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RECAP OF LARS’ LECTURE

1. Continuous-time recursive utility (Duffie-Epstein-Zin)
2. Model with production and adjustment costs
3. “Shock Elasticities” as model diagnostics

4. Illustration of how RRA and IES affect shock-exposure and
shock-price elasticities, with and without production



ToDAY'S PLAN

1. Add heterogeneity and frictions to the frictionless continuous-time
model

- Heterogeneity in productivity, preferences, frictions
+ Theoretical solution method

2. Numerical solution method

- PDEs solved using finite-differences
« Computational considerations
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NOTATION DIFFERENCES FROM MARKUS

Variable Markus Us

Expert capital share

Risk price (SDF) loading on shocks
Capital price

Investment opportunities
Discount rate

Value function

SDF

Consumption-wealth ratio
Brownian motions
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Recursive utility with small time-step e,

1

Ue = (1= exp(=30))(C)"* + exp(~de)Re( ey )] ™7

where

1

Re(Ue) = E[U7 | 7]

* § — rate of time preference
* 1/p - intertemporal elasticity of substitution (IES)
« ~ - relative risk aversion (RRA)

Experts and households can have different preferences:

0e VS On  pe VS ph e VS Yh



TECHNOLOGY

Agent j € [0,1] within agent group g € {e, h} (experts versus households)
holds capital kY.

Production with differential productivity:

agKg’)t de > ap
Capital evolution:

dk¥ ) ) = .
ot — 1% /KDY + 7, — oy |dt + /Viog - dB; + \/ Vi5,dBY

K gt/ gty Tt % N i t

gt exogenous . A
endogenous aggregate idiosyncratic

growth et shocks shocks

note: 3 KV,dBYdj = o



EXOGENOUS STATES

2t — [ 0D /KD + 20— oy | dt + v/Vea - dBy+ 1/ Vi6pdBY

g —_— ————
’ endogenous ~ ©€Xogenous aggregate idiosyncratic
growth et shocks shocks

where

(exogenous growth) dz; = —)\,Z;dt + \/Vio, - dB;

(aggregate variance) dVy = —\,(V; — 1)dt + \/Vio, - dB;

(idiosyncratic variance) =



FINANCIAL MARKETS AND CONSTRAINTS

« Frictionless capital market, with single price Q;

* Frictionless short-term risk-free debt market, with return r;
SDF drifts: FE[dS0,/SO)] = LE[dSY,/SP] = —rt

« Expert equity market (when is this a restriction?), delivering market
risk-price
Skin-in-the-game constraint: Experts can issue equity, subject to
retaining a fraction xﬁ") > x € [0, 1] of their capital risk

 Arrow-Debreu markets on the aggregate shocks dB;, delivering market
risk prices m¢
Restriction: Only households can trade in this market, so

LCovi[ds?), /P dB] := ¥, = m but LCovi[dSY),/SY), dBi] := 70} #



BALANCE SHEETS AND FLOWS OF FUN

“Experts” “Households”

Assets Liabilities Assets

Net ||External -
Worth || Equity % Equities

Liabilities

Net
Worth

Derivatives
)



NET WORTH EVOLUTION

dBY,

NGy )
N(Jg)’ I(Mngt—c’/N )dt+angt dBt+cr,,gt
gt

where drifts and diffusions are
]+ 89w+ 800

) ()
gt ="t +  Bgilurgr—ri
—————
i market compensation/payments

expected excess ret-on-capital

:ﬂgtaRt+egt

= 6()0—R +eé)p

)
g,t

o
Onyg
Al
ngt

Q‘ 91 > 0, and trading constraints are given by

gt
ef,j)t eR? and 90) € {9 eR? 9= - 1)5&10;“; V> X}
1)8%5r X0 > X}

=0 and @ ecfoer ;0= -



HOMOGENEITY PROPERTY

Assumptions so far:

« Utility recursion is homogeneous of degree 1in (C;, Uri()

- Budget set is homogeneous of degree 1in N; (i.e., net worth
evolutions are linear and trading constraints are homogeneous)

Common result:

« Utility separability:

logUgy = logNJ} + &g

—— H,_/ . ~—
continuation net worth investment
utility opportunities

/N(’) C’)/Ng " é)t are

« All appropriately-scaled choices Igt/K(’) e

g, 'g,t
independent of j



INHOMOGENEOUS EXAMPLES FROM CANONICAL MACRO MODELS

Example 1.

)
dNgi _ (w0
j g,

N(j) /Ln,g,t - Cg)t/N(l)
t

1/Ng¢ + th(])t/Ng?t> dt + O'S’)g’t - dBg,
g,

where idiosyncratic labor productivity follows a (stationary) diffusion

dng,)t = Hy,g(yg(;j,)t)dt + Uy’g(yg,)t) - dBt + 5’y,g(Y_§,’,)t)dB§’)
—_———

non-tradable piece

e.g., Aiyagari-Bewley-Huggett models, recently analyzed in continuous
time by Achdou-Han-Lasry-Lions-Moll

Example 2.

Think about what happens if Kg,)t is not tradable and production exhibits

decreasing returns-to-scale.



MARKET CLEARING
- Goods market:
1 . 1. L 1 0)
ae/ Ké{)td1+ah/ K,(,’y)td]:/ Cg’)tdﬁ—/ Cdj
(o] o [e] [e]
1 . 1 .,
+ / 0,dj + / 19.dj
JO JO

1 1.
k= [ KO+ [ Kidj
(0] (0]

- Aggregate risk markets:

+ Capital market:

1 : . 1 . .
o= [ om0+ [ 0N,
[e] o]

(recall: zero-net supply of equity and Arrow-Debreu securities)



MARKET CLEARING

Using the homogeneity properties, we can aggregate to representative
expert and household.

+ Goods market:
aeKeA,t + ahKh,t = Ce,t + Ch,t + Ie,t + ’h,t

+ Capital market:
Kt = Ke,t + Kn t

- Aggregate risk markets:
0 = O tNet + 0On tNp t

(recall: zero-net supply of equity and Arrow-Debreu securities)



H)B EQUATIONS OF REPRESENTATIVE AGENTS

Last time, Lars showed that with recursive utility (limit as e — 0):

Ci/U)' 7 —1 Y
o:sup{5L+ Mu,t_*|‘7u7t|2 }
1—p 2
N —_—
flow payoff (1=7) " EedU; ] /U

where
du; = Ut[/tu7tdt +out- dBt]

Digression: sometimes people will instead write an equivalent “integral
representation” for U; := U, e,

A > ~ ~ 1= ALY &
Us = Et[/ f(Cs,Us)ds|, where f(c,0):= 5ﬁ[c‘*pu1—v —a].
\ _



H)B EQUATIONS OF REPRESENTATIVE AGENTS

Using log Ug + = log Ng ¢ + &g.t, and defining dynamics
dgg,t = ,Ufg.g,tdt +oe gt dBt,

we have

[eXP(_fg,t)Cg,t/Ng,t]1_pg —1

0= Sup {59 - Cg7t/Ng7t

Y, Yg -
+ Hngt — §g|<7n,g,t|2 - ;gaﬁ,g,t — (g = 1)0ngt- ocgt

Yg — 1
+ pegt — 5 |U£,g.,t\2}



H)B EQUATIONS OF REPRESENTATIVE AGENTS

1. Consumption-savings

. [exp(— Cgt/Ngt]'Ps —1
0 = SUP {Og [ xp( ggﬁt) g't/ g’t] — Cg,t/Ng“t
T=pg ' '
7 Yg ~
+ Hngt — ?g|0n,g,t|2 - ?garzv,g,t - (Wg - 1)Un,g,t " O¢gt
Yg — 1
+Hegt — 92 |0£’9,t\2}
SO
C.¢ 1= Cgt/Ng.t = 05" exp[(1— 1/pg)Eg.]
* (pg >1) ¢y increasingin &g
* (pg <1) ¢y decreasingin g



H)B EQUATIONS OF REPRESENTATIVE AGENTS

2. Portfolio-choice

) [exp(—&g,t)Cq,t/Ng,t]' "0 — 1

0= sup{ g T — Cg,t/Ng.t
+ tngt — %|‘7n,g,t|2 - %&ﬁ,g,t - ('YQ - 1)0”79»t "0ggt
+ g gt — Wg,; 1 l%gm\z}
SO
2 g2

— —Gngt— (g —Nongt- Ué,g,t}

~
(Bg,t,0g,t) € arg max { Hngt — ?g\"n,g,t 5

mean-variance i e e



H)B EQUATIONS OF REPRESENTATIVE AGENTS

2a. Expert portfolio-choice

(Be, 0e) € arg max {Mn,e — %|0n,e|2 - %&ﬁ,e — (e — 1)0n,e : 05,9}

Define expert bonus risk premium:

De = X" "[tre — r — or - Th).

Optimality conditions:
[963567X] : 0= min(x—x, Ae)
and

[Bel :  Ae+ 0r-Th =Yelor - One + FrRFne] + (Ve — 1)0r - Oce



H)B EQUATIONS OF REPRESENTATIVE AGENTS

2b. Household portfolio-choice

h h ~
(8 6n) € argmax {juns — Dlonal* = 2520 — (= Donn- oen |

Define household bonus risk premium:

Ah = /J,Ryh—r—ORWTh.

Optimality conditions:

[Bn]: O =min(Bn, WG&5Bn — D)

and
0h] ©  7h = Yhonn + (vh — V)oen



H)B EQUATIONS OF REPRESENTATIVE AGENTS

[eXP(_fg,t)Cg,t/Ng,t]1_pg —1

0= Sup {59 - Cg7t/Ng7t

0 Yg ~
+ Hn,gt — ?g|(7ﬂ,g,t|2 - ?ggrzw,g,t — (79 —1)ongt oegt

+ }
so we can iterate backward (like value-function-iteration) as follows:

(a) Given &g+ = &(X¢) as a function of “state variables” X;, use It6’s formula
to get pe gt = px(Xe) g (Xt) + ;tr[ax(xt)ax(xt)/axx,gg(xt)] and
¢,g,t = ox(Xt)Ouq(Xt);

(b) Plug into the HJB equation above to obtain a PDE for &,.



MARKOV EQUILIBRIUM: STATE VARIABLES X;

Exogenous states:
Xi = (Zt, Vi, Vt)/

Endogenous state:

Ne,t

W = ———m—
' Ne,t + Nh,t
Stack:

Xt = (Wt,)A(é),
dXt = ux(Xt)dt + O'X(Xt)dBt

where iy (x) := <Z1V((;))> ox(x) = <Z:v((,}x))/>

dim 4x1 dim 4xd

Next step: derive py, oy



OLG FOR STATIONARITY OF W,

+ Idiosyncratic Poisson birth/death at rate \y
« Fraction of newborns (population shares): v experts; 1— » households
* No bequest motive

« Preferences only altered by the discount rate, i.e., § — § + \q [see
Appendix D of Garleanu-Panageas (2015)]

+ Given absence of labor income, assume no “insurance company”
offering life insurance [unlike Blanchard (1985) and

Garleanu-Panageas (2015)]

+ Dying agents’ wealth redistributed equally to newborns



WEALTH SHARE DYNAMICS

Aggregate net worth dynamics:

dN 1—v)\
ht _ {rt_czt‘f'o'nht'7Tht+3h.tAh.t_)\d+g}dt+anht'd8t
Nh,t , >N, ) ) ) 1— W, N,
dN . v
el — {rt —Cot+ Onet - Tht + XtBetDet — Ad + J} dt + oney - dBy,
Ne ¢ ’ Wt

where k := K,/K and

1— XK
g = OR
T w

XKk
One = ——OR

Use It6’s formula on W; := Net/(Net + Np ¢) to get

pw = W(1 — W) |Cp — Co + XPBele — ﬂhAh} + ow - (mh — or) + Ag(v — W)

ow = (xk — W)og.



CAPITAL PRICE AND “AMPLIFICATION”

In Markov equilibrium, Q; = q(X;), which solves the goods market clearing
condition (given knowledge of «):

ql(1 — w)cj, + weg] +(q) = (1 — R)an + Kae.

g can decrease for 3 reasons:

1. Kl [e.g., Brunnermeier-Sannikov 2014]
2. ¢, i [e.g., Bansal-Yaron 2004]
3. wlandc >c [e.g., Garleanu-Panageas 2015]

Plugging in o4 = 0;0x log g and using the previous result for oy,:

VVor + 040 log q

=V = .
or = VVoy + 7a 1—(xxk — W)y logq

x still endogenous...



SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

Recall FOCs for x and y:

0 = min(x — x, Qe)
0 = min(Bh, YnGrBr — An)



SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

Substitute 8, = (1—x)/(1 — w):

0 = min(x — x, Qe)

K
— Ap)

0 = min(1 — K, Y52
( > Yh R1—W




SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

0 = min(x — x, Ae)
—K
1—w

— Ap)

: ~2
0 = min(1 — K, Yh0r

Recall

Ap = pgp —r —or- T
= fire — I — 0r - Th — (1tR,e — I'R,P)
= XAe - q71(ae - ah)



SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

0 = min(x — x;, Qe)

— Ap)

. o 1=
0 = min(1— &, whaﬁ‘l

In addition, we have equations for (A, ) from the other portfolio FOCs:

Ap = xDe — g '(3e — ap)
DNe = —0r - Th + Ve[oR - Tne + GrOne) + (Ve — 1)0R - O¢e

Th = Yhonh + (Yh — 1)0¢.n



SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

0 = min(x — x, Qe)

g o 1— K
0 = min(1— k, 7;,0%1 =

Plug 7, into A and plug A, into Ap:

Ap =—q "(ae — ap)



SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

0 = min(x — x; Qe)

— Ap)

. wa 1—
0 = min(1 — &, whaﬁ‘l

If x > x, then Ay < Ae = 0, implying x = 1. Thus, we may substitute

* x = x into the expression for A,
*+ k = 1into the expression for A,

These equations become decoupled.



SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

0 =min(x —x, As)

— KR X=X
— A

)

. = 1
0 = min(1— k, 'yhor§1

Ay X = —q”(ae — ap)

XK 1— XK L X
i { = [ = }+ e
xilog Ye s T T, 'YeURW

+op [(ve ~1)oge — (=10 }}

= = ( T—X ~2 X
AP U K 12|: X_ :|_|_ 2
e log ™| ’YeW ’Yh_l 'YeO'RW

+op - [(’Ye = 1)0’5’;1 — (- 1)0?7? }



SOLVING FOR KEY EQUILIBRIUM SHARES (', r)

0 =min(x — x, As)

. 21— R X=X
0 = min(1— k&, 'yhoﬁ1_w — Ay )

Finally, recall:

ql(n —w)c; + wey] +i*(q) = (1 — k)ap + Kae
VVor + 040x log q

1—(xk — W)y logq

O¢,g — Ox - axfga gc {e, h}'

OR —

 If k =1, then q(x; &, &) is known, so the equation for y is algebraic.

 The equation for « is differential.



PART Il

NUMERICAL SOLUTION METHOD




VALUE FUNCTION ITERATION

Statement of the problem. Scaled value functions {¢g}4_. » Solve PDEs like

1 .
0 =Fg+Aglg+ By - Ox§g + Etr[CgC;axx/égL x=(w,z,v,7),

where the coefficients are:

Fg = Fg(X; e, Eny OxEe, Oxén)
Ag = Ag(X, e, En, OxEes Oxén)
Bg = Bg(X, &es En, OxEe, Oxén)
Cg = Cy(X, &e, &n, Oxe, Oxén)

The dependence of A, B, C on (&, &) arises due to the preferences and
general equilibrium. Solve this PDE system with a back-and-forth
iteration:

1. given coefficients, solve the linear PDE system and obtain {&5}g_e n
2. given PDE solution {&g}4- n, update coefficients



VALUE FUNCTION ITERATION

Step 1. Augment the PDE with a “false transient,” which is an artificial
time-derivative 0:&, (It with time t, jue g = 0:&g + 1130x&g + FtrloxoyOx &gl):

1
0 = Fg+ 0:&g +Agég + By - Ox&g + Etr[Cgcgaxx,gg],
where

Fg - FQ(X €ea 5’17 8X§87 axfh)
= AQ(X gev §h7 8X§€7 8X&h)
Bg = Bg(X, &e, &ny OxEe, Oxén)
CQ(X feyfmaxfmaxfh)
We will use this to “work backward” from the distant future (T), just as in

discrete-time value function iteration (may set terminal condition géT) to
anything in a stationary environment).

Stop iterating when reaching fixed point, i.e., 9:g ~ 0.



VALUE FUNCTION ITERATION

Step 2. Given an iterant or guess ( gt), gff)), we substitute the coefficients
(F(t) A( ) C(t )
g > g 9

1 /
0= + atfg + fg + : 8x§g + Etr[ axx’gg];

where

Fo(x, e, 6 0,60, M)
Ag(x, €0, 61, el o)
B(x, e, 61, 8468, D)
Ca(x, 60,0, 8,68, 5,e1)

h
(



VALUE FUNCTION ITERATION

Step 3. Discretize the time derivatives and write all spatial derivatives in
terms of fét_A) (“implicit” finite differences, as opposed to “explicit”), i.e.,

1 /
_ Fét) +Aét) + Bét) . + Etr[Cg)Cét) 1,

where

FS) = Fo(x, €87, 1, 0L, B!
(

( )
= Ag(X, € e” 5,, ,0xeD 0,9)
B(t Q(Xa gé‘t) h aaX e gf(,t )

(x, & )

¢t
Co(x, e, 69 5,V ,axs,f

To hope for scheme “monotonicity” [i.e., Barles-Souganidis (1991)]:

- “Upwinding” for discretization of d,¢{"*;
+ Cross-partial derivatives computed using gét) and added into Fg)



VALUE FUNCTION ITERATION

Step 3-alt. Discretize the time derivatives and write all spatial derivatives
in terms of fét) (“explicit” finite differences, as opposed to “implicit”), i.e.,
g7 -4 0.0 (t) T ric®
= Ffo tAEg +Bg Ok + StrlCe G gy ],
where

FS) = Fo(x, €87, 1, 0L, B!
(

( )
= Ag(X, € e” 5,, ,0xeD 0,9)
B(t Q(Xa gé‘t) h aaX e gf(,t )

(x, & )

¢t
Co(x, e, 69 5,V ,axs,f

With explicit schemes, often a smaller A is required (e.g., CFL condition).
We use implicit schemes.



VALUE FUNCTION ITERATION

Step 4. By discretizing the spatial derivatives d,¢{ ) and 90 £l the
PDE becomes a system of linear equations in the unknown value function
at the discretization points:

where Lg)gg’A)

is the discretized version of
_ _ 1 / _
APEGY 1By - oy + JtrlCCy) Bty 1.

Solve this system for ({2, gi(f—A)).



VALUE FUNCTION ITERATION

Implicit FD example. Suppose spatial variable x is one-dimensional:
1
0 = F + O + A + BOxE + Eczaxxg-
Discretization with space step “dx”:

€790 ~ €969 _ po ) 4 a0 p0e2x)

A
Vx4 d) — € (x) £-2(x) - €2 (x - dx)
+BY(x) [1{8(‘)(x)>0} dx T 180 (<0} dx }
“upwinding” for first derivative
()12 A (x4 dx) — 26 (x) + £ (x — dx)
+2(€9() e

second derivative approximation



VALUE FUNCTION ITERATION

Implicit FD example continued. Write the system as

glt=8) _ ¢
=FO 4 [ 0t=8) = 1) — ALO)t=2) = O 1 AF®),

The row for x has L®(x, :) constructed as...
(t) 2
|B' (X)I N GG P U T

L(f)( ) (X) dX2
L( )(X X+ dX) |max[odf (X)” %( d)(()z())2 >0
LO(x,x — dx) = 1105 )| %(d;g))z o

O(x,y) =0 for y ¢ {x—dx,x,x+ dx}

Sparsity: I — AL® is a highly-sparse (tri-diagonal) matrix
Monotonicity: Opposing signs of diagonal | — AL(®(x,x) > o0 and
off-diagonal elements | — AL®(x,y) < ofory # x



VALUE FUNCTION ITERATION

Computational considerations. Solving {I — AL } gg £_§f) + AF_Ef).

Direct approach: essentially “invert” | — AL to the other side
(technically, solve system using LU decomposmon)

- Upside: generates exact solution for E_g*A)

+ Downside: each iteration (t), the problem of inverting | — ALEP changes

lterative approach: solve (using “conjugate gradient” algorithm)

- 1
& = argmin { vl - ALY - ALY — VI - ALPTIES + AF

any equation Ax=>b can be solved for x
using miny 1x’A’Ax—x’b as long as A’A is positive definite

+ Upside: can provide “smart guess” based on g_ﬁf)
- Downside: only an approximate solution for Eét*A)



VALUE FUNCTION ITERATION

LU versus CG. Solving { L(t)} 5( 4 = Sg(;t) + Ath).

O Pardiso
O CG (No Smart Guess)
CG (with Smart Guess)

Time (seconds)
o
T

1 L L L L L L L |
0 50 100 150 200 250 300 350 400

Number of iterations




BOUNDARY CONDITIONS

So far, | said nothing about boundary conditions! These models usually
have sensitive boundaries (example: 7.(0+) = +oo is possible)

But the boundaries are unattainable in the sense of zero-probability
events (example: me(0+) = +oo implies jy,(0+) = +00)

Therefore, we need not provide any special boundary conditions!

Heuristic idea: if (F,A, B, C) are known functions in the PDE
1
0 =F+ 0 + A + BoE + Etr[cc'axx,g],
then the solution can be written (Feynman-Kac theorem)

€0 =E| / eloASXIBE (¢, X,)dt | Xo = x|
o

subjectto dX; = B(t,X;)dt + C(t,X¢) - dZ;
~~

Brownian
motion



CONSTRAINTS AND (, )

Statement of the problem. Capital distribution « € [0,1] and expert
equity-retention x € [x, 1] determine occasionally-binding constraints

0 = min(1 — K, Gp)

0 = min(x — x, Ge)
where we showed theoretically that

Gh - Gh(X, "{7 aXK; 597 gh)
Ge = Ge(X, X; e, &n)-

These are sometimes called variational inequalities.



CONSTRAINTS AND (, )

Solution method.

1. Given an iterant ¢, ¢{Y, construct

GO (x, 1, Ok) 1= Gp(x, 5, Ors £, €9)
GO (x, x) == Ge(x, x; €, £

2. Since 0 = min(x — x, fo)) is a univariate algebraic equation in ¥,
simply use nonlinear solver to obtain solution xy(®

3. Since 0 = min(1 — &, fo)) is a univariate differential equation in x, use
explicit finite-difference scheme with false transient, i.e.,

. ~(1) Oy =(r =@ =(0) — A
e = min (1 — &0, 60 (x, 50, ol )))’ 2(0) — L (t+A)

If LHS becomes small at 7, put £ := #(7),
[See Oberman (2006) for nonlinear first-order PDE schemes of this
type; small enough A is required.]



STATIONARY DENSITY

Step 1. After solving for all value functions and equilibrium objects, we
have the equilibrium state dynamics uy and oy.

Recall the “transition operator” associated with the Kolmogorov Backward
Equation (also called the “generator” of a diffusion):

2
Pf = pyOxf + Etr[axa;axx’ﬂ

Discretize this linear operator with a matrix P, e.g. in 1D example:

Py — Il (@00

dx dx?
P(X,X + dx) = | max[zxux( ) ; (U:?I(x)?)
P(x, X — dx) = |m'”[°d)§i)<( )| i %( d(X2))2

Notice that P is a transition matrix for a continuous-time Markov chain
(e.g., row-sums are 0).



STATIONARY DENSITY

Step 2. Can obtain stationary density approximation w by solving (as in
CTMC theory)
Pw=o0.

« Alternative 1: Recall that the Kolmogorov Forward Equation is the
adjoint equation to the backward equation, and since adjoints in
finite-dimensional space are matrix transposes, P’w = 0 is the
discretized adjoint equation to Pf = o.

+ Alternative 2: | + AP is a discrete-time Markov matrix, for small
time-step A, so just solve /(I + AP) = u'.

Just an eigenvector-eigenvalue problem.



NEXT TIME

Fabrice will talk about:

« Evaluating this class of models

« Comparing different models

Example: what is similar and different about models in which the
“experts” are more productive (i.e., a. > a,) versus more risk-tolerant
(i.e. ve < yn)

+ Show everything with a user-friendly web application to solve models,
downloadable at https://larspeterhansen.org/mfr-suite/


https://larspeterhansen.org/mfr-suite/
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