pres-
ence matters for individual behavior. A similar free-mobility assumption has been used
across the idiosyncratic “islands” of Gertler and Kiyotaki (2010).

2.2 Equilibrium

Definition 1. An equilibrium consists of price and allocation processes, adapted to the shocks
{(WA

i,t, WB
i,t) : i ∈ [0, 1], t ≥ 0}, such that all agents solve their optimization problems and all

markets clear. Prices consist of the interest rate rt and spreads sA
i,t, sB

i,t. Allocations consist of
capital and equity holdings (kA

i,t, kB
i,t, λA

i,t, λB
i,t), and consumption choices (cA

i,t, cB
i,t, cF

i,t). A sym-
metric equilibrium is an equilibrium in which all objects are independent of i for each t. The
market-clearing conditions are as follows.

(Goods market)
∫ 1

0
[GAkA

i,t + GBkB
i,t]didt =

∫ 1

0
[cA

i,t + cB
i,t + cF

i,t]didt +
∫ 1

0
[dIA

i,t + dIB
i,t]di

(Bond market)
∫ 1

0
[nA

i,t + nB
i,t + nF

i,t]di =
∫ 1

0
[kA

i,t + kB
i,t]di

(Funding markets)
∫ i

i−∆z
∆−1

z λz
j,tn

F
j,tdj = φzkz

i,t, ∀i ∈ [0, 1], z ∈ {A, B}.

In this paper, I analyze a symmetric equilibrium, in which locations are exactly iden-
tical in their net worths. Such a construction is feasible (and weakly optimal) under
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free-mobility. Studying this equilibrium allows me to avoid keeping track of the full
distribution of wealth among locations, which would otherwise be necessary to know
the evolution of aggregates.19

For construction of the symmetric equilibrium, define aggregate capital Kt :=
∫ 1

0 [k
A
i,t +

kB
i,t]di and the capital distribution κt := K−1

t
∫ 1

0 kA
i,tdi. Define the wealth shares

αt :=
NA,t

NA,t + NB,t
and ηt :=

NF,t

NF,t + NA,t + NB,t

where NA,t :=
∫ 1

0 nA
i,tdi, NB,t :=

∫ 1
0 nB

i,tdi, and NF,t :=
∫ 1

0 nF
i,tdi are aggregate net worths.

The only state variables in a symmetric equilibrium will be (αt, ηt, Kt). Therefore, in what
follows, I drop location i subscripts from all variables whenever the meaning is clear. All
stationary variables will be solely functions of (αt, ηt), whereas growing variables grow
with Kt. State dynamics are dKt = Ktιtdt, dαt = µα

t dt, and dηt = µ
η
t dt, where the

aggregate investment rate ιt is determined from ιtKtdt := dIA
t + dIB

t .20 The equilibrium
is computed explicitly.

Proposition 2.3 (Two-Sector Equilibrium). Let Assumptions 1 and 2 hold. Then, there exists
a unique symmetric equilibrium with state variables (α, η). The state dynamics are

µα = α(1− α)[π̂2
A − π̂2

B] (10)

µη = η(1− η)[π̂2
F→A + π̂2

F→B − απ̂2
A − (1− α)π̂2

B], (11)

where

π̂A :=
κ(1− φA)σ̂A

α(1− η)
and π̂B :=

(1− κ)(1− φB)σ̂B

(1− α)(1− η)
(12)

π̂F→A :=
κφA(1− ∆A)σ̂A

η
and π̂F→B :=

(1− κ)φB(1− ∆B)σ̂B

η
(13)

19For details on equilibrium of a model with correlated shocks and limited mobility, see Khorrami
(2018), in which the distribution of net worth across locations becomes a state variable.

20Note that, although sectoral investment dIA
t and dIB

t will not, in general, be absolutely continuous
with respect to time (Lebesgue measure), the sum must be absolutely continuous as a consequence of
goods market clearing.
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are shadow idiosyncratic risk prices. The capital distribution is given by

κ = min(1, max(0, κ̃)),

where κ̃ :=
GA − GB +

[ (1−φB)
2

(1−α)(1−η)
+

φ2
B(1−∆B)

2

η

]
σ̂2

B
[ (1−φA)2

α(1−η)
+

φ2
A(1−∆A)2

η

]
σ̂2

A +
[ (1−φB)2

(1−α)(1−η)
+

φ2
B(1−∆B)2

η

]
σ̂2

B

. (14)

I should clarify a few elements of the equilibrium in Proposition 2.3. First, even
though the two sectors produce the same consumption good, each sector can receive
a non-trivial allocation of resources because of their risk properties. Indeed, the sec-
toral shocks WA and WB are independent, so it is efficient to diversify these shocks
by producing some output in each sector. The qualitative insights below survive in a
model with differentiated goods, which provides an additional rationale for production
diversification. See Appendix E.1 for the model with Cobb-Douglas preferences over the
consumption goods.

Second, the expected excess return on each capital stock can be decomposed into
idiosyncratic risk premia earned by insiders and financiers. These idiosyncratic risk
premia are non-trivial due to imperfect diversification by both insiders (who must hold
1− φ fraction of their capital risk) and financiers (who can only diversify ∆ fraction of
the locations). Indeed, for sectors z ∈ {A, B},

Gz − r︸ ︷︷ ︸
total risk premium

= (1− φz)σ̂zπ̂z︸ ︷︷ ︸
insiders’ idio risk premium

+ φz(1− ∆z)σ̂zπ̂F→z︸ ︷︷ ︸
financiers’ idio risk premium

. (15)

Indeed, (1− φz)σ̂z and φz(1− ∆z)σ̂z represent the quantity of idiosyncratic risk held by
insiders and financiers, respectively, and π̂z and π̂F→z are the prices of these risks. These
idiosyncratic risk prices measure the marginal utility response to a negative idiosyncratic
shock.

Finally, the economy is deterministic in aggregate and approaches “steady state” as
t→ ∞. See Proposition C.1.

The equilibrium can be conveyed graphically. The left panel of figure 4 plots the
supply and demand in sector A’s lending market, with the idiosyncratic risk price π̂F→A

against the financier portfolio λA (there is a symmetric graph for sector B). This is a
novel feature of this paper: in most models, financiers are perfectly diversified, trivially
eliminating financiers’ idiosyncratic risk prices as an equilibrating price, e.g., π̂F→A = 0.

The increasing line is funding supply: financiers’ optimal portfolio λA is simply a
mean-variance portfolio trading off idiosyncratic risk compensation, π̂F→A, against the
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Figure 4: Steady-state equilibrium.

idiosyncratic volatility of the portfolio, (1− ∆A)σ̂A.
The downward-sloping curve plots funding demand, which is constructed from in-

siders’ optimal capital choice. Sector A capital demand, relative to aggregate capital,
is

κ =
GA − r− φAsA

(1− φA)2σ̂2
A

(1− η)α.

Insiders retain (1 − φA) of their capital risk as inside equity and optimally trade off
its variance, (1− φA)

2σ̂2
A, against its expected return. Inside equity earns the expected

excess return GA − r on capital, net of the lending spread sA paid to financiers on φA of
outside equity. Because the spread sA is fair, it compensates financiers for idiosyncratic
risk, i.e., sA = (1− ∆A)σ̂Aπ̂F→A. A higher risk price π̂F→A increases spreads sA and
lowers capital demand κ. Lower capital demand reduces funding demand through the
equity-market-clearing relationship φAκ = λAη, which is the downward-sloping curve
plotted in figure 4.21

The right panel shows the dynamics of η. The drift µη balances the relative profitabil-
ities of financiers and insiders, which are governed by their idiosyncratic risk prices:

µη = η(1− η)
[

π̂2
F→A + π̂2

F→B︸ ︷︷ ︸
financier profitability

− (απ̂A + (1− α)π̂B)︸ ︷︷ ︸
insider profitability

]
.

21To get an expression for the downward-sloping curve, take the difference between asset pricing equa-
tion (15) for z = A, B and substitute π̂A and π̂B to get the following:

κ = (1− η)
[ (1− φA)

2σ̂2
A

α
+

(1− φB)
2σ̂2

B
1− α

]−1[GA − GB −
[
φAsA − φBsB

]
+ (1− η)−1 (1− φB)

2σ̂2
B

1− α

]
.

Notice that, holding sB fixed, κ is decreasing in sA, hence π̂F→A.
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As a function of η, µη is typically decreasing, because π̂F→A and π̂F→B are decreasing in
η, whereas π̂A and π̂B are increasing in η. This downward-sloping property is why the
economy converges to the steady state.

2.3 Diversification Improvements

In this section, I illustrate the reallocation and leverage effects discussed in the introduc-
tion. To do this, I construct a time-path, or an “impulse response function” (IRF), for
all variables following a change in diversification. See Appendix C.2 for more details on
these IRFs. Due to the tractability offered by logarithmic utility and frictionless physical
investment, computing IRFs is not problematic.

Broadly speaking, there are three types of diversification IRFs. The first type of IRF
treats diversification changes as unanticipated, in the sense that economic agents perceive
zero probability of diversification improvements, even though improvements repeatedly
occur. A second type of IRF treats the diversification changes as fully anticipated, in
the sense that news about the future diversification path breaks at time τ, and after that
time, agents know the entire future time-path of diversification. A third type of IRF treats
diversification shocks as partially anticipated, in the sense that agents know diversification
levels follow a particular stochastic process. As shown by the lemma below, these three
types of IRFs are equivalent in this model.

Lemma 2.4. Suppose any of the following situations hold:

(i) Unanticipated: (∆A,t, ∆B,t) follows an arbitrary stochastic process, but agents place zero
probability on any future changes.

(ii) Fully Anticipated: (∆A,t, ∆B,t) follows a deterministic path. At time τ, agents are in-
formed about a new future path {(∆A,t, ∆B,t) : t ≥ τ}.

(iii) Partially Anticipated: (∆A,t, ∆B,t) follows an arbitrary Itô process. All agents are un-
constrained in markets for Arrow claims on the shocks d∆z,t −Et[d∆z,t].

Then, the economy is in the equilibrium of Proposition 2.3 with (∆A,t, ∆B,t) representing (∆A, ∆B)

at every point in time t.

This lemma relies on the optimally-myopic behavior of log utility agents, who care
only about the current level of diversification, not its future probability distribution. In
addition, IRF computation is simplified due to a no-jump property.

Lemma 2.5. Consider an unanticipated time-t shock to (∆A, ∆B). Then, (αt, ηt) = (αt−, ηt−).
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The intuition for Lemma 2.5 is that portfolio holdings are pre-determined before a
shock, so wealth can only jump if asset prices jump. But frictionless investment implies
capital prices are always equal to one; in particular, they cannot jump. Thus, this model
contains no “impact response” to diversification shocks.

With this equivalence proved, suppose diversification improves in sector A, i.e., ∆A ↑.
Figure 5 illustrates the adjustment to the new steady state.
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Figure 5: Equilibrium before and after an increase in diversification, ∆A ↑.

In the short run, better diversification increases sectoral funding supply because it
improves financiers’ risk-reward trade-off. Graphically, this improvement is captured by
the outward rotation of the supply curve (left panel), which results in a shift from the
diamond to the hollow circle.22 This shift reduces equilibrium risk compensation π̂F→A

and generates a discontinuous increase in the sector A capital share κ. Although aggre-
gate capital will never jump in equilibrium, its sectoral allocation can, due to frictionless
investment.

This short-run outcome is the reallocation effect. Diversification-induced reallocation
can partly explain the fact that sectoral capital shares are negatively correlated with
sectoral risk premia, documented by Bansal et al. (2017). Reallocation can also occur
with an increase in TFP GA. But as equation (15) shows, productivity-based reallocation
must raise the sectoral risk premium, exactly as in Cochrane et al. (2007).

Lower risk prices π̂F→A reduce financier profitability, so the drift µη shifts down-
wards (right panel). Over time, η drifts down. Financiers are happy to decumulate,

22Note that there is a small outward shift in the supply (flattening of the slope) on impact because, as
footnote 21 shows, κ is a decreasing function of sA = (1−∆A)σ̂Aπ̂F→A, so it depends on ∆A independently
of π̂F→A. This issue is eliminated if we use sA rather than π̂F→A as the relevant price. In that case,
λA,supply = sA(1 − ∆A)

−2σ̂−2
A represents the supply curve and λA,demand = φAκ(sA)η

−1 the demand
curve, where κ(·) depends on ∆A only through sA.
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because a lower quantity of idiosyncratic risk necessitates a lower precautionary sav-
ings buffer. However, lower relative wealth means financiers must accumulate leverage
to continue their scale of financing operations. This dynamic effect is captured by the
gradual outward shift in the demand curve (left panel), which results in a shift from the
hollow circle to the solid circle. Because financiers are present in both sectors, a similar
effect occurs in sector B.

I call this dynamic force the leverage effect. Financier leverage (assets/equity) is

leverage := λA + λB =
φAκ + φB(1− κ)

η
, (16)

so declines in η tend to raise leverage. The next result formalizes this analysis.

Proposition 2.6 (Reallocation/Leverage). Suppose at time t the economy is sufficiently close
to an interior steady state and then there is a small increase in ∆A. The sector-A capital share
increases, κt > κt−. Sufficient conditions for µ

η
t < µ

η
t− are (i) nearly symmetric sectors; or (ii)

| log(κt/κt−)| is not too large.

Figure 6 translates the graphical analysis of figure 5 to a time-path. The top panels
show responses to a one-time unanticipated ∆A-shock at time t = 0, when the system
is in steady state. The bottom panels show responses to a gradual increase in ∆A. Per-
forming this experiment often raises the question of how to interpret several increases to
∆A; in particular, what probability do agents attach to future diversification increases?
Given the equivalence result of Lemma 2.4, we are able to sidestep this question. The
left panels show time-paths for ∆A. The middle and right panels illustrate the responses
of κt and λA

F + λB
F – the reallocation and leverage effects.

These time-paths connect the model to the 1990s-2000s housing boom. As shown
in figure 1, this episode featured a large sectoral reallocation from corporate credit to
household credit and a rise in financial intermediary leverage. Thus, if we interpret
sector A as housing and sector B as productive capital, a gradual increase in ∆A, corre-
sponding to rising mortgage securitization or gradual banking deregulation, can match
these qualitative patterns.

2.4 Endogenous Credit Standards as Financier Leverage

The diversification-induced leverage build-up (“leverage effect”) springs from a reduc-
tion in financier profitability, through lower equilibrium spreads. Empirically, there is
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Figure 6: IRFs to a one-time shock (top panels) and gradual increase (bottom panels) from ∆A = 0.5 to
∆A = 1 at time t = 0. In this example, GA = GB = 0.1, σ̂A = σ̂B = 0.20, φA = φB = 0.50, ρ = 0.02, and
∆B = 0.5.

some support for this during the 2000s housing boom, as mortgage spreads fell and
commercial bank profitability saw a modest decline.23

Theoretically, the leverage build-up is a general response to better diversification and
can be observed even in absence of a profitability decline. For example, better diversifica-
tion initially lowers lending spreads, so insiders may optimally borrow more by increas-
ing their outside funding (e.g., φA). Greater outside funding and better diversification
have opposing effects on equilibrium spreads, so financier profitability may increase or
decrease. At the same time, higher φA directly raises financiers’ assets/equity ratio by
equation (16). Intuitively, if credit quantity (rather than spreads) is the main margin of
adjustment, bank leverage will still increase.

To analyze such a situation, Appendix B.2 generalizes the moral-hazard problem
of insiders to generate the possibility of time-varying φA and φB. In this setup, the
moral-hazard problem is smoothed in such a way that optimal short-term contracts can-
not eliminate agency costs. Optimal issuance φA equates the marginal diversification
benefits from offloading risk (arising because financiers are better-diversified than insid-
ers) to marginal moral-hazard costs (arising because insiders will divert more resources
when they keep less skin in the game). Improved financier diversification increases the
marginal benefit of issuance, so φA rises with ∆A. Although a lower skin-in-the-game
requirement exacerbates insiders’ agency problem, now-better-diversified financiers tol-
erate this cost. Credit standards are optimally relaxed, analogous to the story “securi-

23Justiniano et al. (2017) show spreads declined; Appendix F.1 shows commercial bank profits.
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tization led to lax screening” in Keys et al. (2010). Thus, endogenizing credit standards
demonstrates the leverage effect does not rely on falling financier profitability.24

2.5 Comparison to Other Financial Shocks

Because of the model’s tractability, it is possible to study several other “financial shocks”.
In Appendix D, the model is extended to study an LTV shock, a capital-requirement
shock, a risk-tolerance shock, an uncertainty shock, and a foreign-savings shock – all
of which have been linked by the extant literature to boom-bust cycles, most recently
related to the 2000s US housing boom (see the relevant citations in Appendix D). Other
than the diversification shock, none can produce both a sectoral reallocation and fi-
nancier leveraging in my model. These results are formalized in Propositions D.1-D.5
and summarized in Table 1.

Stylized Facts
Financial
Shocks

Sectoral
Reallocation

Financial
Leverage

Diversification + +

LTV + ∼
Capital requirements ∼ +

Financier risk-tolerance ∼ +

Insider risk-tolerance + −
Idiosyncratic sectoral risk + ∼
Foreign savings ∼ +

Table 1: Stylized facts and financial shocks. “+” indicates a positive response in the stylized fact to the
referenced shock. “−” indicates a negative response in the stylized fact to the shock. “∼” indicates a
neutral or ambiguous response in the stylized fact to the shock.

The basic intuition for the results of Table 1 is that reallocation and leverage are
generated by a sector-specific credit supply shock, i.e., a shock that reduces financiers’
cost of lending and is biased towards a particular sector. The other shocks considered
are either not biased towards a particular sector (capital requirements, financier risk-
tolerance, foreign savings / safe-asset holdings), or they affect credit demand as much
or more than credit supply (LTV, insider risk-tolerance, idiosyncratic risk).

24The time-dynamics of financier leverage are ambiguous in the literal version of this story, because
of the opposing effects of higher ∆A and higher φA on financier profitability. An extension with slow
adjustment of φA (perhaps through within-sector heterogeneity) seems promising to induce a slow build-
up of financier leverage.
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3 Diversification-Induced Financial Crises

The model of Section 2 illustrates the reallocation and leverage mechanisms in a sim-
ple way. The key shortcoming of that model is the absence of financial fragility: even
though diversification reduces the financier wealth share, no additional macro-financial
risk emerges (and one can show the equilibrium is efficient). Below, I modify the model
by introducing a cost to high leverage, with a leverage constraint and an imperfect
deleveraging technology, which allows for fire sales and financial crises. An alterna-
tive extension, whereby there is a flight-to-safety episode at the leverage constraint, is
solved in Appendix E.2.

3.1 New Features

Aggregate Risk. To the capital evolution (2)-(3), I add aggregate shocks:

dkz
i,t = dIz

i,t + kz
i,t[σ̂zdWA

i,t + σz · dZt], z ∈ {A, B},

where Z := (ZA, ZB). For simplicity, I assume orthogonal shocks: σA · σB = 0.
There is also a continuously-settled, zero-net-supply futures market for trading claims

directly on aggregate risk. Investing one unit of net worth in this claim earns the excess
return πtdt + dZt, where πt is the market price of risk associated with the dZt shocks.
I assume financiers and distressed may trade in this market unconstrained, but insiders
cannot. In reality, insiders of firms may be prevented from market trading due to incen-
tive problems. This assumption generates stochastic fluctuations, because aggregate risk
cannot be shared perfectly.

Leverage Constraints. Most importantly, I introduce a financier leverage constraint:

λA
F,t + λB

F,t ≤ λ̄, λ̄ > 1. (17)

Borrowing constraints like (17) can be a reduced-form for financier default costs that
rise sharply with high leverage, or they may arise due to incentive problems.25 In Ap-
pendix B.3, I micro-found the constraint with a simple agency problem. There, the
endogenously-determined maximal leverage λ̄ is a function of the economic state and
model parameters but is crucially not increasing in diversification ∆A, ∆B.

25See, for example, Kehoe and Levine (1993), Hart and Moore (1994), Kocherlakota (1996), Kiyotaki and
Moore (1997), Holmstrom and Tirole (1997), Gertler and Kiyotaki (2010), and Di Tella and Sannikov (2016).
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The leverage constraint modifies portfolio choices by introducing an auxiliary vari-
able (Lagrange multiplier) that I denote ζt. Thus, financiers’ optimal portfolios are given
by

λA
F =

(sA − σA · π − ζ)+

(1− ∆A)2σ̂2
A

and λB
F =

(sB − σB · π − ζ)+

(1− ∆B)2σ̂2
B

(18)

The standard complementary slackness determines when leverage constraints bind:

0 = min
{

ζ, λ̄− λA
F − λB

F
}

. (19)

The portfolio choices (18) are simple because the constraints (leverage and shorting)
are homogeneous in wealth, and because all agents have log utility. See Appendix B.4
for a derivation using convex duality methods as in Cvitanić and Karatzas (1992) and
Garleanu and Pedersen (2011). The presence of ζ helps us understand that a binding
leverage constraint works similarly to a rise in intermediary funding costs. Indeed, as
(18) suggests, equilibrium with a leverage constraint is identical to an unconstrained
economy in which financiers perceive funding costs of r + ζ rather than r. Hence, I will
sometimes refer to ζ as the “shadow funding cost.”

Distressed Investors. I introduce a fourth category of agent, which I call “distressed
investors,” who may also extend financing to insiders, but are less qualified to do so.
In particular, for each unit of financing, distressed investors must pay a pecuniary cost
χ out of their returns. Such costs may be a reduced-form for search costs, information-
acquisition costs, fundraising costs, etc.26 I implicitly assume these activities take time
and other resources that would otherwise be used in production, so that this pecu-
niary cost is a deadweight loss to the economy. Although they are less skilled lenders,
distressed investors do not face the leverage constraint (17). Finally, for quantitative
purposes below, mainly to control average financier leverage, I assume financiers can
have a higher discount rate, ρF ≥ ρ, than distressed investors and insiders. Otherwise,
distressed investors are identical to financiers.

With distressed investors, equilibrium requires that we keep track of distressed in-
vestors’ aggregate net worth ND,t. In symmetric equilibrium, the wealth distribution is
now characterized by three state variables:

α :=
NA

NA + NB
, η :=

NF + ND

K
, and x :=

NF

NF + ND
.

26Distressed investors may also be interpreted as the marginal buyers of loans and securities on the
secondary market, after the first-best financiers begin defaulting. For example, Chernenko et al. (2016)
show mutual fund holdings of ABS grew in the financial crisis. Relatedly, He et al. (2010) study ABS
holdings of hedge funds, commercial banks, and investment banks.
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Competition among insiders ensures distressed investors must also charge spreads
sA and sB. Consequently, their return-on-investment is given by

∆−1
A

∫ i+∆A

i
(dR̃A

j,t − χdt)dj + ∆−1
B

∫ i+∆B

i
(dR̃B

j,t − χdt)dj.

Their portfolio choices are given by

λA
D =

(sA − σA · π − χ)+

(1− ∆A)2σ̂2
A

and λB
D =

(sB − σB · π − χ)+

(1− ∆B)2σ̂2
B

. (20)

Financial distress is said to occur when either spread rises beyond χ, such that λA
D + λB

D >

0.
Because the participation cost is modeled as a pecuniary cost, any equilibrium finan-

cial distress leads to inefficiency. The costs of financial distress appear in the modified
resource constraint:

ι + xηρF + (1− xη)ρ︸ ︷︷ ︸
Investment + Consumption

= κGA + (1− κ)GB︸ ︷︷ ︸
Output

− χη(1− x)(λA
D + λB

D)︸ ︷︷ ︸
Costs of Financial Distress

. (21)

These costs are mechanically tied to periods of distress, although they scale with the
degree of distress, i.e., the size of the costs depends on the level of participation by
distressed investors.

Overlapping Generations. Lastly, I introduce a “perpetual youth” overlapping-generations
(OLG) structure, to ensure a generically stationary wealth distribution, similar to Gâr-
leanu and Panageas (2015). All agents perish independently at the Poisson rate δ. Since
this assumption augments all agents’ subjective discount rate by +δ, parameters ρ and
ρF should be thought of as inclusive of δ (see Lemma C.2). There are no markets to
hedge idiosyncratic death shocks. To keep the population size constant, newborns
arrive at the same rate. Among newborns, the fraction entering sector z is νz, with
νA + νB + νF + νD = 1. Dying agents’ wealth is redistributed equally to newborns.

3.2 Equilibrium and Distress

With these new features, equilibrium is derived (in closed form) in Appendix C.3. The
first finding links financial distress to leverage constraints, which are, in some sense,
both necessary and sufficient.

Proposition 3.1 (Distress with Leverage Constraints). In equilibrium:
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(i) If φA = φB, then λA
F,t + λB

F,t = λ̄ implies λA
D,t + λB

D,t > 0.

(ii) Suppose χ ≥ λ̄ max{(1− ∆A)
2σ̂2

A, (1− ∆B)
2σ̂2

B}. Then, λA
F,t + λB

F,t < λ̄ implies λA
D,t +

λB
D,t = 0.

Part (i) of Proposition 3.1 is a case in which distressed investors participate whenever
(17) binds. Intuitively, because financiers are unable to raise new equity, they will be
forced to de-lever upon hitting constraint (17), independent of their risk exposures and
degree of hedging activities. De-leveraging automatically results in inefficient participa-
tion by distressed investors. In this sense, leverage constraints are sufficient for financial
distress.

Part (ii) says that distress requires binding leverage constraints, under certain param-
eterizations. This can be understood as follows. Distressed investors enter the market
in the earlier of two situations: (a) to allow financiers to offload some idiosyncratic risk
(i.e., for optimal risk-sharing); or (b) because financiers are leverage-constrained. If fi-
nanciers do not need to bear an extreme amount of idiosyncratic risk (e.g., if ∆A, ∆B are
high enough after a diversification improvement), then distress must come from binding
constraints. For more discussion on this point, see Appendix C.4, which also contains
the proof of Proposition 3.1.

Figure 7 illustrates these features. When η and x are low, financiers hit their leverage
constraints. In this region, financial distress emerges as distressed investors enter the
market and begin lending. Financial distress generates a jump in the spreads of both
sectors, even in sector B where ∆B = 1.

Why is there a discontinuous jump in spreads upon financial distress? For rational
forward-looking financiers, why not withhold some investment just outside the dis-
tressed region, to avoid hitting their leverage constraint as aggregate dynamics move the
economy into a region with much higher premia? My financiers optimally have zero
such hedging demands. Crucially, to obtain enough funds to avoid leverage constraints
in the distress region, financiers would need to consume less for an extended period of
time before financial distress. Under log utility, the trade-off between this loss and the
gain from the higher returns in the distressed region is exactly balanced by the myopic
portfolio (18).

3.3 Dynamics: Endogenous Busts and Financial Instability

This section shows how “endogenous busts” and “financial instability” can follow a
diversification improvement in this new environment.
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Figure 7: Equilibrium functions of (η, x) with α = 0.5 fixed. Parameters: ‖σA‖ = ‖σB‖ = 0.04, σ̂A = σ̂B =
0.20, φA = φB = 0.50, GA = GB = 0.1, ∆A = 0.5, ∆B = 1, ρ = 0.02, ρF = 0.06, χ = 0.05, and λ̄ = 10.

Definition 2. Suppose the economy is in stationary equilibrium, and there is a one-time shock at
time τ. We say an endogenous bust occurs if there is a predicted future decrease in investment
or consumption, relative to capital, i.e., if there exists t > 0 such that Eτ−[Yτ+t] < Yτ−, where
Y := ι + xηρF + (1− xη)ρ.

Notice, from the resource constraint (21), investment and consumption are equal to
“endogenous productivity” κGA + (1− κ)GB net of “distress costs” χη(1− x)(λA

D + λB
D).

For theoretical clarity, I will focus on a deterministic environment and an economy with
symmetric sectors (in particular, GA = GB), so that the endogenous productivity term is
constant.

Proposition 3.2. Consider the equilibrium of Proposition C.3, with symmetric sectors and de-
terministic dynamics, i.e., GA = GB ≡ G, φA = φB ≡ φ, ∆A = ∆B ≡ ∆, σ̂A = σ̂B ≡ σ̂,
and σA = σB = 0. Suppose the economy is in steady state, and there is a one-time increase
∆τ − ∆τ− > 0 at time τ. If ∆τ is large enough, and if condition (95) in Appendix C.5 holds,
then an endogenous bust occurs.

Intuitively, Proposition 3.2 says: if diversification improves enough, financiers will de-
terministically hit their leverage constraint in finite time. At that time, distressed investors
will begin participating which triggers two effects: (i) a potential loss in output through
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“distress costs” that scale with participation; and (ii) a sudden increase in expected re-
turns that rebuilds financier wealth and pushes them away from the leverage constraint.
If the rebuilding effect (ii) is sufficiently weak, then the economy gets temporarily stuck
at the leverage constraint, inducing non-negligible participation by distressed investors,
hence non-negligible distress costs. Condition (95) ensures a weak rebuilding effect.

Next, we consider financial instability, which is also tightly associated with a binding
leverage constraint.

Definition 3. We say financial instability occurs if investment and consumption are more
volatile than capital, i.e., Vart[dYt] > 0, where Y := ι + xηρF + (1− xη)ρ.

Proposition 3.3. Consider the equilibrium of Proposition C.3 with GA = GB ≡ G, φA = φB ≡
φ, and ∆A, ∆B chosen large enough. Then, there is financial instability if and only if the leverage
constraint (17) binds.

Instability shows up in both sectors’ risk premia. Figure 8 shows the IRFs of lending
spreads after a gradual improvement in sector A diversification.27 Once leverage con-
straints begin to bind, a large right tail appears suddenly in both sectors. Although the
diversification improvement is sector-specific, the sudden possibility of extreme spreads
emerges in both sectors, because distressed investors typically enter both sectors when
financiers are leverage-constrained. This tail event, with spillovers to all sectors, re-
sembles a financial crisis. Recent literature has documented low spreads leading into
a predictable downturn or financial crisis,28 which is a feature of these diversification-
induced dynamics.

This finding also sheds light on the timing of the 2008 financial crisis. In the model,
a possible sequence of events is as follows: (i) mortgage diversification improves (∆A

increases exogenously); (ii) there is a reallocative housing boom (κ increases); (iii) fi-
nancial leverage builds (λA

F + λB
F increases); (iv) housing slows down (ZA decreases

exogenously); (v) financial crisis (λA
F + λB

F = λ̄). Here, it is possible to have a housing
slowdown in 2006, with a crisis and associated spillovers two years later.

27Lemmas 2.4 and 2.5 continue to hold in this economy, so these IRFs can be interpreted as responses
to anticipated improvements rather than a series of zero-probability events.

28López-Salido et al. (2017) and Krishnamurthy and Muir (2016) show credit spreads tend to be low even
though the bust is predictable (also see Schularick and Taylor (2012)). Baron and Xiong (2017) show bank
equity provides low returns at the height of the boom, even though bank riskiness is elevated, measured
by crash risk.
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Figure 8: IRFs to a gradual increase from ∆A = 0.5 to ∆A = 1 from time t = 0 to t = 10. Solid lines are
median responses, and dashed lines are 5th and 95th percentile responses. Parameters: ‖σA‖ = ‖σB‖ =
0.04, σ̂A = σ̂B = 0.20, φA = φB = 0.50, GA = GB = 0.1, ∆B = 0.5, ρ = 0.02, ρF = 0.06, χ = 0.05, and λ̄ = 10.

4 Quantification: US Housing Cycle

The objective of this section is to quantify the reallocation and leverage effects in the con-
text of the 1990s-2000s US housing cycle. The first step is to determine a reasonable size
for the diversification shock (Section 4.1). The second step is to calibrate the model to fit
this particular episode (Section 4.2). The “test” is whether the model generates plausible
dynamics for financier leverage and lending spreads, series not targeted by calibration. I
show that the model without diversification improvements cannot qualitatively generate
the same dynamics.

4.1 Measuring Diversification

In this section, I construct a quantitative measure of mortgage-market diversification. At
a high level, the steps involved are as follows. First, I construct synthetic mortgage
portfolios for mortgage lenders, using originations data in the HMDA dataset. For
loans that are sold or securitized, I assume they are 100% diversified. Loans that are
held on the lender’s balance sheet are imperfectly diversified, and computing the exact
degree of diversification follows the instructions below. The result is therefore a holistic
measure of diversification, accounting for loan sales to Fannie/Freddie, securitizations,
and geographic diversification.

Second, I compute the one-year-ahead volatility of each lender’s mortgage portfolio,
using location-specific house-price changes as the proxy for each loan’s return.29 The

29In doing this, I am assuming the risk on lender’s mortgage portfolios can be proxied by the risk
inherent in the house prices to which the mortgages are attached (or at least assuming the mortgage
risk is proportional to the house-price risk). This proportionality assumption is incorrect per se, mainly
because mortgages are debt contracts, which can be thought of as nonlinear functions of the local house
price (e.g., default in bad states). But my assumption is reasonable as long as the covariances between the
house prices in different locations are similar to the covariances between mortgage payments in different
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lender’s portfolio return is simply a weighted average of these loan-level returns, and I
compute the volatility of this return. Importantly, this method automatically accounts
for the empirical correlation between loans held on a lender’s balance sheet. Denote the
average lender-level volatility σ̂∆,t. Then, I proxy loan-level risk by measuring the average
of all locations’ one-year-ahead house-price volatility. Denote this average location-level
volatility σ̂t. Finally, I back out time-varying diversification ∆t using the model-implied
relationship (1− ∆t)σ̂t = σ̂∆,t. Details on this procedure are in Appendix F.2.
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Figure 9: Diversification Index.
“Idio Vol of Housing” plots es-
timates of σ̂t. “Mortgage Diver-
sification” plots estimates of ∆t.
In this figure, the definition of
“location” is a county. Source:
HMDA and CoreLogic.

In figure 9, I plot the diversification index, ∆t. In 1990, under 60% of housing risk
was diversified by lenders.30 By 2005, over 90% of such risk was diversified. During
the same time period, the idiosyncratic volatility of housing (σ̂t) was not significantly
reduced, indicating lenders faced lower housing risks primarily due to diversification.

Why did diversification increase so dramatically? I find both securitization and geo-
graphic diversification were significant factors. Figure 10 shows the number of counties
represented by loans in an average lender’s portfolio increased from 10 to 30 during
the boom. During the same time, the fraction of mortgage loans sold (either to Fan-
nie/Freddie or to private-label securitizations) increased from 45% to 60%. The geo-
graphic diversification seems to have been under-appreciated during this episode.

4.2 Calibrated Model

In this section, I interpret sector A as housing, and sector B as all other productive
capital. The parameters and targets for this model are listed in table 2.

locations, because these covariances are the key inputs in how I measure diversification.
30I do not include the 1980s due to HMDA data limitations. As discussed in Mian et al. (2017b) and

Fieldhouse et al. (2018), banking deregulations and mortgage securitizations (by GSEs) began aggressively
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Figure 10: Diversification Com-
ponents. “Share of Originations
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of mortgage originations that
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Into the model, I feed in a series for ∆A,t that approximately matches figure 9. I
assume ∆A,t = 0.59 for t ∈ [1980, 1990]. Then, ∆A,t increases linearly from 1990 until
2006, where ∆A,2006 = 0.91. The resulting series is depicted in the top left panel of figure
11.

To extract the two-dimensional Brownian shocks (ZA
t , ZB

t ), I approximately match
two model-implied series to the data, from 1980 to 2015: (a) log GDP and (b) the log
household credit share (each with 50% weights) i.e.,

log(GDP) = log
(

K[κGA + (1− κ)GB − (1− x)η(λA
D + λB

D)]
)

log(household credit share) = log
( (κ + 0.1)φA

(κ + 0.1)φA + (1− κ)φB

)
.

The 0.1 wedge in the household credit share is to account for the fact that mortgage credit
only accounts for approximately 2/3 of household credit. The extracted shock series are
depicted in the top right panel of figure 11. In all figures, “model” refers to the model
with shocks to both ∆A and (ZA, ZB). “Counterfactual” refers to the model with the
same shocks to (ZA, ZB) but assumes ∆A constant. In both the model with diversification
shocks and the counterfactual exercise, I use the binomial approximation to Brownian
motion, i.e., dZ = ±

√
dt. Both exercises are initialized with the state variables (α, η, x)

at their stationary averages.
The data series used for shock extraction, and their model counterparts, are depicted

in the bottom panels of figure 11. Both models roughly match aggregate output and
household credit. However, we see the counterfactual model’s shocks are larger, thus less
likely from an ex-ante perspective. For example, the probability of observing |ZA − ZB|
in the 1980s.
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Parameter Value Targets

Panel A: Fundamentals

GA productivity 0.04 housing average return 0.04
GB productivity 0.06 capital-housing wealth ratio* 3
‖σA‖ aggregate vol 0.03 aggregate house price vol 0.03
‖σB‖ aggregate vol 0.053 output growth vol* 0.04
σ̂A idiosyncratic vol 0.11 idiosyncratic house price vol 0.11
σ̂B idiosyncratic vol 0.25 idiosyncratic stock price vol 0.25

Panel B: Preferences / OLG

ρ discount rate 0.02 riskless rate* 0.02
ρF discount rate 0.06 output growth rate* 0.03
δ birth/death rate 0.02 life expectancy 50
νF population share 0.01 financier+distressed leverage* 5
νA population share 0.09 housing consumption share* 0.22
νB population share 0.85 aggregate Sharpe ratio* 0.20
νD population share 0.05 νF + νD + νA + νB = 1

Panel C: Financing

φA liability-asset ratio 0.4 aggregate housing LTV 0.4
φB liability-asset ratio 0.26 household credit share* 0.42
∆A diversification 0.59 1990 mortgage diversification 0.59
∆B diversification 0.90 syndicated bank loan spread* 0.015
λ̄ maximal leverage 14 binding constraint probability* 0.03
χ distress cost 0.03 maximal funding cost increase* 0.02− 0.03

Table 2: Parameter values and targets. Housing moments are taken from Piazzesi and Schneider (2016)
and Davis and Van Nieuwerburgh (2015). Idiosyncratic stock volatility is from Di Tella (2017). Financial
leverage and crisis probability (binding constraint probability) are from He and Krishnamurthy (2014). The
syndicated loan spread is from Sufi (2007). The 0.42 household credit share is the 1985 value of the series
in figure 1. In the model, household credit share is computed as (κ + 0.1)φA/((κ + 0.1)φA + (1− κ)φB) to
account for the approximately 1/3 share of household finance that was non-mortgage finance in the 1980s
(κ = 0.25 with a capital-housing ratio of 3). The maximal funding cost increase is taken from the > 2%
estimate of Fleckenstein and Longstaff (2018). Targets with stars (*) are only matched approximately.

increase by at least 22 over 10 years, as in the counterfactual from 2000-2010, is equal to
8.6× 10−7. By contrast, the model with diversification improvements implies |ZA − ZB|
increases by 12 over the same period, which has probability 7.3 × 10−3, four orders
larger.31 The large counterfactual expansion of |ZA − ZB| from 2000-2010 is needed
to explain the large growth in household credit, which diversification improvements
naturally generate through the reallocation effect. Repeating this analysis for 2005-2010
reveals probabilities of 0.0057 (counterfactual) and 0.1714 (model).

As shown in figure 12, the model with diversification also generates different distress

31These probabilities are calculated using the fact that M := |ZA− ZB|/
√

2 is a reflected Brownian motion.
The probability distribution is given by P(Mt ≥ m) = 2Φ(−m/

√
t), where Φ(·) denotes the standard

normal cdf.
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Figure 11: Shocks (top panels) and matched series (log GDP in left panel; household credit share in right
panel). Parameters in table 2.

and financial market patterns. Without diversification shocks, financier leverage does
not build up, and leverage constraints are no concern. Before the distress, during the
boom years, diversification improvements reduce sector A spreads, as in the data. This
force operates somewhat independently of sector B spreads. But as distress arises, sA

and sB spike about 2.5% and move together thereafter, nearly one-for-one. Spreads move
more closely together in busts, because their behavior is determined by financiers’ health
issues, rather than sectoral concerns. In this period, spreads reflect almost exactly the
behavior of the shadow-funding cost ζ.

Quality Gradient. The previous calibration uses parameters (e.g., LTV φA and idiosyn-
cratic risk σ̂A) relevant for the average household borrower. What are the effects of di-
versification improvements if the model is instead calibrated to marginal household bor-
rowers, who tend to be riskier (higher σ̂A) and more external-finance dependent (higher
φA)?

This question is interesting for two reasons. First, diversification improvements in
the 1990s and especially 2000s were likely larger for lower-quality borrowers. For ex-
ample, securitization of non-conforming loans (private-label MBS containing subprime,
alt-A, and jumbo loans) increased dramatically in the 2000s, even relative to conform-
ing loans (see Appendix F.1). By contrast, figure 9 only shows the average increase in
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Figure 12: Financier leverage (top left panel), shadow funding cost (top right panel), and lending spreads
(bottom panels). Parameters in table 2.

diversification over all mortgage originations, which hides any potential heterogeneity.
Second, for a given increase in diversification, the effects are likely to be stronger.

Theoretically, suppose sector A has a greater amount of idiosyncratic risk (σ̂A > σ̂B) and
borrows against a greater fraction of its asset purchases (φA > φB).32 Then, a diversifi-
cation boom in sector A tends to produce larger reallocation and leverage effects than
a diversification boom in sector B. The intuition comes from idiosyncratic risk prices:
larger σ̂A or φA imply risk price reductions from diversification, i.e., d2π̂F→A

d∆Adσ̂A
< 0 and

d2π̂F→A
d∆AdφA

< 0, holding fixed κ. Thus, improved diversification of lower-quality borrowers’
risks might start a large cycle, and it helps reconcile the timing of the housing boom
with the 2000s private-label MBS boom, rather than an earlier increase in diversification
of conforming mortgages.33

I increase φA from 0.40 to 0.60 and σ̂A from 0.11 to 0.20. To match the targets in table
2, I also adjust the following parameters: GA = 0.05; ρF = 0.155; νA = 0.50; νB = 0.44;
φB = 0.389; and λ̄ = 27.34 The procedure for extracting (ZA, ZB) is the same as before.

Figure 13 shows financier leverage, financiers’ shadow-funding cost, and both sec-
toral spreads. Under this calibration, the boom coincides with a sustained decline in

32If one interprets φz as borrowing demand, it is natural to assume poorer insiders will have higher
φz. Alternatively, lower-quality insiders might have higher issuance under asymmetric information about
insider types. In a standard signalling equilibrium, higher-quality types must retain a greater share of risk
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Figure 13: Financier leverage (top left panel), shadow funding cost (top right panel), and lending spreads
(bottom panels). Parameters in table 2, with exception of the modifications in the text.

sA, on the order of 2%, in line with the drop in spreads documented in Justiniano
et al. (2017), and twice as large as the baseline parameterization. At the same time,
diversification-induced leveraging is massive: financiers lever up from 12 to 27 between
1990 and 2007, which is a similar order of magnitude to the broker-dealer leverage in-
crease documented in figure 1. These strengthened effects can be attributed to the dis-
cussion above: diversification improvements have a larger impact on riskier (higher σ̂A)
and more external-finance-dependent (higher φA) borrowers.

In 2007, leverage constraints are hit, and a financial crisis occurs, upon which spreads
in both sectors jump by about χ = 3%, remaining elevated for longer than in the base-
line calibration. The counterfactual without diversification improvements generates no
financial crisis at all.

in order to separate themselves from low-quality types.
33Mian and Sufi (2018) argue the private-label MBS boom caused the housing boom.
34This calibration, mainly due to the high value of λ̄, reflects a 0.1% probability of leverage constraints

binding, under ∆A = 0.59. This is significantly lower than the 3% target from table 2, but this target
is intentionally underestimated, because diversification improvements are more consequential under this
calibration, as figure 13 illustrates.
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5 Conclusion

A sector-specific diversification improvement is a credit supply shock that can generate
a sectoral boom followed by an economy-wide bust. During the boom, spreads are par-
ticularly low, but can eventually spike as the economy enters into a predictable financial
crisis, sprung by slowly-building financial leverage. The recent US housing boom, and
the ensuing 2008 financial crisis, appears to be a good example. Unlike many models
that focus in on borrower distress, my narrative is solely concerned with the risk-reward
trade-offs of intermediaries.

My quantitative application focuses on the recent housing boom, but as Mian et
al. (2017a) show, household credit predicts future recessions systematically better than
non-household credit. What is special about housing, as it pertains to boom-bust cycles?
Future work should go beyond exogenous housing-specific shocks and try to understand
why the effects of neutral-seeming financial shocks (such as a global savings glut) might
be stronger in housing markets.

Finally, this paper builds off an exogenous shift in diversification, but such financial
innovations are endogenous. Studying this innovation process – e.g., marketing of secu-
ritized products, creation of robust banking networks, and even financial deregulations
– could uncover rich linkages to other financial variables, such as credit standards and
collateral constraints.
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Appendix – for online publication
A Results on the Brownian Cylinder W

A.1 Aggregate Risk Along Investment Arcs
Proof of Lemma 2.2. To examine the degree of aggregate risk in this economy, consider investing one unit of con-
sumption, divided equally amongst each market in [ 1−∆

2 , 1+∆
2 ] (the fact that it is centered at 1/2 is without loss of

generality, by symmetry). This results in:

Vart

( ∫ 1+∆
2

1−∆
2

∆−1dWi,tdi
)
= ∆−2Covt

( ∫ 1+∆
2

1−∆
2

dWi,tdi,
∫ 1+∆

2

1−∆
2

dWj,tdj
)

= ∆−2
∫ 1+∆

2

1−∆
2

∫ 1+∆
2

1−∆
2

Covt(dWi,t, dWj,t)didj

=
(

1− 6
∫ 1+∆

2

1−∆
2

∫ 1+∆
2

1−∆
2

∆−2|i− j|(1− |i− j|)didj
)

dt

=
(

1− 6
∫ 1

0

∫ 1

0
∆|x− y|(1− ∆|x− y|)dxdy

)
dt

=
(

1− 6
∫ 1

−1
(1− |u|)(1− ∆|u|)∆|u|du

)
dt

= (1− ∆)2dt.

In the third line, I have substituted the covariance and distance metric: Covt(dWi,t, dWj,t) = 1− 6 min(|i− j|, 1− |i−
j|)(1−min(|i− j|(1− |i− j|)) = 1− 6|i− j|(1− |i− j|). In the fourth line, I have performed the change-of-variables
i = 1−∆

2 + ∆x and j = 1−∆
2 + ∆y. In the fifth line, I have substituted u = x− y and used the fact that if X and Y are

independent uniform random variables, then X−Y has the triangular distribution. Given this formula, we may take
∆→ 1 to see that Vart(

∫ 1
0 dWi,tdi) = 0. As this expectation is zero, this shows that

∫ 1
0 dWi,tdi = 0 almost-surely.

A.2 Existence of W
One may ask whether or not such a stochastic process W := {Wi,t : i ∈ [0, 1], t ≥ 0} exists on any probability space.
In other words, are the properties assumed above mutually consistent? Below, I prove that such shocks exist by an
implicit method, using the theory of Gaussian processes.

This relates to the class of Gaussian random fields that are used to model forward rates in Kennedy (1994),
which to my knowledge is the first use of such processes in financial economics. The key property aiding the
analysis of that paper, as in this paper, is the independent increments property of the random field in the “time”
direction. Santa-Clara and Sornette (2001) study a similar stochastic process, which they call “string” shocks. They
obtain these shocks using the theory of stochastic partial differential equations (SPDEs), although I prove existence
in a different way. That said, the W process is not a special case of the class of processes they consider. Furthermore,
my existence proof is general enough to apply analogously to their entire class of processes.

First, I build a particular Gaussian process. Second, I show that this stochastic process has the desired properties.
Given the construction, which posits the covariance in the t-direction and i-direction as multiplicatively separable,
and the property that the process acts as a continuum of Wiener processes in the t-direction, W is thus an example
of a cylindrical Wiener process (see a reference on SDEs in infinite dimensions, e.g., Da Prato and Zabczyk (2014)).

Proof of Lemma 2.1. The existence of a mean-zero Gaussian process having covariance function

V((i, s), (j, t)) =
[
1− 6dist(i, j)(1− dist(i, j))

]
×min(s, t)

40



is guaranteed if and only if V is symmetric and positive semi-definite (see any reference on Gaussian processes,
e.g., proposition I.24.2 in Rogers and Williams (2000)). Clearly, V is symmetric. To check positive semi-definiteness,
construct the Gram matrix: let i1, . . . , iN ∈ [0, 1] and t1, . . . , tN ∈ R+, and define the matrix G by

G := [V((im, tm), (in, tn))]m,n∈{1,...,N}.

We need to show that G is positive semi-definite. To do this, define the “univariate” covariance functions v1(i, j) :=
V((i, 1), (j, 1)) and v2(s, t) := V((0, s), (0, t)), and the associated Gram matrices

G1 := [v1(im, in)]m,n∈{1,...,N} and G2 := [v2(tm, tn)]m,n∈{1,...,N}.

Notice that
G = G1 ◦ G2,

where ◦ denotes the Schur product (element-wise multiplication). By the Schur product theorem, it suffices to show
that G1 and G2 are both positive semi-definite, because then so is G.

Consider a standard Brownian bridge process {W◦i : i ∈ [0, 1]} and define the process

Bi :=
√

12
[
W◦i −

∫ 1

0
W◦j dj

]
.

Note that EBi = 0 for all i and

EBiBj = 12E[(W◦i −
∫ 1

0
W◦k dk)(W◦j −

∫ 1

0
W◦k dk)]

= 12
[
EW◦i W◦j + E

∫ 1

0

∫ 1

0
W◦k W◦l dkdl −E

∫ 1

0
W◦i W◦k dk−E

∫ 1

0
W◦j W◦k dk

]

= 12
[

min(i, j)− ij +
∫ 1

0

∫ 1

0
[min(k, l)− kl]dkdl −

∫ 1

0
[min(i, k)− ik]dk−

∫ 1

0
[min(j, k)− jk]dk

]

= 12
[

min(i, j)− ij +
∫ 1

0

l(1− l)
2

dl − i(1− i)
2

− j(1− j)
2

]

= 1− 6|i− j|(1− |i− j|).

In the third and fourth equality, I have used the Brownian bridge covariance function to compute EW◦i W◦j =

min(i, j)− ij, as well as the integral

∫ 1

0
[min(i, j)− ij]dj =

∫ i

0
j(1− i)dj +

∫ 1

i
i(1− j)dj

=
1
2

i2(1− i) +
1
2

i(1− i)2

=
i(1− i)

2
. (22)

Therefore, v1 is the covariance function for B. As a valid covariance function, we immediately conclude that G1
is positive semi-definite. Finally, v2 is the covariance function of standard Brownian motion, so the matrix G2 is
positive semi-definite.

Thus, define W to be a Gaussian process with covariance function V. We want to show that W has the desired
properties from Assumption 1 of the text: (1) at each location, W acts as a Brownian motion; (2) dW has the correct
cross-sectional correlations; (3) W has a path-continuous version.

First, fixing i, the time-series process W(i) := {Wi,t : t ≥ 0} is a standard Brownian motion. Indeed, E[W2
i,0] = 0

implies Wi,0 = 0 almost-surely. Since W(i) is a centered Gaussian process with V((i, s), (i, t)) = min(s, t), it has
the same probability law as a standard Brownian motion. Having the same probability law, it is well-known
that W(i) can be chosen to be path-continuous. Independent increments can be established as follows. Using the
covariance function and the Normal distribution, we have E[(Wi,t2 −Wi,t1)(Wi,t1 −Wi,t0)] = 0 for t2 ≥ t1 ≥ t0 ≥ 0.
Orthogonality plus joint Normality implies independence of Wi,t2 −Wi,t1 from Wi,t1 −Wi,t0 .
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Second, the increments to W(i) and W(j) have the desired pairwise correlations. Indeed, using the covariance
function V, we have

1
s

E[(Wi,t+s −Wi,t)(Wj,t+s −Wj,t)] = 1− 6dist(i, j)(1− dist(i, j)).

As s > 0 is arbitrary, and using the Markov property of Brownian motion, we have that

corr(dWi,t, dWj,t | Ft) = 1− 6dist(i, j)(1− dist(i, j)).

Third, we can use the Kolmogorov-Chentsov continuity criterion (see any reference on Gaussian processes, e.g.,
theorem I.25.2 in Rogers and Williams (2000)) to show that W has a version with continuous sample paths.35 To do
this, we may fix an arbitrary T > 0 and show that there exist C > 0, ε1 > 0, and ε2 > 0 (which may all depend on
T) such that

E|Wi,s −Wj,t|ε1 ≤ C× dist((i, s), (j, t))2(1+ε2), ∀s, t ≤ T, (23)

where dist(·, ·) is Euclidean distance in C◦1 ×R, where C◦1 is the circle of circumference one.36 In particular,

dist((i, s), (j, t)) :=
√
|s− t|2 + |i− j|2(1− |i− j|)2.

Assume s > t (the opposite case follows symmetrically). Set ε2 > 0 arbitrarily, and set ε1 = 4(1+ ε2). Then, because
W is Gaussian, there exists a constant M such that

E|Wi,s −Wj,t|ε1 = E|Wi,s −Wj,t|4(1+ε2)

= ME[|Wi,s −Wj,t|2]2(1+ε2).

Compute, using the triangle inequality, the covariance function, and the assumption that t < s < T:

E|Wi,s −Wj,t|2 = V((i, s), (i, s)) + V((j, t), (j, t))− 2V((i, s), (j, t))

≤ |V((i, s), (i, s))−V((i, s), (j, t))|+ |V((j, t), (j, t))−V((i, s), (j, t))|
≤ 2|V((i, s), (j, t))−V((j, t), (j, t))|+ |s− t|
= 2|min(s, t)(1− 6|i− j|(1− |i− j|))− t|+ |s− t|
= 12t|i− j|(1− |i− j|) + |s− t|
≤ 24 max(T, 1/12)[|s− t|2 + |i− j|2(1− |i− j|)2]1/2

= 24 max(T, 1/12)dist((i, s), (j, t))

Consequently,
E|Wi,s −Wj,t|ε1 ≤ M(24 max(T, 1/12))2(1+ε2)dist((i, s), (j, t))2(1+ε2),

which is condition (23) with C = M(24 max(T, 1/12))2(1+ε2).

35One might think we could prove continuity by appealing to the fact that {Wi,t : i ∈ [0, 1]} is a translated, scaled
Brownian bridge for each t, and {Wi,t : t ≥ 0} is a Brownian motion for each i. Thus, we could construct continuous
versions of each of these at the rational indexes, and use a density argument to construct a continuous W in the
limit. The problem with this approach is that we don’t know that the limiting process has the desired distributional
properties.

36This is a slight generalization of the conventional Kolmogorov-Chentsov theorem, in which the index set is not
R2. But the exact same condition applies.
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B Micro-foundations and Optimization Problems

B.1 Micro-foundation of Skin-in-the-Game Constraint
In the model of Section 2, an insider sells an exogenous fraction φ of the capital stock to outsiders (financiers).
The insider keeps a fraction of 1− φ of the capital risk on his own balance sheet. In this appendix, I derive this
risk-sharing arrangement as the approximate solution to a standard moral hazard problem.

Let the capital stock of a generic insider evolve as follows:

dki,t = ki,t[(ιi,t − δi,t)dt + σdZt + σ̂dWi,t].

The new object is δi,t, which captures hidden diversion. In particular, insiders may divert δkdt units of capital to
obtain (1− φ)δkdt, where φ determines the inefficiency from diversion. This may also be thought of as diverting
effort away from capital upkeep.

Insiders hold assets, borrow/lend in risk-free debt markets, and make contractual payments to outsiders. Con-
tractual payments are −ki,tdΩi,t per unit of time, since the price of capital is unity in the absence of investment
adjustment costs. Since diversion is unobservable, Ωi must be adapted to the principal’s information set, which
is generated by (Z, Wδ

i ), where dWδ
i,t := dWi,t − δi,tdt is the ex-diversion shock. Contract payments thus take the

form dΩi,t = ζi,t[(vi,t − δi,t)dt + σ̂dWi,t] + γi,t · dZt for some processes (ζi,t, vi,t, γi,t) adapted to (Z, Wδ
i ).

37 If both
insiders and outsiders may frictionlessly trade claims on the aggregate shock Z, the choice of γi is irrelevant. When
we assume insiders may not trade claims on Z, i.e., θ ≡ 0, then we are implicitly restricting γi = ζiσ. Thus, we use
this latter assumption, as it is without loss of generality in the former case. Incorporating these contract payments,
insiders’ net worth evolution is

dni,t = (ni,trt − ci,t)dt︸ ︷︷ ︸
consumption-savings

+ (1− φ)δi,tki,tdt︸ ︷︷ ︸
diversion benefits

+ ki,t(dRi,t − rtdt)︸ ︷︷ ︸
excess return-on-assets

− ki,tζi,t

[
(vi,t − δi,t)dt + σ̂dWi,t + σ · dZt

]

︸ ︷︷ ︸
contract payments

+ ni,tθi,t · (πtdt + dZt)︸ ︷︷ ︸
aggregate risk hedging

.

This budget constraint has a simple interpretation. Insiders retain a stake 1− ζ in their asset risks and issue ζ to
outsiders. This can be thought of as an equity stake, which has expected excess return v.

Definition 4. Optimal contracts consist of possible risk exposures and promised payments (i.e., ζi,t, vi,t) that implement no
diversion (i.e., δi,t ≡ 0 for all i, t) and maximize total surplus in the following sense. Taking as given future contracts {ζi,t+s,
vi,t+s}s>0, time-t contracts (ζi,t, vi,t) maximize total instantaneous surplus among contracting parties.

An important feature of these contracts is that they are short-term, which is captured by the last statement in
Definition 4. Contracts are chosen to maximize instantaneous surplus, rather than total long-term surplus, which
aids tractability. These short-term contracts would be optimal long-term contracts as well, if agents cannot commit
to future contracts and if those future contracts are made in anonymity.

To derive optimal contracts, note that diversion of δk units of capital yields (1− φ)δk in net worth to the insider.
On the other hand, the insiders’ return-on-assets is reduced by δ, which translates into a (1− ζ)δk lower payoff
from inside equity. Consequently, the insider will not divert any capital as long as ζi,t ≤ φ, which is insiders’
incentive-compatibility constraint. In other words, 1− φ is the minimum skin-in-the-game requirement.

Given competition in the financier sector, v is determined by their marginal utility process, i.e., v = σ̂π̂ + σ · π,
where π̂ is an idiosyncratic risk price (in equilibrium, π̂ = (1 − ∆)π̂F). The important thing about π̂ is that it
is independent of the ζ from this particular contracting problem. We can now write the return on inside equity
without diversion,

dRI
i,t := rtdt +

µt − rt − ζi,tσ̂π̂i,t − ζi,tσ · πt

1− ζi,t
dt + σ · dZt + σ̂dWi,t,

37Adaptability to Wδ
i implies the weights of dΩi,t on σ̂dWi,t and −δi,tdt must be identical. This weight is ζi,tσ̂. The

additional term ζi,tvi,tdt allows for time-varying flow payments.
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where µt is the expected return-on-capital. Insiders’ net worth can be re-written in terms of its inside equity position
ei,t := (1− ζi,t)ki,t and the return dRI as

dni,t = (ni,trt − ci,t)dt + ei,t(dRI
i,t − rtdt) + ni,tθi,t · (πtdt + dZt).

The following facts simplify the analysis: (1) insiders can control their exposure ei,t; and (2) financiers’ surplus is
accounted for by vi,t. Consequently, optimal ζi,t may be chosen by insiders as they wish, subject to the incentive
constraint ζi,t ≤ φ. Although I assume ζi,t = φ in the main text, I detail the actual solution below which helps
understand how good the assumption ζi,t = φ is.

Since ζi,t only affects Et[dRI
i,t] and not dRI

i,t −Et[dRI
i,t], optimal ζi,t is chosen to maximize Et[dRI

i,t]− rtdt, i.e.,

max
ζ∈[0,φ]

{µ− r− ζσ̂π̂ − ζσ · π
1− ζ

}
.

It is optimal to set ζ = φ when µ− r− σ̂π̂− σ ·π > 0 and to otherwise set ζ such that µ− r− σ̂π̂− σ ·π = 0. Doing
this requires knowledge of the equilibrium risk prices, which depends on the market structure (e.g., whether or not
θ is constrained or unconstrained). As an example, use the expressions from Proposition 2.3 for sector A, with ζ in
place of φ, to get

µ− r− σ̂π̂ − σ · π = (1− ζ)κσ̂2
[ 1− ζ

(1− η)α
− ζ(1− ∆)2

η

]
.

The solution is

ζi,t = min
(

φ,
[
1 + (1− ∆)2 αt(1− ηt)

ηt

]−1)
. (24)

Notice that ζi,t = φ is optimal across the state space if ∆ = 1, which is the case commonly studied in the literature
(e.g., Di Tella (2017)). When financiers are imperfectly diversified, ζi,t < φ is possible for very low values of ηt,
because financiers’ required rate of return diverges to infinity. However, in the steady-state equilibrium, wealth
shares (55)-(56) are such that maximal issuance ζi,t = φ is optimal. Furthermore, as ∆ increases, the possibility of
unconstrained risk-sharing shrinks. Notice that ζi,t < φ when ηt < η∗t , where

η∗t :=
φαt(1− ∆)2

1− φ + φαt(1− ∆)2 ,

which shrinks to 0 at a quadratic rate as ∆→ 1, i.e.,

d log η∗

d log(1− ∆)
=

2[1− φ + φα(1− ∆)2 − φα(1− ∆)2]

1− φ + φα(1− ∆)2 = 2(1− η∗).

Hence, for relatively high values of ∆ such as those considered in the quantitative section, the assumption of ζi,t = φ
is innocuous.

B.2 Generalization with Endogenous Credit Standards
By smoothing out the moral hazard problem of Appendix B.1, we can address the question of how diversification
affects credit standards. To make these concepts precise, consider a more general hidden diversion technology.
Suppose diverting δkdt units of capital yields an income flow of h(δ)kdt to the insider, where h(·) satisfies the
following.

Assumption 3 (Diversion Benefit). Assume the function h : R+ 7→ R+ is twice-differentiable with the following properties:
h(0) = 0, h′(δ) ≤ 1 for all δ, h′′(δ) ≤ 0 for all δ, and h′(+∞) = 0.

In Appendix B.1, we had assumed a linear diversion technology h(δ) = (1− φ)δ, which satisfies Assumption 3.
In this more general formulation, insiders’ net worth evolves as

dni,t = (ni,trt − ci,t)︸ ︷︷ ︸
consumption-savings

dt + h(δi,t)ki,t︸ ︷︷ ︸
diversion benefits

dt + ki,t(dRi,t − rtdt)︸ ︷︷ ︸
excess return-on-assets

− ki,tζi,t

[
(vi,t − δi,t)dt + σ̂dWi,t + σ · dZt

]

︸ ︷︷ ︸
contract payments

+ ni,tθi,t · (πtdt + dZt)︸ ︷︷ ︸
aggregate risk hedging

.
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As before, (ζi,t, vi,t) characterize contract payments.
With this general specification of h, it may not be desirable to implement zero diversion. For instance, if

h′(0) = 1, implementing no diversion requires insiders to keep 100% skin-in-the-game, i.e., ζi,t ≡ 0. But such a
contract may impose too much risk onto insiders’ balance sheets. Thus, “optimal contracts” in this setting remove
from Definition 4 the requirement δi,t ≡ 0.

To solve this contracting problem, we may repeat a similar analysis to Appendix B.1. Given a skin-in-the-game
ζ, optimal diversion maximizes h(δ)− (1− ζ)δ. Thus, h′(δ) ≤ 1− ζ. Since h′ is weakly decreasing, optimal diversion
is a weakly increasing function f (ζ). Next, optimal payments are v = f (ζ) + σ̂π̂ + σ · π, which now compensates
financiers for the possibility that δ > 0. As before, this means that it suffices to consider insiders’ surplus, which is
governed solely by their expected return on inside equity, i.e.,

max
ζ∈[0,1]

{µ− r− f (ζ) + h( f (ζ))− ζσ̂π̂ − ζσ · π
1− ζ

}
.

Supposing f is differentiable and that optimal diversion is positive, δ > 0, we have the first-order optimality
condition

µ− r− σ̂π̂ − σ · π = ζ(1− ζ) f ′(ζ) + f (ζ)− h( f (ζ)).

Modify the equilibrium expressions from Proposition 2.3 for sector A by putting ζ in place of φ and accounting for
diversion benefits and costs:

µ− r− f (ζ) + h( f (ζ))− σ · π = (1− ζ)σ̂
κ(1− ζ)σ̂

(1− η)α
+ ζ(1− ∆)σ̂

κζ(1− ∆)σ̂
η

.

Substitute the optimality condition for ζ to get the equilibrium condition:

(1− ζi,t)ζi,t f ′(ζi,t)︸ ︷︷ ︸
marginal cost of issuance

= κt(1− ζi,t)σ̂
2
[ 1− ζi,t

(1− ηt)αt
− ζi,t(1− ∆)2

ηt

]

︸ ︷︷ ︸
marginal benefit of issuance

. (25)

After dividing both sides by 1− ζ, the left-hand-side of (25) is strictly increasing in ζ, whereas the right-hand-side
is strictly decreasing. Thus, there is a uniquely optimal skin-in-the-game in equilibrium. This equilibrium equates
the “marginal benefit of issuance,” comprised by diversification benefits from offloading risk, to the “marginal cost
of issuance,” defined by the marginal increase in diversion, net of the marginal private diversion benefits.38

With this smooth moral hazard setup, we can analyze the effects of diversification. From (25), higher ∆ reduces
optimal skin-in-the-game 1− ζ, which is a generalization of the results in Appendix B.1. In other words, insiders
issue more securities to better-diversified outsiders. But interestingly, this now comes with a cost. Higher ζ increases
equilibrium diversion f (ζ) and thus deadweight losses f (ζ)− h( f (ζ)). This result is analogous to the story that
“securitization leads to lax screening” as in Keys et al. (2010).

B.3 Micro-foundation of Leverage Constraint
In Section 3, I have assumed the leverage constraint (17) is defined an exogenous and constant maximum λ̄. Several
macro-finance papers derive a bank leverage constraint from an underlying agency friction, e.g., the simple limited
commitment problem in Gertler and Kiyotaki (2010). In that case, the constraint is not a constant level, but rather a
function of the economic state and model parameters.

What is particularly important for my model is how diversification could affect the leverage constraint. Does
better diversification relax the leverage constraint such that it would never bind in equilibrium? In this section, I
use a simple agency problem similar to Gertler and Kiyotaki (2010) to derive the leverage constraint and show that
it is insensitive to diversification improvements. Thus, the constraint is indeed more likely to bind as diversification
improves.

We consider the model of Section 3 with symmetric discount rates (ρ), no OLG (δ = 0), and a single productive
sector (GA = G, GB = −∞ such that κ = 1; I drop all A subscripts accordingly). Suppose financiers can abscond

38That is, the marginal cost is (1− ζ) d
dζ [ f (ζ)− h( f (ζ))] = (1− ζ)[ f ′(ζ)− (1− ζ) f ′(ζ)] = ζ(1− ζ) f ′(ζ).
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with a fraction γ ∈ (0, 1) of their assets and renege on repayment of their short-term bonds. After doing this
diversion, financiers would have net worth ñF

i,t := γλtnF
i,t. I consider two cases. After diversion, financiers move to

another location and either (i) set up a new financial intermediary anonymously; or (ii) retire to become insiders in
the single productive sector A. A fact I will use in both cases is the following: one can show that the value functions
of financiers and insiders are given by log(nF

i,t) + ξF,t and log(nI
i,t) + ξ I,t, respectively.

In case (i), diversion delivers utility log(ñF
i,t) + ξF,t, which must be ruled out by the incentive constraint

log(ñF
i,t) + ξF,t ≤ log(nF

i,t) + ξF,t. As a result,
λt ≤ γ−1

is required. Therefore, the leverage limit λ̄ ≡ γ−1 is completely independent of diversification.
In case (ii), the same analysis delivers the incentive constraint

λt ≤ γ−1 exp(ξF,t − ξ I,t).

Here, the leverage limit λ̄ ≡ γ−1 exp(ξF − ξ I) plausibly depends on diversification through the relative investment
opportunities of financiers and insiders, captured by ξF − ξ I . However, in a steady state in which the leverage
constraint is conjectured to not bind for all other financiers (besides the one whose agency problem we are focusing
on), simple calculations show ξF,∞ − ξ I,∞ = 0. Intuitively, the long-run wealth distribution adjusts such that all
agents earn the same idiosyncratic risk prices, which are the key determinants of ξF and ξ I . Again, the leverage
constraint is independent of diversification.

B.4 Optimal Choices for Log Utility Agents
In this section, I apply the convex duality approach of Cvitanić and Karatzas (1992) to solve agents’ portfolio
problems. This is a generalization of the martingale approach of Karatzas et al. (1987) and Cox and Huang (1989) to
allow for portfolio constraints. I solve a slightly more general portfolio problem that nests the problems of insiders,
financiers, and distressed investors.

Problem Setup

In general, all agents have a version of the following budget constraint:

dnt = nt[µ
n
t dt + σn

t dZt + σ̂n
t dẐt], n0 > 0, (26)

where Z and Ẑ are two independent standard Brownian motions of dimensions D and M (Z is the vector of
aggregate shocks), and

µn
t = rt −

ct

nt
+ θtπt + λt(at − rt1)

σn
t = θt + λtbt

σ̂n
t = λt b̂t.

By appropriate definition of the variables at ∈ RM, bt ∈ RM ×RD, and b̂t ∈ RM ×RM, equation (26) can replicate
insiders’, financiers’, or distressed investors’ net worth evolutions. For example, diversification ∆A, ∆B is accounted
for by putting b̂F,t = diag(b̂F,A,t, b̂F,B,t) with b̂F,z,t = (1− ∆z)σ̂z and considering Ẑt = (WA,∆

i,t , WB,∆
i,t )′, with Wz,∆

i,t :=

(1− ∆z)−1∆−1
z
∫ i+∆z

i Wz
j,tdj a Brownian motion by Lemma 2.2.

In addition, we have the following portfolio constraints:

λt ∈ Λ and θt ∈ Θ (27)

for Λ := {λ : λ ≥ 0, λ1 ≤ λ̄} ⊂ RM and either Θ := RD or Θ := {0}D. For insiders and distressed investors,
λ̄ = +∞. For insiders, in the case they cannot trade any aggregate risks, Θ = {0}D. When they can trade aggregate
risks, Θ = RD. This is always the case for financiers and distressed investors.
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We are now in position to state agents’ optimization problems, which are all sub-cases of the following. For U
the logarithmic utility function defined in (1), agents solve

U ∗t := sup
n,c,λ,θ

Ut (28)

subject to (26), (27), and nt ≥ 0.

Heuristic Derivation of Dual Static Optimization Problem

The heuristic derivation of optimal controls is as follows. The necessary technical arguments are presented in
Cvitanić and Karatzas (1992). For any convex set A, define the penalty function

ϕA(x) :=

{
0, if x ∈ A;
−∞, if x /∈ A.

Augment the wealth dynamics by ϕΛ and ϕΘ to account for the portfolio constraints (27):

dnt = nt[µ
n
t dt + ϕΛ(λt)dt + ϕΘ(θt)dt + σn

t dZt + σ̂n
t dẐt].

Introduce an Itô process (which will represent the state-price density or Lagrange multiplier process):

dξt = −ξt
[
αtdt + βt · dZt + β̂t · dẐt

]
. (29)

Itô’s formula implies

ξτnτ = ξ0n0 +
∫ τ

0
ξtnt

(
− αt + µn

t + ϕΛ(λt) + ϕΘ(θt)− σn
t βt − σ̂n

t β̂t

)
dt

+
∫ τ

0
ξtnt

(
− β′t + σn

t

)
dZt +

∫ τ

0
ξtnt

(
− β̂′t + σ̂n

t

)
dẐt. (30)

Now, we want to take expectations to eliminate the stochastic integrals, and then to take τ → +∞. Doing this
requires a series of technical arguments.

First, τ may be a stopping time rather than a deterministic time. In particular, the equilibrium of the model will
imply, in principal, that −rt and πt can be arbitrarily large, so I localize the integral with τ ≡ τL := T ∧ τ−r

L ∧ τ−α
L ∧

τπ
L ∧ τ

β
L ∧ τ

β̂
L , where T > 0 is deterministic and for any process x we have defined τx

L := inf{t ≥ 0 : xt ≥ L} for some
L > 0. However, equilibrium will have the property that limL→∞ τL = T almost-surely, because the probability of
large −rt or πt vanishes (this can be verified ex-post using the equilibrium state dynamics from Proposition C.3).
Consequently, we may take expectations, followed by the limit L→ +∞, to obtain

E[ξTnT ] = ξ0n0 + E

∫ T

0
ξtnt

(
− αt + µn

t + ϕΛ(λt) + ϕΘ(θt)− σn
t βt − σ̂n

t β̂t

)
dt,

where τ is replaced with T inside the expectations by the dominated convergence theorem, which holds as long as
λ ∈ Λ and θ ∈ Θ. Indeed, the coefficients of ξ and n are uniformly bounded up to time T.

Because maximization will imply a transversality condition on discounted wealth, assume limT→∞ ξTnT = 0
almost-surely. The transversality condition will have to be verified in equilibrium. If it holds, then we may apply
appropriate convergence theorems to take T → +∞. Indeed, we may split ξtnt(−αt +µn

t + ϕΛ(λt)+ ϕΘ(θt)−σn
t βt−

σ̂n
t β̂t) into positive and negative parts and apply the monotone convergence theorem separately to the integrals of

these parts. Furthermore, by ignoring the negative part, we have E[ξTnT ] ≤ ξ0n0 + E
∫ ∞

0 ξtnt(−αt + µn
t + ϕΛ(λt) +

ϕΘ(θt)− σn
t βt − σ̂n

t β̂t)+dt. This upper bound implies we may apply the dominated convergence theorem to take
limT→∞ E[ξTnT ] = 0. The result of taking these limits is

0 = ξ0n0 + E

∫ ∞

0
ξtnt

(
− αt + µn

t + ϕΛ(λt) + ϕΘ(θt)− σn
t · βt − σ̂n

t · β̂t

)
dt. (31)
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The “static” budget constraint (31) is an implication of the dynamic wealth constraint (30), which means that the
result of the unconstrained problem

sup
n≥0,c,λ,θ

E
[ ∫ ∞

0

(
ρe−ρt log ct + ξtnt

(
− αt + µn

t + ϕΛ(λt) + ϕΘ(θt)− σn
t βt − σ̂n

t β̂t

))
dt + ξ0n0

]
(32)

is technically an upper bound on the maximized constrained objective (28). The point of Cvitanić and Karatzas
(1992), Theorem 10.1, is to show that by minimizing over the process ξ in (29), one can obtain the value of the
maximized constrained objective, i.e.,

U ∗0 = inf
ξ

sup
n≥0,c,λ,θ

E
[ ∫ ∞

0

(
e−ρt log ct + ξtnt

(
− αt + µn

t + ϕΛ(λt) + ϕΘ(θt)− σn
t βt − σ̂n

t β̂t

))
dt + ξ0n0

]
. (33)

Furthermore, the order of minimization and maximization may be exchanged. With this equivalence, optimal
policies can be found from the unconstrained problem (32) for some process ξ that is suitably minimal.

Solving the Static Problem

First, we solve the maximization problem. The first-order condition with respect to c is typical:

ρe−ρt 1
ct

= ξt. (34)

To solve for optimal portfolios, introduce the “slackness” processes

ν := bβ + b̂β̂ + r1− a (35)
ω := β− π. (36)

Maximizing over (λ, θ) are thus equivalent to maximizing ϕΛ(λ)− λν and ϕΘ(θ)− θω. With that in mind, for any
convex set A define the convex support function ϕ̃A(x) := supy ϕA(y)− yx = supy∈A(−yx). Defining ν̄ := min(ν),
these conjugate functions are given by (regardless of whether Θ = RD or Θ = {0}D)

ϕ̃Λ(ν) = λ̄ max(0,−ν̄) (37)
ϕ̃Θ(ω) = 0. (38)

Note that, when Θ = RD, it must be the case that ωt ≡ 0. Finally, substituting (34), (37), and (38) back into the
objective (32), we have

sup
n≥0

E
[ ∫ ∞

0

(
ρe−ρt[−1 + log ρ− ρt− log ξt] + ξtnt[−αt + rt + λ̄ max(0,−ν̄t)]

)
dt + ξ0n0

]
.

Assuming nt > 0 for all t (which can be verified ex-post by the optimal wealth dynamics), maximizing over n
implies that

−αt + rt + max(0,−λ̄ν̄t) = 0. (39)

Next, minimizing over ξ in (33) amounts to minimizing over (ν, ω) and the initial value ξ0. This is because
the coefficients of ξ depend on market prices and the process (ν, ω), as seen in the necessary conditions (35), (36),
and (39). To emphasize this dependence, write ξν,ω, αν,ω, βν,ω, and β̂ν,ω for the Lagrange multiplier process and its
coefficient processes. In particular, note that

ξν,ω
t = ξ0 exp

{
−
∫ t

0

(
αν,ω

s +
1
2
‖βν,ω

s ‖2 +
1
2
‖β̂ν,ω

s ‖2
)

ds−
∫ t

0
βν,ω

s · dZs −
∫ t

0
β̂ν,ω

s · dẐs

}
(40)

αν,ω
t = rt + λ̄ max(0,−ν̄t) (41)

βν,ω
t = ωt + πt (42)

β̂ν,ω
t = b̂−1

t [at − rt1− bt(ωt + πt) + νt] (43)
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We are led to solve the dual problem

inf
ν,ω,ξ0

−E
[ ∫ ∞

0
ρe−ρt log ξν,ω

t dt− ξ0n0

]
, (44)

subject to (40), (41), (42), (43), and additionally ωt = 0 if we set Θ = RD.
Substituting ξν,ω into the objective (44), we immediately solve for the initial condition and find that

ξ0 =
1
n0

. (45)

Then, assuming we can perform appropriate localizations on the stochastic integrals in (40) as before, the processes
(ν, ω) are determined from solving

inf
ν,ω

E
[ ∫ ∞

0
ρe−ρt

∫ t

0

(
rs + λ̄ max(0,−ν̄s) +

1
2
‖ωs + πs‖2 +

1
2
‖b̂−1

s (as − rs1− bs(ωs + πs) + νs)‖2
)

dsdt
]
.

Crucially, notice that the minimization can be taken pointwise, i.e.,

ωt = arg min
x∈RD

{1
2
‖x + πt‖2 +

1
2
‖b̂−1

t (at − rt1− bt(x + πt) + νt)‖2
}

and
νt = arg min

x∈RM

{
λ̄ max(0,−min(x)) +

1
2
‖b̂−1

t (at − rt1− bt(ωt + πt) + x)‖2
}

.

These are convex problems and have unique solutions. For reference, these are the same as equation (11.4) in
Cvitanić and Karatzas (1992).

Recall that ωt = 0 if Θ = RD. If Θ = {0}D instead, then by inspection we see that ωt = −πt is the optimal
choice.

Now we solve for ν. In all of the applications in the paper, b̂ is a diagonal matrix with dimension M = 2. To
solve this problem, I specialize to this case, which simplifies the calculations. Now

‖b̂−1(a− r1− b(ω + π) + ν)‖2 =
2

∑
i=1

( [a]i − r− [b(ω + π)]i + [ν]i
[b̂]ii

)2
,

where [x]i and [y]ij represent the ith element of the vector x and (i, j)th element of the matrix y. Define π̂i :=
[b̂]−2

ii ([a]i − r− [b(ω + π)]i). Minimizing with respect to ν requires a case-by-case analysis, similar to example 14.9
in Cvitanić and Karatzas (1992):

• π̂1 ≤ 0, π̂2 ≤ 0.
Optimal choice: [ν]1 = −[b̂]211π̂1 and [ν]2 = −[b̂]222π̂2.
Rationale: If either π̂i ≤ 0, the optimal choice for [ν]i can be made independent of [ν]−i and that choice is
[ν]i = −[b̂]2iiπ̂i.

• π̂1 > 0, π̂2 ≤ 0.
Optimal choice: [ν]1 = −[b̂]211(π̂1 − λ̄)+ and [ν]2 = −[b̂]222π̂2.
Rationale: [ν]2 can be chosen according to the previous case.

If π̂1 > λ̄, then the choice of [ν]1 = −[b̂]211(π̂1 − λ̄) = ν̄ < 0 minimizes −λ̄ν̄ + 1
2 [b̂]

−2
11 ([b̂]

2
11π̂1 + ν̄)2.

If π̂1 ≤ λ̄, then it must be that ν̄ ≥ 0 in which case [ν]1 = 0 minimizes 1
2 [b̂]

−2
11 ([b̂]

2
11π̂1 + [ν]1)

2.

• π̂1 ≤ 0, π̂2 > 0.
Optimal choice: [ν]1 = −[b̂]211π̂1 and [ν]2 = −[b̂]222(π̂2 − λ̄)+.
Rationale: This case is symmetrical to the previous one.
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• π̂1 > 0, π̂2 > 0 and π̂1 + π̂2 ≤ λ̄.
Optimal choice: [ν]1 = 0 and [ν]2 = 0.
Rationale: Choosing either (or both) [ν]1, [ν]2 < 0 is not feasible because first-order optimality cannot be
satisfied. Moreover, choosing [ν]1, [ν]2 > 0 is not optimal, leaving the zero solution.

• π̂1 > 0, π̂2 > 0 and π̂1 + π̂2 > λ̄.
Here, it must be the case that ν ≤ 0 with at least one of [ν]1, [ν]2 strictly negative. Consider the three sub-cases
[ν]1 < [ν]2 ≤ 0, [ν]2 < [ν]1 ≤ 0, and [ν]1 = [ν]2 < 0. In the first case, the optimal choices are [ν]1 = [b̂]211[λ̄−
π̂1] and [ν]2 = −[b̂]222π̂2, and these two must be ordered as anticipated. The second case is symmetrical. The
third case with [ν]1 = [ν]2 = ν̄ has the optimality condition ν̄ = ([b̂]−2

11 + [b̂]−2
22 )
−1[λ̄− π̂1 − π̂2]. Thus, we

have the three corresponding sub-cases.

* π̂1 − [b̂]−2
11 [b̂]

2
22π̂2 ≥ λ̄.

Optimal choice: [ν]1 = [b̂]211[λ̄− π̂1] and [ν]2 = −[b̂]222π̂2.

* π̂2 − [b̂]−2
22 [b̂]

2
11π̂1 ≥ λ̄.

Optimal choice: [ν]1 = −[b̂]211π̂1 and [ν]2 = [b̂]222[λ̄− π̂2].

* λ̄ > max
{

π̂1 − [b̂]−2
11 [b̂]

2
22π̂2, π̂2 − [b̂]−2

22 [b̂]
2
11π̂1

}
.

Optimal choice: [ν]1 = [ν]2 = ([b̂]−2
11 + [b̂]−2

22 )
−1[λ̄− π̂1 − π̂2].

Consumption and Portfolios

Now, we use the solution of the dual problem to determine optimal policies. First, substitute the optimality con-
ditions (35), (36), (37), (38), and (39) into the time-t version of the static budget constraint (31), which shows that
optimal wealth is given by

ξν,ω
t nt = Et

[ ∫ ∞

0
ξν,ω

t+sct+sds
]
.

Using (34), we obtain the familiar log utility consumption rule ct = ρnt. Second, substitute these optimality
conditions, and (45), into the dynamic budget constraint (30) to obtain

0 =
∫ T

0
ξtnt(−(βν,ω

t )′ + σn
t )dZt +

∫ T

0
ξtnt(−(β̂ν,ω

t )′ + σ̂n
t )dẐt, i.e., (σn

t )
′ = βν,ω

t and (σ̂n
t )
′ = β̂ν,ω

t .

Thus, using our explicit solution for ν in the M = 2 case with b̂ a diagonal matrix, the optimal λ is determined as

λt = b̂−1
t β̂ν,ω

t = b̂−2
t (at − rt1− bt(ωt + πt)− ζt)

+,

where ζt := −max(0,−ν̄t). This is the generalization of equations (20) and (18), which are obtained using ωt = 0
(since financiers and distressed investors can access aggregate Arrow markets without constraints) and substituting
appropriate a, b, b̂ from the model. One can verify that ζt > 0 only when b̂−2

t (at − rt1− bt(ωt + πt))+ · 1 ≥ λ̄. Given
our formula for λt and this observation, this verifies the complementary slackness formula (19).

B.5 Optimal Choices for Recursive Utility Agents
In some extensions, I will want to consider more general preferences than log, which requires a dynamic program-
ming method, unlike Appendix B.4. Relatedly, to analyze mobility decisions under Assumption 2, it is important
to have agents’ dynamic programming equations.

Suppose agents’ have recursive Duffie and Epstein (1992) utility recursions, given by

Ut := Et

[ ∫ ∞

t
ϕ(cs,Us)ds

]
,

where ϕ(c,U ) :=
ρ(1− γ)U

1− ς

(
c1−ς[(1− γ)U ]−

1−ς
1−γ − 1

)
. (46)
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In (46), ρ > 0 represents the subjective discount rate, γ > 0 represents the coefficient of relative risk aversion (RRA),
and ς−1 > 0 represents the elasticity of intertemporal substitution (EIS). Setting ς = γ, these preferences reduce to
von Neumann-Morgenstern preferences. Setting ς = 1, the utility aggregator function ς becomes logarithmic over
the consumption bundle.39 Then, as in Appendix B.4 all agents’ portfolio problems can be written as

max
n,c,θ,λ

Ut (47)

subject to (26), nt ≥ 0, λt ∈ Λ, and θt ∈ Θ for closed, convex sets Λ ⊂ RM and Θ ⊂ RD. To simplify exposition, I
assume Λ = {λ : λ ≥ 0, λ1 ≤ λ̄} as in (27) and Θ = (θ1, θ̄1)× · · · × (θD, θ̄D) for θ := (θ1, . . . , θD) ∈ RD

− ∪ {−∞}D

and θ̄ := (θ̄1, . . . , θ̄D) ∈ RD
+ ∪ {−∞}D. This assumption on Θ generalizes (27). All agents except financiers have

λ̄ = +∞. Whenever agents can freely trade aggregate risk in Arrow markets (e.g., both financiers and distressed
investors can always do this), we have θ = {−∞}D and θ̄ = {+∞}D. When agents cannot trade at all in these
markets (e.g., in the model of Section 3, insiders cannot trade), we have θ = θ̄ = {0}D.

To solve (47), we first use its scaling properties to simplify the problem. Given the homotheticity of preferences
combined with the linearity of wealth evolution, value functions take the form

Ut =
(ntξt)1−γ

1− γ
,

where
dξt = ξt

[
µ

ξ
t dt + σ

ξ
t dZt

]
. (48)

The process ξt represents the investment opportunity set of the agent and responds only to the aggregate shock Z,
due to the free mobility condition, Assumption 2.40

Then, the HJB equation of such an agent is given by

0 = max
c,λ∈Λ,θ∈Θ

{
ϕ(c,U ) + nµn∂nU +

1
2

n2[‖σn‖2 + ‖σ̂n‖2]∂nnU + ξµξ ∂ξU +
1
2

ξ2‖σξ‖2∂ξξU + nξσn(σξ)′∂nξU
}

.

Substituting the form of U and its derivatives, then dividing the entire HJB equation by the positive quantity
(nξ)1−γ, we obtain

0 = max
c,λ∈Λ,θ∈Θ

{
ρ
( c

nξ )
1−ς − 1

1− ς
+ µn − γ

2
[‖σn‖2 + ‖σ̂n‖2] + µξ − γ

2
‖σξ‖2 + (1− γ)σn(σξ)′

}
,

First-order optimality for this agent implies for consumption:

ct = ρ1/ςξ
1−1/ς
t nt (49)

Optimal portfolios must satisfy the following complementary slackness conditions:

0 = min
{

λ′, −a + (r + ζ)1 + γb(σn)′ + (γ− 1)b(σξ)′ + γb̂(σ̂n)′
}

(50)

0 = min
{

ζ, λ̄− λ1
}

(51)

0 = max
{

θ′ − θ̄′, min
{

θ′ − θ′, −π + γ(σn)′ + (γ− 1)(σξ)′
}}

. (52)

39By taking the limit ς→ 1 with L’Hôpital’s rule, the aggregator becomes

ϕ(c,U ) = ρ(1− γ)U
[

log(c)− 1
1− γ

log[(1− γ)U ]
]
.

40Verifying this equilibrium property is straightforward. Indeed, if ξt were affected by idiosyncratic shocks W,
then different locations would have different levels of ξt. Free mobility implies agents would immediately migrate
to locations with higher levels of ξt and attain a higher value function, which is a contradiction.
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Plugging these choices back into the HJB equation, we obtain the following:

0 = ρ
ς(ξ/ρ)

ς−1
ς − 1

1− ς
+ r + λ̄ζ + θ

[
π − γ(σn)′ − (γ− 1)(σξ)′

]
+

γ

2

[
‖σn‖2 + ‖σ̂n‖2

]
+ µξ − γ

2
‖σξ‖2, (53)

where θ and ζ are determined using conditions (50)-(52). Note that ρ
ς(ξ/ρ)1−1/ς−ρ

1−ς → ρ(log(ρ/ξ) − 1) as ς → 1.
Because ξ will be a function of aggregate state variables in a Markovian equilibrium, µξ and σξ may be determined
in terms of the derivatives of ξ by Itô’s formula. Thus, (53) is a differential equation for ξ. In principle, one
could develop an infinite-horizon extension of the “verification”-type arguments of Schroder and Skiadas (2003),
which nests the choice problem above aside from the finite horizon. This would show that solving equation (53) is
sufficient for optimality of the choices outlined above.

Appendix B.4 proves the convex duality approach yields exactly these optimality conditions for log utility.
There is no need to solve (53) in this case.
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C Equilibrium Proofs and Derivations

C.1 Equilibrium for Section 2
Proof of Proposition 2.3. This is a special case of Proposition C.3 with λ̄ = +∞, χ = 0, δ = 0, ρF = ρ, and σA = σB ≡ 0.
Substituting ζ = χ = 0 into equation (66), and then substituting the result into equation (69), we obtain equation
(14). Similarly, χ = 0 and ρF = ρ in equation (21), we obtain an equation for ι. By time-differentiating the goods
market clearing condition, we obtain the following equation for r:

r = ρ + ι− (1− η)[απ̂2
A + (1− α)π̂2

B]− η[π̂2
F→A + π̂2

F→B]. (54)

The state dynamics of (α, η) are obtained by substituting δ = 0 and ρF = ρ and πA = πB = π = 0.
Existence/uniqueness follows from uniqueness of optimal choices from Appendix B.4, the explicit solution (14)

for κt, and the explicit solutions for all other equilibrium objects, conditional on (α, η, κ).

Next, consider the long-run equilibrium. If a steady state exists, it must satisfy µα = µη = 0. Supposing κ∞ is
the steady-state capital share, the solution to this system is

α∞ :=
κ∞(1− φA)σ̂A

κ∞(1− φA)σ̂A + (1− κ∞)(1− φB)σ̂B
(55)

η∞ :=

√
(κ∞φA(1− ∆A)σ̂A)2 + ((1− κ∞)φB(1− ∆B)σ̂B)2

√
(κ∞φA(1− ∆A)σ̂A)2 + ((1− κ∞)φB(1− ∆B)σ̂B)2 + κ∞(1− φA)σ̂A + (1− κ∞)(1− φB)σ̂B

. (56)

We have the following.

Proposition C.1 (Steady State). Let σ̂A > 0, σ̂B > 0, φA ∈ (0, 1), φB ∈ (0, 1), ∆A ∈ (0, 1), ∆B ∈ (0, 1) and suppose
|GA −GB| and |(1− φA)σ̂A − (1− φB)σ̂B| are sufficiently small. Given initial wealth shares α0, η0 > 0, there exists a steady
state given by (α∞, η∞) in equations (55)-(56), where κ∞ is given by the time-limit of equation (14).

Proof of Proposition C.1. Solving µα = µη = 0, conditional on κ = y, defines functions α∗(κ) and η∗(κ):

α∗(y) :=
y(1− φA)σ̂A

y(1− φA)σ̂A + (1− y)(1− φB)σ̂B

η∗(y) :=

√
(yφA(1− ∆A)σ̂A)2 + ((1− y)φB(1− ∆B)σ̂B)2

√
(yφA(1− ∆A)σ̂A)2 + ((1− y)φB(1− ∆B)σ̂B)2 + y(1− φA)σ̂A + (1− y)(1− φB)σ̂B

.

Similarly, equation (14), which holds for any values of (α, η), defines a function κ∗(α, η). Then, for y ∈ [0, 1] define
F(y) := κ∗(α∗(y), η∗(y))− y. To prove a steady state exists, it suffices to prove that F(y) = 0 has a root in [0, 1]; call
it κ∞. In that case, an interior steady state is given by α∞ = α∗(κ∞) and η∞ = η∗(κ∞), given in (55)-(56).

The function F(y) is given by

F(y) := −y + min{1, max{0, κ̃∗(y)}} (57)

where κ̃∗(y) :=
GA − GB + MB(y)
MA(y) + MB(y)

, (58)

and where MA(y) := [ (1−φA)
2

α∗(y)(1−η∗(y)) +
φ2

A(1−∆A)
2

η∗(y) ]σ̂2
A and MB(y) := [ (1−φB)

2

(1−α∗(y))(1−η∗(y)) +
φ2

B(1−∆B)
2

η∗(y) ]σ̂2
B. By inspection,

F(0) = F(1) = 0. We aim to show F′(0+) and F(1−) have the same sign, which proves the claim by continuity of
F. If |GA = GB| is small enough, then κ̃∗(y) ∈ (0, 1) for all y. Given this, one may then differentiate F to compute
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(keeping only non-vanishing terms)

F′(0+) = −1− lim
y→0

(GA − GB + MB(y))
M′A(y)
MA(y)2

= −1 + (GA − GB)
1− η∗(0)

(1− φA)(1− φB)σ̂Aσ̂B
+

(1− φB)σ̂B
(1− φA)σ̂A

+
1− η∗(0)

η∗(0)
φ2

B(1− ∆B)
2σ̂2

B
(1− φA)(1− φB)σ̂Aσ̂B

F′(1−) = −1− lim
y→1

(GA − GB −MA(y))
M′B(y)
MB(y)2

= −1− (GA − GB)
1− η∗(1)

(1− φA)(1− φB)σ̂Aσ̂B
+

(1− φA)σ̂A
(1− φB)σ̂B

+
1− η∗(1)

η∗(1)
φ2

A(1− ∆A)
2σ̂2

A
(1− φA)(1− φB)σ̂Aσ̂B

.

Using the expressions η∗(0) = φB(1−∆B)
1−φB+φB(1−∆B)

and η∗(1) = φA(1−∆A)
1−φA+φA(1−∆A)

, and simplifying, we obtain

F′(0+) = (GA − GB)
1− η∗(0)

(1− φA)(1− φB)σ̂Aσ̂B
+

(1− φB)σ̂B − (1− φA)σ̂A + φB(1− ∆B)σ̂B
(1− φA)σ̂A

F′(1−) = (GA − GB)
1− η∗(1)

(1− φA)(1− φB)σ̂Aσ̂B
+

(1− φA)σ̂A − (1− φB)σ̂B + φA(1− ∆A)σ̂A
(1− φB)σ̂B

.

Thus, when |(1− φA)σ̂A − (1− φB)σ̂B| and |GA − GB| are small enough, F′(0+) > 0 and F(1−) > 0.

C.2 Impulse Response Characterization
Define the IRF of a stationary variable Y by

I [Y](t, x; ∆) := E[Yτ+t −Yτ− | Xτ− = x], t ≥ 0, (59)

where Xt is the vector of state variables, i.e., Xt = (αt, ηt) in Section 2, and ∆ is the variable receiving an unantic-
ipated shock at time τ, i.e., ∆τ 6= ∆τ−. Equation (59) can be decomposed into the sum of an “impact response”
E[Yτ −Yτ− | Xτ− = x] and a “transition path” E[Yτ+t −Yτ | Xτ = x′].

In the baseline model of Section 2, we first considered one-time unanticipated shocks to (∆A, ∆B). An important
simplifying property of this model is that these shocks do not generate any impact response to the state variables
in the model, as stated in Lemma 2.5. Thus, I [X](t, x; ∆) = E[Xτ+t − Xτ | Xτ = x] for this type of shock. The top
panels of figure 6 in the main text does this IRF analysis for a one-time shock to ∆A. The bottom panels repeat the
analysis for a gradual increase in ∆A, which may be interpreted in three equivalent ways – fully unanticipated, fully
anticipated, or partially anticipated – in the sense of Lemma 2.4.

Proof of Lemma 2.4. Part (i) follows directly from Lemma 2.5. Part (ii) is a special case of part (iii) for t 6= τ. For
t = τ, we make use of Proposition 2.5. Part (iii) follows from the fact that optimal choices of all log utility agents in
the model are independent of the Itô processes driving expected returns and volatilities, see Appendix B.4. Hence,
Proposition C.3 still holds even in this more general case. The equilibrium of Proposition 2.3 follows as a special
case of Proposition C.3, as before.

Proof of Lemma 2.5. We want to show that the impact responses E[ητ − ητ− | Xτ− = x] = E[ατ − ατ− | Xτ− = x] = 0
in response to a shock to ∆A at time τ. A similar analysis holds for state variable α and for a shock to ∆B. Note that
aggregated net worths can be written as

NF,t = [κtφA + (1− κt)φB]Kt + MF,t + pt θ̃F,tNF,t

NA,t = κt(1− φA)Kt + MA,t + pt θ̃A,tNA,t

NB,t = (1− κt)(1− φB)Kt + MB,t + pt θ̃B,tNB,t,

where Mz,t are the riskless assets, θ̃z,tNz,t are the hedging securities (Arrow securities on the aggregate shock) held,
and pt the price of these securities. Bond market clearing is that MF,t + MA,t + MB,t = 0. Notice that equity market
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clearing is already imposed. Since the Arrow securities pay an excess return, their price is zero, i.e., pt = 0 for all t.
We can thus rewrite the net worth equations immediately prior to the shock as

NF,τ− = [κτ−φA + (1− κτ−)φB]Kτ− −MA,τ− −MB,τ−
NA,τ− = κτ−(1− φA)Kτ− + MA,τ−
NB,τ− = (1− κτ−)(1− φB)Kτ− + MB,τ−.

Upon the shock, the variables K, κ, 1− κ, MA, MB cannot jump. Indeed, a jump in K cannot be consistent with goods
market clearing, whereas MA, MB represent trading positions (asset holdings) and are assumed fixed at the time of
the shock. Furthermore, the Arrow securities are settled every dt time periods, so they have no continuation value
that could possibly jump. Then, after the shock,

NF,τ = [κτ−φA + (1− κτ−)φB]Kτ− −MA,τ− −MB,τ−
NA,τ = κτ−(1− φA)Kτ− + MA,τ−
NB,τ = (1− κτ−)(1− φB)Kτ− + MB,τ−.

Therefore, Nz,τ = Nz,τ− for all agents z. As a result, ητ − ητ− = ατ − ατ− = 0.

Proof of Proposition 2.6. Lemma 2.4 allows usage of the expressions of the expressions in Proposition 2.3 regardless
of the type of shock being considered. Lemma 2.5 then allows (α, η) to be held fixed when computing impact
responses. Indeed, given the shock is small, the following marginal calculations are sufficient.

Thus, for κ, it suffices to note that dκ̃/d∆A = 2κ̃φ2
A(1− ∆A)σ̂

2
Aη−1 > 0 (so the response of κ ∈ (0, 1) is strict).

For µη , compute

dµη

d∆A
= 2η(1− η)

(
− π̂2

F→A
1− ∆A︸ ︷︷ ︸
:=D1

+
d log κ

d∆A

1
1− κ

[
π̂2

F→A − απ̂2
A −

κ

η(1− η)
µη
]

︸ ︷︷ ︸
:=D2

)
.

Note that D1 < 0. Under either of assumptions (i) or (ii), D2 ≈ 0. Indeed, given the assumption that the economy
is near enough to steady-state, we can ignore the µη term. The nearness to steady-state also allows us to re-
write π̂2

F→A − απ̂2
A ≈ (1− α)π̂2

F→A − απ̂2
F→B. Under near-symmetry (i) this term is approximately zero. Under

| log(κt/κt−)| not too large (ii), d log κ/d∆A must be nearly zero. In either case, we have dµη/d∆A < 0.

C.3 Equilibrium for Section 3
First, with the presence of aggregate risk, distressed investors, and the leverage constraint, we re-write the opti-
mization problems of all agents. As the first part of Lemma C.2 below shows, the OLG assumptions simply add the
death rate δ to the subjective discount rates of agents, so we simply reinterpret agents’ discount rates in (1).

The insider of sector z ∈ {A, B} solves

max
nz

i ,cz
i ,kz

i ,θz
i

U z
i,t, z ∈ {A, B}, (60)

subject to

dnz
i,t = (nz

i,trt − cz
i,t)dt

︸ ︷︷ ︸
consumption-savings

+ nz
i,tθ

z
i,t · (πtdt + dZt)︸ ︷︷ ︸

aggregate risk hedging

+ kz
i,t(dRz

i,t − rtdt)
︸ ︷︷ ︸

capital ownership

− φzkz
i,t(dR̃z

i,t − rtdt)
︸ ︷︷ ︸

outside funding

, z ∈ {A, B}. (61)

and nz
i,t ≥ 0, kz

i,t ≥ 0, θz
i,t ≡ 0 (this constraint captures insiders’ inability to trade Arrow claims on aggregate shocks).

On the other hand, the hedging portfolios of financiers and distressed investors (θF
i , θD

i ) are unconstrained.
Financiers solve

max
nF

i ,cF
i ,λA

F,i ,λ
B
F,i ,θ

F
i

U F
i,t (62)
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subject to

dnF
i,t = (nF

i,trt − cF
i,t)dt

︸ ︷︷ ︸
consumption-savings

+ nF
i,tθ

F
i,t · (πtdt + dZt)︸ ︷︷ ︸

aggregate risk hedging

+ λA
F,i,tn

F
i,t∆
−1
A

∫ i+∆A

i
(dR̃A

j,t − rtdt)dj
︸ ︷︷ ︸

funding portfolio (sector A)

+ λB
F,i,tn

F
i,t∆
−1
B

∫ i+∆B

i
(dR̃B

j,t − rtdt)dj
︸ ︷︷ ︸

funding portfolio (sector B)

(63)

and nF
i,t ≥ 0, λA

F,i,t ≥ 0, λB
F,i,t ≥ 0, and λA

F,i,t + λB
F,i,t ≤ λ̄. The leverage constraint is now an additional portfolio

constraint. Distressed investors solve a similar problem, but without the leverage constraint, and with the additional
cost of investment χ:

max
nD

i ,cD
i ,λA

D,i ,λ
B
D,i ,θ

D
i

UD
i,t (64)

subject to

dnD
i,t = (nD

i,trt − cD
i,t)dt

︸ ︷︷ ︸
consumption-savings

+ nD
i,tθ

D
i,t · (πtdt + dZt)︸ ︷︷ ︸

aggregate risk hedging

+ λA
D,i,tn

D
i,t∆
−1
A

∫ i+∆A

i
(dR̃A

j,t − (rt + χ)dt)dj
︸ ︷︷ ︸

funding portfolio (sector A)

+ λB
D,i,tn

D
i,t∆
−1
B

∫ i+∆B

i
(dR̃B

j,t − (rt + χ)dt)dj
︸ ︷︷ ︸

funding portfolio (sector B)

(65)

and nD
i,t ≥ 0, λA

D,i,t ≥ 0, λB
D,i,t ≥ 0.

We now provide a definition of equilibrium, analogous to Definition 1 in Section 2.

Definition 5. For the model of Section 3, an equilibrium consists of price and allocation processes, adapted to the shocks
{(WA

i,t, WB
i,t) : i ∈ [0, 1], t ≥ 0} and {(ZA

t , ZB
t ) : t ≥ 0}, such that all agents solve their optimization problems and all markets

clear. Prices consist of the interest rate rt, spreads (sA
i,t, sB

i,t), and the aggregate risk price vector πt. Allocations consist of capital
and equity holdings (kA

i,t, kB
i,t, λA

F,i,t, λB
F,i,t, λA

D,i,t, λB
D,i,t), investment in Arrow claims on aggregate shocks (θA

i,t, θB
i,t, θF

i,t, θD
i,t), and

consumption choices (cA
i,t, cB

i,t, cF
i,t, cD

i,t). A symmetric equilibrium is an equilibrium in which all objects are independent of i
for each t. The market-clearing conditions are as follows.

• Goods:
∫ 1

0
[GAkA

i,t + GBkB
i,t]di =

∫ 1

0
[cA

i,t + cB
i,t + cF

i,t + cD
i,t]di +

1
dt

∫ 1

0
[dIA

i,t + dIB
i,t]di + χ

∫ 1

0
nD

i,t(λ
A
D,i,t + λB

D,i,t)di.

• Funding:

∫ i

i−∆z
∆−1

z [λz
F,j,tn

F
i,t + λz

D,j,tn
D
i,t]dj = φzkz

i,t, ∀i ∈ [0, 1], z ∈ {A, B}.

• Aggregate risk (Arrow securities on ZA and ZB):

∫ 1

0
[θA

i,tn
A
i,t + θB

i,tn
B
i,t + θF

i,tn
F
i,t + θD

i,tn
D
i,t]di = 0.

• Bond: ∫ 1

0
[nA

i,t + nB
i,t + nF

i,t + nD
i,t]di =

∫ 1

0
[kA

i,t + kB
i,t]di.
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Lemma C.2. Consider the OLG framework of Section 3. Equilibrium holds with subjective discount rate ρz for agent z ∈
{A, B, F, D} replaced by ρ̃z := ρz + δ, and with µα, µη , and µx augmented with δ((νA + νB)

−1νA − α), δ(νF + νD − η),
and δ((νF + νD)

−1νF − x) i.e., replaced by

µα = µα
0 + δ((νA + νB)

−1νA − α)

µη = µ
η
0 + δ(νF + νD − η)

µx = µx
0 + δ((νF + νD)

−1νF − x),

where µα
0 , µ

η
0 , µx

0 come from the economy with δ = 0.

Proof of Lemma C.2. A proof of the fact that subjective discount rates in recursive preferences are simply augmented
by the Poisson death rate can be found in the appendix of Gârleanu and Panageas (2015). OLG adds the following
terms to the dynamics of aggregate net worth:

dNz,t = . . .− δNz,tdt + νzδKtdt.

Applying Itô’s formula to the wealth shares (α, η, x) yields the result on the state drifts.

Proposition C.3 (Equilibrium with Distress). Let Assumptions 1 and 2 hold, and augment financiers’ problem with con-
straint (17). Let (π̂A, π̂B) be insiders’ idiosyncratic risk prices, defined in (12), and let (π̂F→A, π̂F→B) be financiers’ idiosyn-
cratic risk prices, defined by (13) with xη in place of η. In a symmetric equilibrium, (κ, ζ) solve a nonlinear system given by
(19) and equation (69). Equilibrium spreads (sA, sB) are given by

sz − σz · π = x
[
(1− ∆z)σ̂zπ̂F→z + ζ −

(
ζ − χ− x

1− x
(1− ∆z)σ̂zπ̂F→z

)+]

+ (1− x)
[
χ−

(
χ− ζ − (1− ∆z)σ̂zπ̂F→z

)+], z ∈ {A, B}, (66)

where π = η−1[κφAσA + (1− κ)φBσB] is the traded aggregate risk price.

Proof of Proposition C.3. In the proof below, I restrict attention to symmetric equilibria, in which all equilibrium
objects are independent of i. To simplify notation, I drop all i subscripts when the meaning is clear. Within the
class of symmetric equilibria, I solve for the equilibrium objects in two steps. In the first step, I assume (κt, ζt) are
known and use them to solve for all other objects. In the second step, I solve for (κt, ζt) via a system of nonlinear
equations. In this proof, I treat the case δ = 0. The general case with δ > 0 is accounted for by Lemma C.2 above.

Step 1. Solving for equilibrium given (κ, ζ).

Using the optimal consumption decisions from Appendix B.4, we can write the goods market clearing condition
as (21). Thus, the aggregate investment rate ι is solved, given κ and λA

D, λB
D.

Next, apply optimal portfolio choice as special cases of the general formulas derived in Appendix B.4. Define
πA := π̂AσA/σ̂A and πB := π̂BσB/σ̂B where π̂A = κ(1−φA)σ̂A/(1− η)α and π̂B = (1− κ)(1−φB)σ̂B/(1− η)(1− α)
are defined by (12). With this notation, insiders’ optimal capital portfolio choice can be written

(1− φA)[σ̂Aπ̂A + σA · πA] ≥ GA − r− φAsA with equality when κ > 0 (67)
(1− φB)[σ̂Bπ̂B + σB · πB] ≥ GB − r− φBsB with equality when κ < 1. (68)

By taking the difference between (67) and (68), and noting that at least one of these is always an equality, we obtain
0 = min(1− κ, max(−κ, H)), or

0 = min
{

1− κ, H+
}
−min

{
κ, (−H)+

}
(69)

H := GA − GB − φAsA + φBsB − (1− φA)[σA · πA + σ̂Aπ̂A] + (1− φB)[σB · πB + σ̂Bπ̂B].

The interest rate r is found by multiplying (67)-(68) by κ and 1− κ, respectively, and summing.
Exposures to aggregate risk dZt are determined as follows. Note that πA, πB represent insiders’ exposures

to aggregate risk, by its definition. For financiers and distressed investors, who can trade aggregate risk without
constraints, their optimal exposure is equal to the aggregate risk price vector π. Thus, θF + λA

F σA + λB
F σB = θD +
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λA
DσA + λB

DσB = π. In equilibrium, the aggregate risk price vector is determined by applying aggregate risk market
clearing, which can be restated as

η[xπ + (1− x)π] + (1− η)[απA + (1− α)πB] = κσA + (1− κ)σB.

Substituting πA, πB, we solve for π = η−1[κφAσA + (1− κ)φBσB].
Next, we determine spreads by using funding market clearing, which aggregates to

xλA
F + (1− x)λA

D =
κφA

η
and xλB

F + (1− x)λB
D =

(1− κ)φB
η

.

By the analysis of Appendix B.4, (18) and (20) represent optimal lending positions. Substituting into funding market
clearing, we have

x(sA − σA · π − ζ)+ + (1− x)(sA − σA · π − χ)+ =
κφA(1− ∆A)

2σ̂2
A

η
:= x(1− ∆A)σ̂Aπ̂F→A,

and symmetrically for sector B. Note that sA − σA · π > min(ζ, χ) is required for this equation to hold. The
mutually-exclusive, completely exhaustive cases are as follows. If sA − σA · π ≥ max(ζ, χ), then

sA − σA · π = xζ + (1− x)χ + x(1− ∆A)σ̂Aπ̂F→A.

Thus, this case obtains when ζ − χ− x
1−x (1− ∆A)σ̂Aπ̂F→A ≤ 0 and χ− ζ − (1− ∆A)σ̂Aπ̂F→A ≤ 0, which implies

(66) holds. If χ ≥ sA − σA · π > ζ, then

sA − σA · π = ζ + (1− ∆A)σ̂Aπ̂F→A.

Thus, this case obtains when χ− ζ − (1− ∆A)σ̂Aπ̂F→A ≥ 0, which implies (66) holds. If ζ ≥ sA − σA · π > χ, then

sA − σA · π = χ +
x

1− x
(1− ∆A)σ̂Aπ̂F→A.

Thus, this case obtains when ζ − χ− x
1−x (1− ∆A)σ̂Aπ̂F→A ≥ 0, which implies (66) holds. Combining these results,

equation (66) holds in all cases. An identical analysis holds for sector B.
Finally, we determine state variable dynamics. Define the following expressions:

ΠF := θF · π + λA
F sA + λB

FsB

ΠD := θD · π + λA
D(sA − χ) + λB

D(sB − χ)

ΠA := θA · π + (1− η)−1α−1κ(GA − r− φAsA)

ΠB := θB · π + (1− η)−1(1− α)−1(1− κ)(GB − r− φBsB).

Note that KA/NA = κ/(1− η)α and KB/NB = (1− κ)/(1− η)(1− α) by bond market clearing. Thus, aggregat-
ing agents’ net worth evolutions, which eliminates any contributions from {dWi,t}i∈[0,1] due to Lemma 2.2, and
substituting these expressions for ΠF, ΠD, ΠA, ΠB, we obtain

dNF
NF

=
[
r− ρF + ΠF

]
dt +

[
θF + λA

F σA + λB
FσB

]
dZt (70)

dND
ND

=
[
r− ρ + ΠD

]
dt +

[
θD + λA

DσA + λB
DσB

]
dZt (71)

dNA
NA

=
[
r− ρ + ΠA

]
dt +

[
θA + (1− η)−1α−1κσA

]
dZt (72)

dNB
NB

=
[
r− ρ + ΠB

]
dt +

[
θB + (1− η)−1(1− α)−1(1− κ)σB

]
dZt. (73)

Using expressions (67)-(68), we have shown that ΠF, ΠD, ΠA, ΠB are equivalent to

ΠA = π̂2
A + ‖πA‖2 and ΠB := π̂2

B + ‖πB‖2 (74)

ΠF = λA
F (sA − σA · π) + λB

F(sB − σB · π) + ‖π‖2 (75)

ΠD = λA
D(sA − σA · π − χ) + λB

D(sB − σB · π − χ) + ‖π‖2. (76)
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Furthermore, using the net worth evolutions in (70)-(72) and substituting the optimal aggregate risk exposures
derived above, then applying Itô’s formula to the definitions of (α, η, x), we obtain the state variable evolutions

µα = α(1− α)[ΠA −ΠB]− (απA + (1− α)πB) · σα + δ((νA + νB)
−1νA − α) (77)

σα = α(1− α)[πA − πB], (78)
µη = η(1− η)[x(ρ− ρF) + xΠF + (1− x)ΠD − αΠA − (1− α)ΠB] (79)

− (ηπ + (1− η)(απA + (1− α)πB)) · ση + δ(νF + νD − η)

ση = η(1− η)[π − απA − (1− α)πB], (80)

µx = x(1− x)[ρ− ρF + ΠF −ΠD] + δ((νF + νD)
−1νF − x) (81)

σx = 0. (82)

Step 2. Solving for (κ, ζ).

Substituting π, (18), (66) into (19), we obtain a single equation in (κ, ζ). Substituting π, πA, πB, (66) into (69),
we obtain a second equation in (κ, ζ). A solution exists, as demonstrated by Proposition C.4.

Proposition C.4 below states the analytical solution to this equilibrium by explicitly solving equations (19)
and (69). An explicit solution is possible because the nonlinearity of this system is induced solely by the various
portfolio constraints (i.e., leverage, shorting constraints). Such constraints bind on endogenous subsets of the state
space, which I solve for analytically.

Proposition C.4. In the equilibrium of Proposition C.3, the solution (κ, ζ) to (19) and (69) is determined as follows. Consider
the state space Ω := [0, 1]3 for (α, η, x). First define the following objects on Ω:

ΓA =

{
1, if insiders may frictionlessly trade aggregate risk (unconstrained θA, θB)
φ2

A
η + (1−φA)

2

α(1−η)
, if insiders may not trade aggregate risk (θA = θB ≡ 0),

ΓB =

{
1, if insiders may frictionlessly trade aggregate risk (unconstrained θA, θB)
φ2

B
η + (1−φB)

2

(1−α)(1−η)
, if insiders may not trade aggregate risk (θA = θB ≡ 0),

and

ΣA :=
(1− ∆A)

2σ̂2
A

η(1− x)

ΣB :=
(1− ∆B)

2σ̂2
B

η(1− x)

MA := ΓA‖σA‖2 +
[ (1− φA)

2

α(1− η)
+

φ2
A(1− ∆A)

2

η

]
σ̂2

A

MB := ΓB‖σB‖2 +
[ (1− φB)

2

(1− α)(1− η)
+

φ2
B(1− ∆B)

2

η

]
σ̂2

B.

Next, for each (α, η, x) ∈ Ω, define the following function mapping [0, 1] 7→ R:

λ̃(κ) := 1{∆A=1}
κφA
xη

+ 1{∆A<1}
{

x
κφA
xη

+ (1− x)
χ

(1− ∆A)2σ̂2
A
− (1− x)

[ χ

(1− ∆A)2σ̂2
A
− κφA

xη

]+}

+ 1{∆B=1}
(1− κ)φB

xη
+ 1{∆B<1}

{
x
(1− κ)φB

xη
+ (1− x)

χ

(1− ∆B)2σ̂2
B
− (1− x)

[ χ

(1− ∆B)2σ̂2
B
− (1− κ)φB

xη

]+}
.
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Also define the following functions mapping R 7→ R:

κ̃(ζ) :=
GA − GB + MB − (φA − φB)(xζ + (1− x)χ)

MA + MB

κ̃F 6→A(ζ) :=
GA − GB + MB − φAχ + φB(xζ + (1− x)χ)
MA + MB + x(1− x)−1η−1φ2

A(1− ∆A)2σ̂2
A

κ̃F 6→B(ζ) :=
GA − GB + MB − φA(xζ + (1− x)χ) + φBχ + x(1− x)−1η−1φ2

B(1− ∆B)
2σ̂2

B
MA + MB + x(1− x)−1η−1φ2

B(1− ∆B)2σ̂2
B

κ̃D 6→A(ζ) :=
GA − GB + MB − φAζ + φB(xζ + (1− x)χ)
MA + MB + (1− x)x−1η−1φ2

A(1− ∆A)2σ̂2
A

κ̃D 6→B(ζ) :=
GA − GB + MB − φA(xζ + (1− x)χ) + φBζ + (1− x)x−1η−1φ2

B(1− ∆B)
2σ̂2

B
MA + MB + (1− x)x−1η−1φ2

B(1− ∆B)2σ̂2
B

κ̃D 6→A,B(ζ) :=
GA − GB + MB + (1− x)x−1η−1φ2

B(1− ∆B)
2σ̂2

B
MA + MB + (1− x)x−1η−1φ2

A(1− ∆A)2σ̂2
A + (1− x)x−1η−1φ2

B(1− ∆B)2σ̂2
B
[1− 1{ζ>0,φA 6=φB}]

+
xηλ̄− φB
φA − φB

1{ζ>0,φA 6=φB}.

Using these functions, for each (α, η, x) ∈ Ω, define the following objects:

κ̃∗0 := [κ̃(0)]+ ∧ 1

κ̃∗0,D 6→A := [κ̃D 6→A(0)]
+ ∧ 1

κ̃∗0,D 6→B := [κ̃D 6→B(0)]
+ ∧ 1

κ̃∗0,D 6→A,B := [κ̃D 6→A,B(0)]
+ ∧ 1,

and

ζ̃∗ :=
(Σ−1

A + Σ−1
B )χ + κ̃(0)φA + (1− κ̃(0))φB − ηλ̄

Σ−1
A + Σ−1

B + x[MA + MB]−1(φA − φB)2

ζ̃∗F 6→A :=
Σ−1

B χ + (1− κ̃F 6→A(0))φB − ηλ̄

Σ−1
B + x[MA + MB + x(1− x)−1η−1φ2

A(1− ∆A)2σ̂2
A]
−1φ2

B

ζ̃∗F 6→B :=
Σ−1

A χ + κ̃F 6→B(0)φA − ηλ̄

Σ−1
A + x[MA + MB + x(1− x)−1η−1φ2

B(1− ∆B)2σ̂2
B]
−1φ2

A

ζ̃∗D 6→A :=
Σ−1

B χ + κ̃D 6→A(0)x−1φA + (1− κ̃D 6→A(0))φB − ηλ̄

Σ−1
B + x[MA + MB + (1− x)x−1η−1φ2

A(1− ∆A)2σ̂2
A]
−1(x−1φA − φB)2

ζ̃∗D 6→B :=
Σ−1

A χ + κ̃D 6→B(0)φA + (1− κ̃D 6→B(0))x−1φB − ηλ̄

Σ−1
A + x[MA + MB + (1− x)x−1η−1φ2

B(1− ∆B)2σ̂2
B]
−1(φA − x−1φB)2

ζ̃∗D 6→A,B :=
1{φA 6=φB}
(φA − φB)2

[
(GA − GB)(φA − φB) +

(
MB +

1− x
x

φ2
B(1− ∆B)

2

η
σ̂2

B

)
(φA − xηλ̄)

+
(

MA +
1− x

x
φ2

A(1− ∆A)
2

η
σ̂2

A

)
(φB − xηλ̄)

]
,
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and

κ̃∗ζ := κ̃(ζ̃∗)

κ̃∗ζ,F 6→A := κ̃F 6→A(ζ̃
∗
F 6→A)

κ̃∗ζ,F 6→B := κ̃F 6→B(ζ̃
∗
F 6→B)

κ̃∗ζ,D 6→A := κ̃D 6→A(ζ̃
∗
D 6→A)

κ̃∗ζ,D 6→B := κ̃D 6→B(ζ̃
∗
D 6→B)

κ̃∗ζ,D 6→A,B := κ̃D 6→A,B(ζ̃
∗
D 6→A,B),

and

ζ̃κ=1 := χ + (Σ−1
A + Σ−1

B )−1[φA − ηλ̄]

ζ̃κ=1
D 6→A := χ + ΣB[x−1φA − ηλ̄]

ζ̃κ=0 := χ + (Σ−1
A + Σ−1

B )−1[φB − ηλ̄]

ζ̃κ=0
D 6→B := χ + ΣA[x−1φB − ηλ̄].

Finally, for each (α, η, x) ∈ Ω, define the following functions mapping [0, 1]×R 7→ R:

d̃A(κ, ζ) := (xη)−1κφA(1− ∆A)
2σ̂2

A + ζ − χ

d̃B(κ, ζ) := (xη)−1(1− κ)φB(1− ∆B)
2σ̂2

B + ζ − χ

f̃A(κ, ζ) := ((1− x)η)−1κφA(1− ∆A)
2σ̂2

A − ζ + χ

f̃B(κ, ζ) := ((1− x)η)−1(1− κ)φB(1− ∆B)
2σ̂2

B − ζ + χ.

Using all the definitions above, construct the following subsets of Ω:

Ω0 :=
{
(α, η, x) ∈ Ω : d̃A(κ̃

∗
0 , 0) ∧ d̃B(κ̃

∗
0 , 0) ≥ 0, λ̃(κ̃∗0) ≤ λ̄

}

Ω0,D 6→A :=
{
(α, η, x) ∈ Ω : d̃A(κ̃

∗
0,D 6→A, 0) < 0 ≤ d̃B(κ̃

∗
0,D 6→A, 0), λ̃(κ̃∗0,D 6→A) ≤ λ̄

}

Ω0,D 6→B :=
{
(α, η, x) ∈ Ω : d̃B(κ̃

∗
0,D 6→B, 0) < 0 ≤ d̃A(κ̃

∗
0,D 6→B, 0), λ̃(κ̃∗0,D 6→B) ≤ λ̄

}

Ω0,D 6→A,B :=
{
(α, η, x) ∈ Ω : d̃A(κ̃

∗
0,D 6→A,B, 0) ∨ d̃B(κ̃

∗
0,D 6→A,B, 0) < 0, λ̃(κ̃∗0,D 6→A,B) ≤ λ̄

}

Ω1 := Ω\(Ω0 ∪Ω0,D 6→A ∪Ω0,D 6→B ∪Ω0,D 6→A,B),

and

Ωζ :=
{
(α, η, x) ∈ Ω1 : d̃A(κ̃

∗
ζ , ζ̃∗) ∧ d̃B(κ̃

∗
ζ , ζ̃∗) ≥ 0,

f̃A(κ̃
∗
ζ , ζ̃∗) ∧ f̃B(κ̃

∗
ζ , ζ̃∗) ≥ 0, 0 ≤ κ̃∗ζ ≤ 1, ζ̃∗ > 0

}

Ωζ,D 6→A :=
{
(α, η, x) ∈ Ω1 : d̃A(κ̃

∗
ζ,D 6→A, ζ̃∗D 6→A) < 0 ≤ d̃B(κ̃

∗
ζ,D 6→A, ζ̃∗D 6→A),

f̃A(κ̃
∗
ζ,D 6→A, ζ̃∗D 6→A) ∧ f̃B(κ̃

∗
ζ,D 6→A, ζ̃∗D 6→A) ≥ 0, 0 ≤ κ̃∗ζ,D 6→A ≤ 1, ζ̃∗D 6→A > 0

}

Ωζ,D 6→B :=
{
(α, η, x) ∈ Ω1 : d̃B(κ̃

∗
ζ,D 6→B, ζ̃∗D 6→B) < 0 ≤ d̃A(κ̃

∗
ζ,D 6→B, ζ̃∗D 6→B),

f̃A(κ̃
∗
ζ,D 6→B, ζ̃∗D 6→B) ∧ f̃B(κ̃

∗
ζ,D 6→B, ζ̃∗D 6→B) ≥ 0, 0 ≤ κ̃∗ζ,D 6→B ≤ 1, ζ̃∗D 6→B > 0

}

Ωζ,D 6→A,B :=
{
(α, η, x) ∈ Ω1 : d̃A(κ̃

∗
ζ,D 6→A,B, ζ̃∗D 6→A,B) ∨ d̃B(κ̃

∗
ζ,D 6→A,B, ζ̃∗D 6→A,B) < 0,

f̃A(κ̃
∗
ζ,D 6→A,B, ζ̃∗D 6→A,B) ∧ f̃B(κ̃

∗
ζ,D 6→A,B, ζ̃∗D 6→A,B) ≥ 0, 0 ≤ κ̃∗ζ,D 6→A,B ≤ 1, ζ̃∗D 6→A,B > 0

}

Ωζ,F 6→A :=
{
(α, η, x) ∈ Ω1 : f̃A(κ̃

∗
ζ,F 6→A, ζ̃∗F 6→A) < 0 ≤ f̃B(κ̃

∗
ζ,F 6→A, ζ̃∗F 6→A),

d̃A(κ̃
∗
ζ,F 6→A, ζ̃∗F 6→A) ∧ d̃B(κ̃

∗
ζ,F 6→A, ζ̃∗F 6→A) ≥ 0, 0 ≤ κ̃∗ζ,F 6→A ≤ 1, ζ̃∗F 6→A > 0

}

Ωζ,F 6→B :=
{
(α, η, x) ∈ Ω1 : f̃B(κ̃

∗
ζ,F 6→B, ζ̃∗F 6→B) < 0 ≤ f̃A(κ̃

∗
ζ,F 6→B, ζ̃∗F 6→B),

d̃A(κ̃
∗
ζ,F 6→B, ζ̃∗F 6→B) ∧ d̃B(κ̃

∗
ζ,F 6→B, ζ̃∗F 6→B) ≥ 0, 0 ≤ κ̃∗ζ,F 6→B ≤ 1, ζ̃∗F 6→B > 0

}
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and

Ωκ=1
ζ :=

{
(α, η, x) ∈ Ω1 : d̃A(1, ζ̃κ=1) ≥ 0, f̃A(1, ζ̃κ=1) ≥ 0, κ̃(ζ̃κ=1) > 1, ζ̃κ=1 > 0

}

Ωκ=1
ζ,D 6→A :=

{
(α, η, x) ∈ Ω1 : d̃A(1, ζ̃κ=1

D 6→A) < 0, f̃A(1, ζ̃κ=1
D 6→A) ≥ 0, κ̃D 6→A(ζ̃

κ=1
D 6→A) > 1, ζ̃κ=1

D 6→A > 0
}

Ωκ=0
ζ :=

{
(α, η, x) ∈ Ω1 : d̃B(0, ζ̃κ=0) ≥ 0, f̃B(0, ζ̃κ=0) ≥ 0, κ̃(ζ̃κ=0) < 0, ζ̃κ=0 > 0

}

Ωκ=0
ζ,D 6→B :=

{
(α, η, x) ∈ Ω1 : d̃B(0, ζ̃κ=0

D 6→B) < 0, f̃B(0, ζ̃κ=0
D 6→B) ≥ 0, κ̃D 6→B(ζ̃

κ=0
D 6→B) < 0, ζ̃κ=0

D 6→B > 0
}

.

Then, the solutions for κ : Ω 7→ O and ζ : Ω 7→ O, where O are the finite subsets of R+, are41

κ 3





κ̃∗0 , on Ω0

κ̃∗0,D 6→A, on Ω0,D 6→A

κ̃∗0,D 6→B, on Ω0,D 6→B

κ̃∗0,D 6→A,B, on Ω0,D 6→A,B

κ̃∗ζ , on Ωζ

κ̃∗ζ,D 6→A, on Ωζ,D 6→A

κ̃∗ζ,D 6→B, on Ωζ,D 6→B

κ̃∗ζ,D 6→A,B, on Ωζ,D 6→A,B

κ̃∗ζ,F 6→A, on Ωζ,F 6→A

κ̃∗ζ,F 6→B, on Ωζ,F 6→B

1, on Ωκ=1
ζ ∪Ωκ=1

ζ,D 6→A
0, on Ωκ=0

ζ ∪Ωκ=0
ζ,D 6→B

and ζ 3





ζ̃∗, on Ωζ

ζ̃∗D 6→A, on Ωζ,D 6→A

ζ̃∗D 6→B, on Ωζ,D 6→B

ζ̃∗D 6→A,B, on Ωζ,D 6→A,B

ζ̃∗F 6→A, on Ωζ,F 6→A

ζ̃∗F 6→B, on Ωζ,F 6→B

ζ̃κ=1, on Ωκ=1
ζ

ζ̃κ=1
D 6→A, on Ωκ=1

ζ,D 6→A
ζ̃κ=0, on Ωκ=0

ζ

ζ̃κ=0
D 6→B, on Ωκ=0

ζ,D 6→B
0, on Ω\Ω1.

Proof of Proposition C.4. One can substitute these formulas into (19) and (69) to verify that the equations are solved.
It remains to show that the union of the regions defined is equal to the entire state space, i.e.,

Ω0 ∪Ω0,D 6→A ∪Ω0,D 6→B ∪Ω0,D 6→A,B ∪Ω1 = Ω (83)

and
Ω∗1 = Ω1, (84)

where Ω∗1 := Ωζ ∪Ωζ,D→A ∪Ωζ,D→B ∪Ωζ,D→A,B ∪Ωζ,F→A ∪Ωζ,F→B ∪Ωκ=1
ζ ∪Ωκ=0

ζ ∪Ωκ=1
ζ,D→A ∪Ωκ=0

ζ,D→B. Statement
(83) is trivially true by definition of Ω1. Furthermore, Ω∗1 ⊂ Ω1 holds trivially, by definition of the sets constituting
Ω∗1 .

It remains to prove Ω∗1 ⊃ Ω1. Note that ζ > 0 on Ω∗1 . Thus, λA
F + λB

F = λ̄ on Ω∗1 . The remaining constraints are
the shorting constraints of insiders (κ ∈ [0, 1]), distressed investors (λA

D ≥ 0, λB
D ≥ 0), and financiers (λA

F ≥ 0, λB
F ≥

0), a total of 6 constraints. To help characterize these constraints, note the following:

{ f̃A(κ, ζ) > 0, d̃A(κ, ζ) > 0} = {λA
F > 0, λA

D > 0} (85)

{ f̃A(κ, ζ) > 0, d̃A(κ, ζ) ≤ 0} = {λA
F > 0, λA

D = 0} (86)

{ f̃A(κ, ζ) ≤ 0, d̃A(κ, ζ) > 0} = {λA
F = 0, λA

D > 0} (87)

{ f̃A(κ, ζ) ≤ 0, d̃A(κ, ζ) ≤ 0} = {λA
F = 0, λA

D = 0}, (88)

41Correspondences are needed because of the possibility of multiple equilibria, which I have not ruled out in
my proof. Multiple equilibria are captured mathematically by non-empty intersections of the sets defined above.
Numerically, I have found parameterizations of the model in which Ωζ,F 6→A ∩Ωκ=0

ζ and Ωζ,F 6→B ∩Ωκ=1
ζ are non-

empty. In those cases, I choose assign to (κ, ζ) the values dictated by Ωκ=0
ζ and Ωκ=1

ζ .
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and, for sector B,

{ f̃B(κ, ζ) > 0, d̃B(κ, ζ) > 0} = {λB
F > 0, λB

D > 0} (89)

{ f̃B(κ, ζ) > 0, d̃B(κ, ζ) ≤ 0} = {λB
F > 0, λB

D = 0} (90)

{ f̃B(κ, ζ) ≤ 0, d̃B(κ, ζ) > 0} = {λB
F = 0, λB

D > 0} (91)

{ f̃B(κ, ζ) ≤ 0, d̃B(κ, ζ) ≤ 0} = {λB
F = 0, λB

D = 0}, (92)

Importantly, {λA
F = 0, λA

D = 0} = {κ = 0} and {λB
F = 0, λB

D = 0} = {κ = 1}, by funding market clearing. In
addition, {ζ > 0, λA

F = 0, λB
D = 0} = {ζ > 0 λB

F = 0, λA
D = 0} = ∅, by combining equations (66), (18), and (20).

Consequently, the sets constituting Ω∗1 are exactly the intersection of {ζ > 0} with the pairwise combinations of the
sets in (85)-(88) with the sets in (89)-(92), which are a completely exhaustive set of combinations, i.e., {ζ > 0} = Ω∗1 .
Finally note, by the definition of ζ in the statement of Proposition C.4, that Ω\Ω1 ⊂ {ζ = 0} so that Ω1 ⊂ {ζ >
0}.

C.4 Necessity of Leverage Constraints
To see the crucial role the leverage constraint plays in the results of Section 3, now suppose λ̄ = +∞. Figure 14
shows financial distress is almost completely absent. Distressed investors rarely enter the market, lending spreads
respond much more smoothly to changes in the state variables, and sector B spreads are minuscule across the state
space.

Figure 14: Equilibrium functions of (η, x) with α = 0.5 fixed. Parameters: ‖σA‖ = ‖σB‖ = 0.04, σ̂A = σ̂B = 0.20,
φA = φB = 0.50, GA = GB = 0.1, ∆A = 0.5, ∆B = 1, ρ = 0.02, ρF = 0.06, χ = 0.05, and λ̄ = +∞.

The following proposition formalizes this result by characterizing when financial distress occurs.

Proposition C.5 (Distress without Leverage Constraints). Consider Proposition C.3 with λ̄ = +∞. Distressed investors
lend to sector z ∈ {A, B} if and only if financiers’ wealth share xtηt < ω∗z,t, where

ω∗A,t := χ−1κtφA(1− ∆A)
2σ̂2

A (93)

ω∗B,t := χ−1(1− κt)φB(1− ∆B)
2σ̂2

B. (94)
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Proof of Proposition C.5. Let λ̄ = +∞ so that ζ = 0 in Proposition C.3. Specializing (66) to this case, we have
Then, substituting sA and π into λA

D in (20), we find λA
D > 0 if and only if (1− ∆A)σ̂Aπ̂F→A > χ. Substituting

π̂F→A := κφA(1−∆A)σ̂A/(xη), this implies ω∗A := χ−1κφA(1−∆A)
2σ̂2

A > xη. An identical analysis holds for sector
B.

Proposition C.5 illustrates the theoretical possibility of financial distress. If financiers’ wealth is low relative
to the amount of idiosyncratic risk they must bear, distressed investors have an incentive to enter the market.
These incentives are summarized by the thresholds (ω∗A, ω∗B). That said, even for moderate diversification, these
thresholds are tiny. Consider the case of symmetric sectors, such that κt = 0.5. Under χ = 0.05 and σ̂A = σ̂B = 0.2,
φA = φB = 0.5, and ∆A = ∆B = 0.5, we have ω∗A,t = ω∗B,t = 0.05. If financiers hold more than 5% of total wealth,
distress is impossible.

Furthermore, as ∆A, ∆B → 1, distressed investors never take positive positions, as (93)-(94) show. Under perfect
diversification, financiers can perfectly hedge all the risks on their funding portfolio, so their leverage decisions
are completely decoupled from the risks they must bear. Less efficient lenders never enter if they can finance more
efficient lenders to do the same. This result explains why models without leverage constraints, such as Brunnermeier
and Sannikov (2014), feature inefficiency that falls with financiers’ fundamental risks.

Proof of Proposition 3.1. Suppose λA
F + λB

F = λ̄, but λA
D + λB

D = 0. The latter, plus funding market clearing, implies
λA

F = κφA/xη and λB
F = (1− κ)φB/xη. Summing these results yields κφA + (1− κ)φB = λ̄xη. If φA = φB, then

this implies xη = λ̄−1, which contradicts d(xtηt) 6= 0 (if σA = σB ≡ 0, then time-dynamics are non-zero outside of
steady-state; otherwise, xη is diffusive). This proves part (i).

Now, suppose λA
F + λB

F < λ̄ so that ζ = 0. Then, using the stated assumption of part (ii) and equation (18), we
have χ ≥ λ̄(1− ∆A)

2σ̂2
A ≥ λA

F (1− ∆A)
2σ̂2

A ≥ sA − σA · π, so that λA
D = 0 by (20). Repeating this analysis for sector

B proves part (ii).

C.5 Endogenous Busts and Financial Instability
In the following proof of Proposition 3.2, we assume the following condition:

(1− φ/λ̄)2
[
ρ− ρF + λ̄χ

]
+ 2δ(1− φ/λ̄)

[
(νFλ̄/φ)1/2 − 1

]
− (1− φ)2σ̂2 < 0 < χ. (95)

Proof of Proposition 3.2. First, note that the stated assumptions imply κ = α = 1/2 at all times. Next, ∆ = ∆τ large
enough implies the leverage constraint (17) binds in the future. Indeed, ∆ large enough guarantees

χ >
1
2

λ̄(1− ∆)2σ̂2 (96)

holds. Using part (i) of Proposition 3.1, inequality (96) implies that λA
D + λB

D > 0 if and only if λA
F + λB

F = λ̄.
Hence, using equations (79) and (81) to compute the drift of log(xη) away from the constraint, and substituting
λA

D = λB
D = 0, we have

µlog(xη) = (1− xη)(ρ− ρF) +
1
2
(1− xη)(

φ(1− ∆)σ̂
xη

)2 − (1− φ)2σ̂2

1− η︸ ︷︷ ︸
:=µ1

+
δ

xη
[η

νF
νF + νD

+ x(νF + νD)− 2xη]

︸ ︷︷ ︸
:=µ2

.

By maximizing µ1 and µ2 (separately) over (x, η), subject to xη > φ/λ̄, it is straightforward to show that the corner
solution xη = φ/λ̄ is maximal for each. The result is

sup
x,η : xη>φ/λ̄

µlog(xη) < (1− φ/λ̄)
[
ρ− ρF +

1
2
(λ̄(1− ∆)σ̂)2

]
+ 2δ

[
(νFλ̄/φ)1/2 − 1

]
− (1− φ)2σ̂2

1− φ/λ̄
< 0,

where the second inequality holds by (95)-(96). This shows that if ∆τ is made large enough, then log(xτ+tητ+t)
must have a negative drift at least until the leverage constraint (17) is hit, i.e., for a length of time T := inf{t :
xτ+tητ+t = φ/λ̄}.
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Immediately after the constraint is hit, the drift is still negative. Indeed, using Proposition C.4, we may compute
ζτ+T = χ − 1

2 λ̄(1− ∆)2σ̂2 (take ζ̃∗ from the proposition, then substitute φA = φB = φ and xη = φ/λ̄), which is
positive by (96). Substituting into spreads from Proposition C.3, we obtain sτ+T = χ in both sectors. We may then
calculate

µ
log(xη)
τ+T = (1− xη)[ρ− ρF + λ̄χ]− (1− φ)2σ̂2

1− η
+

δ

xη
[η

νF
νF + νD

+ x(νF + νD)− 2xη]

< (1− xη)[ρ− ρF + λ̄χ]− (1− φ)2σ̂2

1− xη
+

δ

xη
[η

νF
νF + νD

+ x(νF + νD)− 2xη]

Substituting xη = φ/λ̄, and recalling that maxxη=φ/λ̄ µ1 = 2δ[(νFλ̄/φ)1/2 − 1], we obtain

µ
log(xη)
τ+T < (1− φ/λ̄)[ρ− ρF + λ̄χ]− (1− φ)2σ̂2

1− φ/λ̄
+ 2δ

[
(νFλ̄/φ)1/2 − 1

]
< 0,

with the latter inequality again by (95).
Finally, equity market clearing says η(1− x)λA

D = η(1− x)λB
D = 1

2 φ− ηx 1
2 λ̄. Since spreads are equal to χ, we

have λA
D,τ+T = λB

D,τ+T = 0 but λA
D,τ+T+ε > 0 and λB

D,τ+T+ε > 0 for ε > 0 small enough. Consequently, distress costs

χητ+T+ε(1− xτ+T+ε)(λ
A
D,τ+T+ε + λB

D,τ+T+ε) > 0.

This proves that an endogenous bust (Definition 2) occurs.

Proof of Proposition 3.3. First, note that Y = G− χη(1− x)(λA
D + λB

D) so that

Vart[dYt] = χ2
(

η2
t (1− xt)

2Vart[d(λA
D,t + λB

D,t)] + (λA
D,t + λB

D,t)
2Vart[d(ηt(1− xt))]

)
.

With ∆A, ∆B chosen high enough, the conditions of Proposition 3.1 hold so that λA
D +λB

D > 0 if and only if λA
F +λB

F =
λ̄. Therefore, Vart[dYt] = 0 when the leverage constraint is slack and Vart[dYt] > 0 otherwise.
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D Other Financial Shocks
This section presents model extensions required to analyze other financial shocks. Each shock has a theoretical
proposition associated to it, the proofs of which are contained at the end of this section (see Appendix D.6).

D.1 LTV Shock
Another important financial shock is an increase in φ, which reduces the idiosyncratic risk insiders must bear when
investing in capital. Like a loan-to-value ratio, φ is the fraction of assets that insiders can borrow against, so I refer
to this shock as an LTV shock. This type of shock is widely studied in the quantitative modeling literature, with
somewhat disparate results.42 Here, I study the implications of this shock in my model. We have the following.

Proposition D.1. Consider the equilibrium of Proposition 2.3. Suppose at time t the economy is sufficiently close to an interior
steady state and then there is a small increase in φA. Sector-A capital share increases, κt > κt−, if and only if sector-A spreads
are less than the total sector-A risk premium (i.e., sA < GA− r). If either (i) sectors are nearly symmetric or (ii) | log(κt/κt−)|
is not too large, then µ

η
t > µ

η
t−.

The key point to note about φ is that it is a risk transfer between insiders and financiers. Because financiers are
better diversified than insiders, this risk transfer is value-enhancing and generates sectoral reallocation. Mathemat-
ically, equation (15) shows that higher φA lowers sector A’s idiosyncratic risk premia, which are equal to

idio rpA = κ
[ (1− φA)

2

α(1− η)
+

φ2
A(1− ∆A)

2

η

]
σ̂2

A.

This quantity is decreasing in φA for a well-diversified sector.
That said, the risk transfer to financiers shifts idiosyncratic risk compensation from insiders to financiers. In

response to the LTV shock, lending spreads increase, which is why LTV shocks are sometimes interpreted as “credit
demand shocks.” Thus, an increase in φA unambiguously raises financier profitability. Although short-run financier
leverage η−1[κφA + (1− κ)φB] can increase with φA, the effect on long-run financier leverage is ambiguous through
the slow rise in η.

D.2 Capital-Requirement Shock
Another possible finance-centric explanation for boom-bust cycles is improved financier access to outside equity.
Perhaps financiers are equity-issuance constrained, perhaps because of capital requirements or more fundamental
agency frictions. A relaxation in capital requirements improves financiers’ risk-sharing with the rest of the economy.
To model this scenario, I allow financiers to partially issue equity against their assets, requiring them to keep 1− φF
fraction of skin in the game, like the insiders of sectors A and B.43 Shocks to the parameter φF can be called capital
requirement shocks. We have the following result.

Proposition D.2. Consider the equilibrium of Proposition 2.3, with capital requirement 1− φF. If ∆ := ∆A ≡ ∆B, then
φF-shocks and ∆-shocks are equivalent in the following sense: the equilibrium only depends on ∆∗ := 1− (1− ∆)(1− φF)
and not φF or ∆ independently.

Capital-requirement shocks (φF) are similar to diversification shocks (∆) in that both provide ways for financiers
to diversify idiosyncratic risks. For this reason, both parameters appear together in the expression for financiers’
idiosyncratic risk prices, i.e.,

π̂F→A =
κφA(1− ∆A)(1− φF)σ̂A

η
and π̂F→B =

(1− κ)φB(1− ∆B)(1− φF)σ̂B
η

.

42See, for example, Kiyotaki et al. (2011), Justiniano et al. (2015b), Favilukis et al. (2017), and Kaplan et al. (2017).
43This outside equity is assumed to be pooled, thus perfectly diversified, and sold to the market. The equilibrium

of this modified economy is detailed in the appendix.
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Indeed, Proposition D.2 shows that looser capital requirements act like broad, sectorally-agnostic increases in diver-
sification. It follows that looser capital requirements will generate financial leverage. But a key distinction is that φF
applies symmetrically to both sectors, whereas ∆A, ∆B can be asymmetric. Although a sector-specific diversification
shock generates a reallocation, looser capital requirements will tend to raise asset prices and allocations across the
board, as would a broad diversification improvement.

This is empirically relevant. Referring back to the motivational figure 1, we see household credit rose as a
share of total private non-financial credit. From the multi-asset perspective, diversification shocks are more likely
to generate these features than a general capital-requirement shock. Prior papers, such as Justiniano et al. (2015a),
adopt reduced-form credit-supply shocks that relax “lending constraints,” as a plausible explanation for why house
prices rose. But in those papers, the only positive net supply asset is housing, so they cannot explain why house
prices might have risen more than other assets.

D.3 Risk-Tolerance Shock
A popular culprit of boom-bust cycles has been excessive optimism or excessive risk tolerance, e.g., Kindleberger
(1978). Because of the nature of asset pricing, beliefs and risk tolerance always enter risk premia jointly. I thus
consider shocks to risk tolerance in this section.

Now, agents are endowed with recursive utility as in equation (46) in the appendix. See Appendix B.5 for
details on solving agents’ portfolio problems under these preferences. For simplicity, I assume all agents have
unitary elasticity of intertemporal substitution, but they differ in their risk-aversion parameters, γA, γB, γF. Risk-
tolerance shocks are shocks to these parameters individually.

Proposition D.3. Consider equilibrium with risk aversions γA, γB, and γF. Assume sectors A and B are symmetric, including
γA = γB ≡ γ. Suppose at time t the economy is at steady state and then one of the following occurs:

(i) γA decreases by a small amount. Then, κt > κt− and µ
η
t > µ

η
t−.

(ii) γF decreases by a small amount. Then, κt = κt− and µ
η
t < µ

η
t−.

(iii) γA and γF both decrease by the same small amount. Then, κt > κt− and µ
η
t < µ

η
t−, the latter if and only if γ > γFαt−.

Intuitively, a decrease in γA lowers discount rates in sector A, which generates a sectoral allocation. However,
with lower discount rates, insiders are willing to pay higher spreads to financiers, increasing their long-run wealth
share. In this sense, a γA-shock is a credit-demand shock, just like the LTV shock to φA. A decrease in γF is a credit-
supply shock, because it lowers required lending spreads. But because γF applies symmetrically to both sectors,
lending spreads decrease across the board. A sectoral reallocation is less likely, as with the capital requirement
shock to φF. Only if γA and γF both decrease, with γB left unchanged, can the model generate both reallocation
and leverage.44

D.4 Uncertainty Shock
Uncertainty shocks have been proposed as a possible driver of cycles: when uncertainty is low, banks may take
greater leverage, and the economy suffers when uncertainty reverts. A sectoral uncertainty shock would be a
reduction in σ̂A. We have the following result, which shows that lower sectoral uncertainty generates a reallocation
but may not generate financier leveraging.

Proposition D.4. Consider the equilibrium of Proposition 2.3. Suppose at time t the economy is in steady state and then σ̂A
decreases by a small amount. Then, κt > κt−. If either (i) sectors are symmetric or (ii) σ̂A > σ̂B = 0, then µ

η
t = µ

η
t−.

44If sector A is interpreted as housing, such a shock corresponds most closely to the survey evidence in Case and
Shiller (2003) and the evidence in Foote et al. (2012). Kaplan et al. (2017) and Glaeser and Nathanson (2017) have
model economies where agents become optimistic only about housing. Even though Landvoigt (2016) incorporates
securitization, a key element of his story is the underpricing of mortgage risk by lenders.

67



To understand this result, consider a hypothetical economy with no diversification (∆A = ∆B = 0) but two
values of idiosyncratic volatility that apply to insiders and financiers separately, i.e., σ̂A,A and σ̂A,F. The economy
is otherwise exactly identical. One can show the equilibrium of this economy is isomorphic to the equilibrium of
Proposition 2.3, if σ̂A,A = σ̂A and σ̂F,A = (1− ∆A)σ̂A. Therefore, a diversification shock operates by lowering σ̂F,A
and keeping σ̂A,A fixed.

An uncertainty shock has the effect of lowering both σ̂F,A and σ̂A,A proportionally. The result of this type
of shock is to scale down all agents’ idiosyncratic risk premia equally. The long-run effect of low idiosyncratic
uncertainty is ambiguous in the sense that ηt could be higher or lower, precisely because both insiders and financiers
are affected.45

D.5 Foreign-Savings Shock
A final alternative to consider is an increase in demand for safe assets, which tends to reduce interest rates and may
fuel the boom, e.g., Bernanke (2005). Because much of this safe-asset demand manifested empirically as foreign
agents buying US Treasury securities and other close substitutes, I call this a foreign-savings shock. This is also
consistent with the documented increase in foreign demand for highly-rated securitized products, which behave
like safe assets.

To model foreign savings, I introduce a wedge into the bond-market-clearing condition, which now becomes

NA,t + NB,t + NF,t + N∗t = Kt.

I assume N∗t follows some exogenous deterministic process, which is co-integrated with capital Kt. A foreign-
savings shock can be modeled as an exogenous change to N∗t . Note that foreign savings also affects the goods
market, because net interest payments to foreigners must come out of consumption. This modified economy has
three state variables, the relative wealth between financiers, insiders, and foreigners:

αt :=
NA,t

NA,t + NB,t
, ηt :=

NF,t

NF,t + NA,t + NB,t
, and η∗t :=

N∗t
Kt

.

We have the following result.

Proposition D.5. Consider equilibrium with foreign savings. Assume GA = GB. Suppose at time t the economy is at steady
state and then η∗t − η∗t− > 0. Then, κt = κt− and ηt = ηt−, but financier leverage grows by (1− η∗t−)/(1− η∗t ) > 1.

The key to Proposition D.5 is that foreign inflows raise all domestic agents’ leverage proportionally. Foreign
savings of η∗t per unit of domestic wealth result in leverage of (1− η∗t )

−1 for the domestic representative agent. In
particular, financier leveraging does occur after a foreign-savings shock.

But leverage is distributed equally across all domestic agents. As a result, all idiosyncratic risk prices are given
by the formulas in (12)-(13), with an additional scaling by (1− η∗t )

−1. Formulas (10)-(11) then show the dynamics
of (α, η) are merely scaled by (1− η∗t )

−2, explaining why ηt is unaffected by foreign savings near the steady state.
Applying this logic to formula (14) also explains why κt is unaffected by foreign savings. Intuitively, foreign savings
are not directed toward any particular sector, so reallocation does not occur.

D.6 Proofs
For all proofs below, marginal calculations are sufficient given the shocks are small enough. In addition, Lemma
2.5 allows us to ignore any effects on the levels of state variables (α, η). For statements about the effect on µη within
the equilibrium of Proposition 2.3, note that for any parameter p, we have

dµη

dp
= η(1− η)

(∂
[
π̂2

F→A + π̂2
F→B − απ̂2

A − (1− α)π̂2
B
]

∂p
+

2
1− κ

[
π̂2

F→A − απ̂2
A −

κµη

η(1− η)

]d log κ

dp

)
. (97)

45This speaks to an important difference between how I am modeling the financial sector and how it has been
modeled in the literature. Because both financiers and insiders are taking idiosyncratic risks, they both demand
idiosyncratic risk compensation that rises with higher uncertainty. By contrast, Di Tella (2017) assumes uncertainty
shocks only affect the balance sheets of financiers.
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Proof of Proposition D.1. From equation (14), compute dκ/dφA ∝ π̂A − (1− ∆A)π̂F→A. The right-hand-side is pro-
portional to GA − r− sA, since by (15) we have GA − r− sA = φAσ̂Aπ̂A − φAsA = φAσ̂A[π̂A − (1− ∆A)π̂F→A].

For µη , use equation (97) with p = φA to get

dµη

dφA
= 2η(1− η)

[ ( (1− ∆A)π̂F→A
η

+
π̂A

1− η

)
κσ̂A

︸ ︷︷ ︸
:=D1

+
1

1− κ

(
π̂2

F→A − απ̂2
A −

κµη

η(1− η)

)d log κ

dφA︸ ︷︷ ︸
:=D2

]

Note that D1 > 0. Under either of assumptions (i) or (ii), D2 ≈ 0. Indeed, given the assumption that the economy is
near enough to steady-state, we can ignore the µη term and additionally establish π̂2

F→A − απ̂2
A ≈ (1− α)π̂2

F→A −
απ̂2

F→B. Under near-symmetry (i) this term is approximately zero. Under | log(κt/κt−)| not too large (ii), d log κ/dφA
must be nearly zero. Hence, dµη/dφA > 0 under (i) or (ii).

Proof of Proposition D.2. Repeat the steps of Proposition 2.3 with λz replaced by (1− φF)λ
z, with funding market

clearing replaced by (1 − φF)
∫ i

i−∆z
∆−1

z [λz
j,tn

F
j,tdj = φzkz

i,t, and with aggregate risk market clearing replaced by
∫ 1

0 [θ
A
i,tn

A
i,t + θB

i,tn
B
i,t + θF

i,tn
F
i,t]di = (1− φF)

∫ 1
0 (λ

A
i,tσA + λB

i,tσB)nF
i,tdi.

Proof of Proposition D.3. Using the results of Appendix B.5, we can derive the equilibrium with risk aversions
γA, γB, γF and unitary EIS. The following is a sketch of the proof, following the same line of argument as Proposition
C.3. First, all agents consume ρ fraction of their wealth. Financiers’ optimal portfolios are λz = sA/γF(1−∆z)2σ̂2

z for
z ∈ {A, B}, whereas insiders’ optimal portfolios lead to conditions κ/α(1− η) ≥ [GA − φAsA − r]/γA(1− φA)

2σ̂2
A

and (1− κ)/(1− α)(1− η) ≥ [GB − φBsB − r]/γB(1− φB)
2σ̂2

B, respectively. Define the following modified idiosyn-
cratic risk prices,

π̂F→A = γF
κφA(1− ∆A)σ̂A

η
and π̂F→B = γF

(1− κ)φB(1− ∆B)σ̂B
η

π̂A = γA
κ(1− φA)σ̂A

α(1− η)
and π̂B = γB

(1− κ)(1− φB)σ̂B
(1− α)(1− η)

.

In terms of these risk prices, optimal portfolios can be written λz = π̂F→z/γF(1− ∆z)σ̂z, κ/α(1− η) = π̂A/γA(1−
φA)σ̂A, and (1− κ)/(1− α)(1− η) = π̂B/γB(1− φB)σ̂B; equilibrium expected excess returns can be written sz =
(1− ∆z)σ̂zπ̂F→z and Gz − φzsz − r = (1− φz)σ̂zπ̂z for z ∈ {A, B}. Consequently, wealth share dynamics are given
by

µα = α(1− α)
[ π̂2

A
γA
− π̂2

B
γB

]
(98)

µη = η(1− η)
[ π̂2

F→A + π̂2
F→B

γF
− α

π̂2
A

γA
− (1− α)

π̂2
B

γB

]
. (99)

Finally, the equilibrium capital share is derived by taking the difference between insiders’ FOCs in sectors A and B:

κ = min(1, max(0, κ̃)),

where κ̃ :=
GA − GB +

[
γB

(1−φB)
2

(1−α)(1−η)
+ γF

φ2
B(1−∆B)

2

η

]
σ̂2

B
[
γA

(1−φA)2

α(1−η)
+ γF

φ2
A(1−∆A)2

η

]
σ̂2

A +
[
γB

(1−φB)2

(1−α)(1−η)
+ γF

φ2
B(1−∆B)2

η

]
σ̂2

B

. (100)

Given this equilibrium, we now perform comparative statics. For any derivatives stated with respect to γ−1

rather than γ ∈ {γA, γB, γF}, simply flip the signs derived below.
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First, differentiate κ̃ with respect to each of the risk aversions, which using the fact that κ is assumed interior,
leads to the following (all with the same constant of proportionality):

dκ

dγA
∝ −(1− φA)σ̂Aγ−1

A π̂A < 0

dκ

dγB
∝ (1− φB)σ̂Bγ−1

B π̂B > 0

dκ

dγF
∝ φB(1− ∆B)σ̂Bγ−1

F π̂F→B − φA(1− ∆A)σ̂Aγ−1
F π̂F→A.

Under the assumption that sectors are symmetric, the last expression is exactly zero.
The modification of (97) for this environment is (where γ ∈ {γF, γA, γB} is one of the risk aversions in question):

dµη

dγ
= η(1− η)

(∂
[ π̂2

F→A+π̂2
F→B

γF
− α

π̂2
A

γA
− (1− α)

π̂2
B

γB

]

∂γ
+ D

d log κ

dγ

)
,

where D :=
2

1− κ

[ π̂2
F→A
γF

− α
π̂2

A
γA
− κµη

η(1− η)

]
.

The results are

dµη

dγA
= η(1− η)

(
− α(

π̂A
γA

)2 + D
d log κ

dγA

)

dµη

dγB
= η(1− η)

(
− (1− α)(

π̂B
γB

)2 + D
d log κ

dγB

)

dµη

dγF
= η(1− η)

(
(

π̂F→A
γF

)2 + (
π̂F→B

γF
)2 + D

d log κ

dγF

)
.

Under the assumption that the economy begins in steady state, µη = 0 so that D = 2
1−κ γ−1

F
[
(1− α)π̂2

F→A− απ̂2
F→B

]
.

Under the assumption that sectors are symmetric π̂F→A = π̂F→B so that D = 0. This proves dµη/dγA < 0,
dµη/dγB < 0, and dµη/dγF > 0.

For part (iii), sum the results across insiders and financiers, using the symmetry condition to obtain dκ/dγA +
dκ/dγF < 0 and as long as γA > αγF = γF/2, we have dµη/dγA + dµη/dγF > 0. This completes the proof.

Proof of Proposition D.4. First, from equation (14), compute dκ/dσ̂A ∝ −2φA(1− ∆A)π̂F→A < 0.
For µη , use equation (97) with p = σ̂A to get

dµη

dσ̂A
= 2η(1− η)

[(
π̂2

F→A − απ̂2
A

)
σ̂−1

A +
1

1− κ

(
π̂2

F→A − απ̂2
A −

κµη

η(1− η)

)d log κ

dσ̂A

]

Given the assumption that the economy is initially at steady-state, µη = 0. Hence, dµη/dσ̂A ∝ π̂2
F→A − απ̂2

A. Under
either of assumptions (i) or (ii), this quantity is zero. Indeed, given the assumption that the economy is at steady-
state, π̂2

F→A − απ̂2
A = (1− α)π̂2

F→A − απ̂2
F→B. Under symmetry (i) this term is exactly zero. Under σ̂B = 0 (ii), we

have µη = η(1− η)[π̂2
F→A − απ̂2

A] = 0.

Proof of Proposition D.5. Given the assumption that N∗t is co-integrated with capital Kt, the economy begins with
a steady-state value η∗ = N∗t /Kt. Repeating the same steps as in the proof of Proposition C.3, we find that all
idiosyncratic risk prices simply require an additional 1 − η∗ in the denominator Thus, risk prices (12)-(13) are
replaced by

π̂F→A =
κφA(1− ∆A)σ̂A

(1− η∗)η
and π̂F→B =

(1− κ)φB(1− ∆B)σ̂B
(1− η∗)η

π̂A =
κ(1− φA)σ̂A

(1− η∗)α(1− η)
and π̂B =

(1− κ)(1− φB)σ̂B
(1− η∗)(1− α)(1− η)

.
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With this replacement, the expressions (10)-(11) for µα and µη continue to hold. Both of these drifts therefore scale
with (1− η∗)−2. As a result, when the economy is in steady state, there is identically zero sensitivity of µη to η∗.
Furthermore, the equilibrium capital share is now given by

κ = min(1, max(0, κ̃)),

where κ̃ :=
(GA − GB)(1− η∗) +

[ (1−φB)
2

(1−α)(1−η)
+

φ2
B(1−∆B)

2

η

]
σ̂2

B
[ (1−φA)2

α(1−η)
+

φ2
A(1−∆A)2

η

]
σ̂2

A +
[ (1−φB)2

(1−α)(1−η)
+

φ2
B(1−∆B)2

η

]
σ̂2

B

,

which has zero sensitivity to η∗ when GA = GB. Finally, financier leverage is computed as λA + λB = κφA+(1−κ)φB
η(1−η∗) .

Combined with the previous results, this shows that λA
t +λB

t
λA

t−+λB
t−

=
1−η∗t−
1−η∗t

.

71



E Extensions and Auxiliary Results

E.1 Differentiated Goods
For analytical tractability, I have assumed that the consumption goods of sectors A and B are perfect substitutes. In
this appendix, I allow the goods to be differentiated as a robustness exercise. In particular, I replace agents’ utility
functions (1) with

Ut := Et

[ ∫ ∞

t
ρe−ρ(s−t) log(cs)ds

]
,

where c := a1−βbβ is a Cobb-Douglas aggregate of the sector A good a and the sector B good b. Cobb-Douglas
implies the two consumption goods have expenditure shares of 1− β, β. I assume the composite good c is the
numeraire. Let the relative prices of a and b be pA and pB. All other features of the model are unchanged.

With this modification, the equilibrium of Section 2 is modified as follows. First, the resource constraint from
Definition 1 must replaced by three goods market clearing conditions:

∫ 1

0
GAkA

i,tdi =
∫ 1

0
[aA

i,t + aB
i,t + aF

i,t]di
∫ 1

0
GBkB

i,tdi =
∫ 1

0
[bA

i,t + bB
i,t + bF

i,t]di
∫ 1

0
(GAkA

i,t)
1−β(GBkB

i,t)
βdi =

∫ 1

0
[cA

i,t + cB
i,t + cF

i,t]di +
∫ 1

0
[ιA

i,tk
A
i,t + ιB

i,tk
B
i,t]di.

The third condition aggregates output into the numeraire basket and splits this output into consumption and
investment, which I assume is denominated in units of the numeraire.

Second, the equilibrium capital share κ and total capital growth ι are now determined via

ρ
[1− β

κ
− β

1− κ

]
− (κ‖σA‖2 − (1− κ)‖σB‖2) (101)

=
[
(1− φA)π̂A + φA(1− ∆A)π̂F→A

]
σ̂A −

[
(1− φB)π̂B + φB(1− ∆B)π̂F→B

]
σ̂B

and

ι = (GAκ)1−β(GB(1− κ))β − ρ, (102)

where π̂A, π̂B, π̂F→A, π̂F→B are given in (12)-(13). Equation (101) is a nonlinear equation, but it has a unique
solution. Indeed, as κ → 0 or κ → 1, the left-hand-side converges to +∞ and −∞, respectively, whereas the right-
hand-side stays bounded. Furthermore, the left-hand-side is strictly decreasing in κ, while the right-hand-side is
strictly increasing in κ. Notice that, all else equal, ∆A affects the equilibrium by reducing the right-hand-side of
equation (101). Consequently, κ is increasing in ∆A as before – the reallocation effect. The leverage effect survives
because the formula for µη is unchanged.

Third, the goods prices are equilibrium objects. The price ratio is given by

pA,t

pB,t
=

1− β

β

GB
GA

1− κt

κt
. (103)

This “exchange rate” allows an international economics interpretation. One could interpret sector A as domestic
producers and sector B as foreign producers, with funds intermediated by a single global financial sector. The
presence of κt in pA,t/pB,t implies exchange rates are determined by global capital flows, unlike a frictionless
complete-markets economy. As κt is influenced by financial variables like ∆A, ∆B and intermediary wealth ηt,
global financial shocks affect exchange-rate dynamics, similar to the intermediary-centric theoretical analysis of
Gabaix and Maggiori (2015). A diversification boom in one country can thus have spillovers to the global economy,
through leverage increases in the global financial system.
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E.2 Busts as Flight-to-Safety Episodes
Here, we consider an alternative model which also generates busts due to financiers’ leverage constraint. Consider
the economy from Section 3 without distressed investors (i.e., set χ = +∞) and without the overlapping generations
structure (i.e., set δ = 0). Introduce a new production technology as follows.

With k ≥ 0 units of capital, this technology produces rk, with r < min(GA, GB). Despite being less productive,
this technology is safer, in the sense that capital is riskless while being used as an input in this technology. There
is a rental market for this capital, which must have rental rate r, because of the linear production technology and
absence of capital-quality shocks.

In this economy, the goods and bond market clearing conditions are modified to read

∫ 1

0
[GAkA

i,t + GBkB
i,t + r Kt]di =

∫ 1

0
[cA

i,t + cB
i,t + cF

i,t]di +
1
dt

∫ 1

0
[dIA

i,t + dIB
i,t + dIi,t]di

∫ 1

0
[nA

i,t + nB
i,t + nF

i,t]di =
∫ 1

0
[kA

i,t + kB
i,t + Kt]di,

where Kt and dIt are the capital stock and investment flow into the riskless sector. As before, I will study a symmet-
ric equilibrium, with state variables Kt :=

∫ 1
0 [k

A
i,t + kB

i,t + Kt]di, ηt := (
∫ 1

0 nF
i,tdi)/Kt, and αt := (

∫ 1
0 nA

i,tdi)/(
∫ 1

0 [n
A
i,t +

nB
i,t]di).

Using the definition of the aggregate investment rate ιt and optimality conditions for consumption, we may
re-write the goods market clearing condition, after scaling by Kt, as

ω[κGA + (1− κ)GB] + (1−ω)r = (1− η)ρ + ηρF + ι. (104)

In (104), ω is the capital share in the risky technologies A and B, whereas κ is the share, among the risky capital, in
sector A. It is clear that, holding fixed η and κ, a decline in ω must reduce economic growth ι.

Finally, I allow any agent to access this technology, which implies rt ≥ r by absence of arbitrage. This implies
the complementary-slackness condition

rt ≥ r, ωt ≤ 1, and (1−ωt)(rt − r) = 0. (105)

Because safe capital allocation implies lower production and growth, I will refer to times with ωt < 1 as periods of
misallocation.

By repeating the arguments of Propositions C.3 and C.4, we may characterize the equilibrium. First, we find
that equation (19) for ζ still holds. However, we must modify equation (69) for κ to account for the fact that risk
prices are now scaled by the risky capital share ω. Indeed, insiders’ and financiers’ idiosyncratic risk prices are now
given by

ωπ̂F→A, ωπ̂F→B, ωπ̂A, and ωπ̂B,

where π̂F→A, π̂F→B, π̂A, π̂B are defined in (12) and (13). Similarly, aggregate risk prices are now given by

ωπ, ωπA, and ωπB,

where π, πA, πB are defined in the statement of Proposition C.3. Equilibrium spreads are now given by

sA −ωσA · π = ζ + ω(1− ∆A)σ̂Aπ̂F→A

sB −ωσB · π = ζ + ω(1− ∆B)σ̂Bπ̂F→B.

Using those definitions, we have the following equation for κ:

0 = min
{

1− κ, H+
}
−min

{
κ, (−H)+

}
(106)

H := GA − GB − φAsA + φBsB −ω(1− φA)[σA · πA + σ̂Aπ̂A] + ω(1− φB)[σB · πB + σ̂Bπ̂B].

The equilibrium can be characterized by taking κ as given and solving for (ω, ζ, r). The result is in the following
lemma.
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Lemma E.1. Equilibrium in the model with a positive-net-supply safe technology requires

ω = min(1, ω̄, ω∗(0)) (107)
ζ = 1{ω̄≤1}max(0, ζ∗) (108)

r = 1{ω<1}r + 1{ω=1}r
∗(ζ), (109)

where

ω̄ := (κφA + (1− κ)φB)
−1ηλ̄ (110)

ω∗(ζ) :=
κGA + (1− κ)GB − r− ζ(κφA + (1− κ)φB)

η(‖π‖2 + π̂2
F→A + π̂2

F→B) + (1− η)[α(‖πA‖2 + π̂2
A) + (1− α)(‖πB‖2 + π̂2

B)]
(111)

ζ∗ :=
1

κφA + (1− κ)φB

[
κGA + (1− κ)GB − r− ω̄η(‖π‖2 + π̂2

F→A + π̂2
F→B) (112)

− ω̄(1− η)(α(‖πA‖2 + π̂2
A) + (1− α)(‖πB‖2 + π̂2

B))
]

r∗(ζ) := κGA + (1− κ)GB − ζ(κφA + (1− κ)φB) (113)

− η(‖π‖2 + π̂2
F→A + π̂2

F→B)− (1− η)[α(‖πA‖2 + π̂2
A) + (1− α)(‖πB‖2 + π̂2

B)].

Proof. When the leverage constraint in (19) binds, we may substitute financiers’ optimal portfolios, along with
equilibrium spreads, to get ω = ω̄ from (110). At the same time, we may sum insiders’ pricing conditions, the
generalizations of (67) and (68) which account for ω, each weighted by κ and 1− κ respectively, to construct an
equation F(ω, ζ, r) = 0 that holds in equilibrium. When ω = 1, we have F(1, ζ, r) = 0. This defines r∗(ζ) in (113).
When ω < 1, we have r = r by complementary-slackness condition (105), and so F(ω, ζ, r) = 0. This defines ω∗(ζ)
in (111). Note that, by their definitions, ω∗(ζ) ≤ 1 if and only if r∗(ζ) ≤ r. Finally, define ζ∗ by (112), which is the
solution to ω̄ = ω∗(ζ).

Armed with these arguments, consider the following mutually-exclusive, completely-exhaustive cases:

• Suppose ω̄ > 1. Then, η−1(κφA + (1− κ)φB) < λ̄, so (19) implies ζ = 0. Thus, equation (108) holds in this
case. Consider the following sub-cases.

– Suppose ω∗(0) ≥ 1. This implies ω = 1 in which case r = r∗(0). Thus, (107) and (109) hold.

– Suppose ω∗(0) < 1. This implies ω = ω∗(0) in which case r = r. Thus, (107) and (109) hold.

• Suppose ω̄ ≤ 1. Consider the following sub-cases.

– Suppose ω∗(0) ≥ ω̄. Then, ζ∗ ≥ 0. Hence, we may set ω = ω̄, ζ = ζ∗, and r = r to satisfy (107),
(108), and (109). To see that this is the unique option, notice that either ω = ω∗(0) or ω = 1 imply
ωη−1(κφA + (1− κ)φB) ≥ λ̄, which is a violation of (19) except in the trivial case ω = ω̄.

– Suppose ω̄ > ω∗(0). Then, ζ∗ < 0. Hence, we are required to set ω = ω∗(0), ζ = 0, and r = r in order
to satisfy (107), (108), and (109).

This completes the proof, since (107), (108), and (109) hold in all cases.

To solve for equilibrium κ, we solve equation (106), using the results of Lemma E.1. This is a nonlinear equation,
which must in general be solved numerically. In the case where sectors A and B are exactly symmetrical (i.e.,
GA = GB, φA = φB, σ̂A = σ̂B, ‖σA‖ = ‖σB‖, and ∆A = ∆B), the equilibrium simplifies as the solution must be
κ = 1/2 from (106). In this simple case, we can clearly illustrate the flight-to-safety episode induced by the presence
of the leverage constraint.

Indeed, we have
ω̄ < 1⇔ η < η∗1 := φ/λ̄

and

ω̄ < ω∗(0)⇔ η < η∗2 :=
(G− r)φ/λ̄− 1

2 φ2(‖σ‖2 + (1− ∆)2σ̂2)

(G− r)φ/λ̄− 1
2 φ2(‖σ‖2 + (1− ∆)2σ̂2) + (1− φ)2(‖σ‖2 + σ̂2)

.
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Thus, ω = ω̄ < 1 if and only if46

η < η∗1 ∧ η∗2 .

Thus, the “leverage effect” we have described in the main text can lead to real effects through misallocation. If
diversification ∆ increases enough, such that ηt drifts downwards, eventually financiers’ leverage constraints will
bind. Binding constraints imply misallocation in the sense that ω̄ < 1. This is the notion of “endogenous bust”
discussed in the main text. Furthermore, a subsequent negative aggregate shock lowers ηt even more, which
reduces ωt one-for-one, evidently from equation (110). This is the leverage-induced “instability” discussed in the
main text. In summary, analogously to the main text, a model with the possibility of flight-to-safety can generate
diversification-induced cycles which are both endogenous and unstable.

46Note that if

(φ/λ̄)(1− φ/λ̄)(G− r) > (φ/λ̄)(1− φ)2(‖σ‖2 + σ̂2) + (1− φ/λ̄)
φ2

2
(‖σ‖2 + (1− ∆)2σ̂2),

then η∗1 < η∗2 , so that a binding leverage constraint and and misallocation are equivalent, i.e., they occur at exactly
the same times. This result is analogous to part (ii) of Proposition 3.1.
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F Empirical Analysis

F.1 Qualitative Support: Why the Model Applies to the US Housing Cycle
In addition to the reallocation and leverage patterns documented in figure 1, here I provide some more qualitative
support for the mechanism of the model. First, the model requires that the increase in securitization actually
improves diversification of mortgage loans. This is not necessarily true a priori: one possibility is that securitization
of mortgage loans increases simply because the volume of mortgage lending increases. Figure 15 rejects this by
showing that RMBS increase dramatically as a share of total household credit in the US. Moreover, non-agency MBS
rise as a share of all MBS. Private label securitizations may be particularly important for diversification, because
prior to the securitization boom, the types of loans in these pools were those most likely to be held on banks’
balance sheets until maturity.

0
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Year

RMBS / Household Credit Non−Agency MBS Share

Figure 15: Securitization of household credit.
“RMBS / Household Credit” sums both
agency and non-agency RMBS and divides
by the total household credit outstand-
ing. “Non-Agency MBS Share” divides
non-agency MBS by total MBS outstanding.
Source: SIFMA and Flow of Funds.

Second, it is crucial for my results that diversification in the housing market increases more than diversification
in the corporate credit market. This turns out to be true, if we measure diversification by securities, which are
likely to be broadly held. Figure 16 shows that mortgage securities outstanding were equal to corporate securities
outstanding in 1990, but nearly double by 2007.
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Figure 16: Mortgage versus Corporate Secu-
rities. “Mortgage Securities” are traded secu-
rities where the underlying assets are mort-
gages. “Corporate Securities” sums corpo-
rate bonds and any securitized bank loans.
Source: SIFMA.

Third, my model assumes that the financial sector will adapt to an environment with better mortgage diver-
sification by taking more housing-related risks onto their balance sheets. Figure 17 shows that commercial banks
do indeed hold more housing-related assets on their balance sheets through the housing boom. Notice this series
qualitatively mimics the household credit share from figure 1.

Similarly, figure 18 shows that price-to-cash-flow ratios in capital and housing markets do not move in lockstep,
suggestive of some sectoral asymmetry in this boom period.

Finally, a key reason financial sector capitalization deteriorates in my model is through declining financier prof-
itability. As diversification improves in the model, financiers are willing to accept lower risk premia on mortgages.
Figure 19 shows that commercial banks’ profitability declined marginally between the boom years 2000-2007.
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Figure 17: Commercial bank risk-taking in
housing markets. “RE Loans / Assets” refers
to real estate loans held on bank balance
sheets, relative by assets. “MBS / Assets”
are mortgage-backed securities held, relative
to assets. Source: Call Reports.
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Figure 18: The price-dividend ratio on the
S&P 500 and a measure of house prices
relative to the rental rate on housing ser-
vices. The house price-rent ratio is obtained
from http://datatoolkits.lincolninst.
edu/subcenters/land-values. The plotted
ratio is scaled by 3.
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Figure 19: Commercial bank profitability.
“Operating Inc / Assets” is operating in-
come, relative to assets. “Interest Inc / As-
sets” is income from interest payments, rela-
tive to assets. Source: Call Reports.

F.2 Quantifying Mortgage Diversification
In this appendix, I describe more specifically the methodology to compute the diversification index of Section 4.1.
Start by defining an aggregate mortgage return during month k of year t:

Rt+ k−1
12 →t+ k

12
:= ∑

`

ω`,tR`,t+ k−1
12 →t+ k

12

where ω`,t := s`,t+m`,t
∑`′ s`′ ,t+m`′ ,t

are origination weights:

m`,t := portfolio mortgages originated to location ` in year t
s`,t := securitized mortgages originated to location ` in year t.

The location-specific mortgage return R`,t+ k−1
12 →t+ k

12
is proxied by the housing return in location ` and month k

of year t, taken from CoreLogic. This is the return building block for all other returns. The aggregate return
Rt+ k−1

12 →t+ k
12

allows me to extract the idiosyncratic components of all other returns.
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In an analogous fashion, define the mortgage return for intermediary i:

R(i)
t+ k−1

12 →t+ k
12

:= ∑
`

ω
(i)
m,`,tR`,t+ k−1

12 →t+ k
12
+ ω

(i)
s,`,tRt+ k−1

12 →t+ k
12

where

ω
(i)
m,`,t :=

m(i)
`,t

∑`′ s
(i)
`′ ,t + m(i)

`′ ,t

and ω
(i)
s,`,t :=

s(i)`,t

∑`′ s
(i)
`′ ,t + m(i)

`′ ,t

m(i)
`,t := portfolio mortgages originated by lender i to location ` in year t

s(i)`,t := sold mortgages originated by lender i to location ` in year t.

Note that any mortgages originated by intermediary i which are then sold off within the same year are captured by
s(i)`,t . I make the assumption that these sales return the aggregate return, which is subject to no idiosyncratic risk.

Loans not sold are captured by m(i)
`,t . I apply the location-specific return to these loans.

Next, I define “idiosyncratic returns” by subtracting the aggregate return:

R`,t+ k−1
12 →t+ k

12
:= R`,t+ k−1

12 →t+ k
12
− Rt+ k−1

12 →t+ k
12

R(i)
t+ k−1

12 →t+ k
12

:= R(i)
t+ k−1

12 →t+ k
12
− Rt+ k−1

12 →t+ k
12

The (monthly) idiosyncratic variances in year t are then given by

V2
`,t :=

1
12

12

∑
k=1

(
R`,t+ k−1

12 →t+ k
12

)2
−
( 1

12

12

∑
k=1
R`,t+ k−1

12 →t+ k
12

)2

V2
i,t :=

1
12

12

∑
k=1

(
R(i)

t+ k−1
12 →t+ k

12

)2
−
( 1

12

12

∑
k=1
R(i)

t+ k−1
12 →t+ k

12

)2

In this computation, I am using the fact that the returns are computed monthly, while the originations and securiti-
zations data are only available at a yearly frequency.

I average over locations and intermediaries to get the volatilities that I want:

σ̂t := ∑
`

ω`,tV`,t

σ̂∆,t := ∑
i

ωi,tVi,t

where

ωi,t := ∑
`

m(i)
`,t + s(i)`,t

∑`′ ,j m(j)
`′ ,t + s(j)

`′ ,t

.

Note that we necessarily have σ̂∆,t ≤ σ̂t, because correlations between the loans in lender’s portfolios are less than
1, while loan-level volatilities are proxied by location-specific volatilities.

Finally, in the symmetric equilibrium, the following equation relates financiers’ housing risk σ̂∆ to the funda-
mental housing risk σ̂ and the level of diversification ∆:

(1− ∆)σ̂ = σ̂∆ = idio volatility of unlevered mortgage portfolio.

Thus, by inverting this relation, I define

∆t := 1− σ̂∆,t/σ̂t.

Units of ∆t are the fraction of fundamental housing risk that are eliminated from lender’s portfolios, either through
loan sales and securitizations, or through geographic diversification.
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