Valuation Dynamics in Models with Financial Frictions

Lars Peter Hansen (University of Chicago) Joseph Huang (University of Chicago) Paymon Khorrami (University of Chicago) Fabrice Tourre (Northwestern University)

UZH – Mini-Conference on Heterogeneous Agents Macroeconomics

July 4, 2018 – Happy USA Independence Day

Research Objective

• **Research Goal**: Compare/contrast implications of macroeconomic models with financial frictions through study of their non-linear transmission mechanisms

Environment

- Continuous time with Brownian shocks
- Two types of agents (one of them is like "financial intermediary")
- Heterogeneous productivity, financial constraints, preferences

Comparison Targets

- Macroeconomic quantity implications
- Asset pricing implications
- Macro- and micro-prudential policies
- Approach: Nesting model

"Nesting" Model

Technology

- A-K production function with $a_e \geq a_h$ and adjustment costs
- TFP shocks (also called "capital quality shocks")
- growth rate and stochastic vol shocks (long-run risk)
- idiosyncratic shocks (nothing on this today)

Markets

- Capital traded with shorting constraint
- Experts face "skin-in-the-game" equity issuance constraint

Preferences

- $\, \circ \,$ Recursive utility, discount rate $\rho,$ EIS $\psi^{-1},$ risk aversion γ
- Households and experts potentially different
- OLG for technical reasons

Markets

Preferences

"Nesting" Model

Models Nested

Complete markets with long run risk

- Bansal & Yaron (2004)
- Hansen, Heaton & Li (2008)

• Complete markets with heterogeneous preferences

- Longstaff & Wang (2012)
- Garleanu & Panageas (2015)

Incomplete market / limited participation

- Basak & Cuoco (1998)
- Kogan & Makarov & Uppal (2007)
- He & Krishnamurthy (2012)
- Incomplete market / capital misallocation
 - Brunnermeier & Sannikov (2014)

• Complete markets for agg. risk with idiosyncratic shocks

• Di Tella (2017)

- Markov equilibrium aggregate state vector X_t:
 - **Exogenous states** g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)

- Markov equilibrium aggregate state vector X_t:
 - **Exogenous states** g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)
- "Value function" approach: $V_i(n_{i,t}, X_t) = n_{i,t}^{1-\gamma_i}\xi_i(X_t)$

- Markov equilibrium aggregate state vector X_t:
 - **Exogenous states** g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)
- "Value function" approach: $V_i(n_{i,t}, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$
- (ξ_e, ξ_h) solutions to second order non-linear PDEs implicit FD scheme with artificial time derivative ("false transient")

- Markov equilibrium aggregate state vector X_t:
 - **Exogenous states** g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)
- "Value function" approach: $V_i(n_{i,t}, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$
- (ξ_e, ξ_h) solutions to second order non-linear PDEs implicit FD scheme with artificial time derivative ("false transient")
- Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step

- Markov equilibrium aggregate state vector X_t:
 - **Exogenous states** g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)
- "Value function" approach: $V_i(n_{i,t}, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$
- (ξ_e, ξ_h) solutions to second order non-linear PDEs implicit FD scheme with artificial time derivative ("false transient")
- Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step
- Endogenous state partition due to occasionally-binding constraints

- Markov equilibrium aggregate state vector X_t:
 - **Exogenous states** g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)
- "Value function" approach: $V_i(n_{i,t}, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$
- (ξ_e, ξ_h) solutions to second order non-linear PDEs implicit FD scheme with artificial time derivative ("false transient")
- Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step
- Endogenous state partition due to occasionally-binding constraints
- \bullet Implementation in C++ allowing for HPC

Statement of the problem. Scaled value functions ξ_i solve PDEs like

 $0 = K_i + A_i \xi_i + B_i \cdot \partial_x \xi_i + \operatorname{trace}[C_i C'_i \partial_{xx'} \xi_i], \quad x = (w, g, s, \varsigma),$

where the coefficients are:

$$K_{i} = K_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

$$A_{i} = A_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

$$B_{i} = B_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

$$C_{i} = C_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

The dependence of A, B, C on (ξ_e, ξ_h) arises due to general equilibrium.

We solve this PDE system with a 2-step iterative approach:

- given coefficients, we solve the linear PDE and obtain $\{\xi_i\}_{i=e,h}$
- given PDE solution $\{\xi_i\}_{i=e,h}$, we update coefficients

Step 1. Augment the PDE with a "false transient," which is an artificial time-derivative $\partial_t \xi_i$:

$$\frac{\partial_t \xi_i}{\partial_t \xi_i} = K_i + A_i \xi_i + B_i \cdot \partial_x \xi_i + \text{trace}[C_i C_i' \partial_{xx'} \xi_i],$$

where

$$K_{i} = K_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$
$$A_{i} = A_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$
$$B_{i} = B_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$
$$C_{i} = C_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

Step 2. Given an iterant or guess $(\xi_e^{(t)}, \xi_h^{(t)})$, we substitute the coefficients $(\kappa_i^{(t)}, A_i^{(t)}, B_i^{(t)}, C_i^{(t)})$.

$$\partial_t \xi_i = \mathbf{K}_i^{(t)} + \mathbf{A}_i^{(t)} \xi_i + \mathbf{B}_i^{(t)} \cdot \partial_x \xi_i + \text{trace}[\mathbf{C}_i^{(t)} \mathbf{C}_i^{(t)'} \partial_{xx'} \xi_i],$$

where

$$\begin{split} & \mathcal{K}_{i}^{(t)} = \mathcal{K}_{i}(x, \xi_{e}^{(t)}, \xi_{h}^{(t)}, \partial_{x}\xi_{e}^{(t)}, \partial_{x}\xi_{h}^{(t)}) \\ & \mathcal{A}_{i}^{(t)} = \mathcal{A}_{i}(x, \xi_{e}^{(t)}, \xi_{h}^{(t)}, \partial_{x}\xi_{e}^{(t)}, \partial_{x}\xi_{h}^{(t)}) \\ & \mathcal{B}_{i}^{(t)} = \mathcal{B}_{i}(x, \xi_{e}^{(t)}, \xi_{h}^{(t)}, \partial_{x}\xi_{e}^{(t)}, \partial_{x}\xi_{h}^{(t)}) \\ & \mathcal{C}_{i}^{(t)} = \mathcal{C}_{i}(x, \xi_{e}^{(t)}, \xi_{h}^{(t)}, \partial_{x}\xi_{e}^{(t)}, \partial_{x}\xi_{h}^{(t)}) \end{split}$$

Step 3. Discretize the time derivatives and write all spatial derivatives in terms of $\xi_i^{(t+\Delta)}$ ("implicit", as opposed to "explicit" scheme), i.e., $\frac{\xi_i^{(t+\Delta)} - \xi_i^{(t)}}{\Delta} = K_i^{(t)} + A_i^{(t)}\xi_i^{(t+\Delta)} + B_i^{(t)} \cdot \partial_x \xi_i^{(t+\Delta)} + \text{tr}[C_i^{(t)}C_i^{(t)'}\partial_{xx'}\xi_i^{(t+\Delta)}],$

where

$$\begin{split} & \mathcal{K}_{i}^{(t)} = \mathcal{K}_{i}(x,\xi_{e}^{(t)},\xi_{h}^{(t)},\partial_{x}\xi_{e}^{(t)},\partial_{x}\xi_{h}^{(t)}) \\ & \mathcal{A}_{i}^{(t)} = \mathcal{A}_{i}(x,\xi_{e}^{(t)},\xi_{h}^{(t)},\partial_{x}\xi_{e}^{(t)},\partial_{x}\xi_{h}^{(t)}) \\ & \mathcal{B}_{i}^{(t)} = \mathcal{B}_{i}(x,\xi_{e}^{(t)},\xi_{h}^{(t)},\partial_{x}\xi_{e}^{(t)},\partial_{x}\xi_{h}^{(t)}) \\ & \mathcal{C}_{i}^{(t)} = \mathcal{C}_{i}(x,\xi_{e}^{(t)},\xi_{h}^{(t)},\partial_{x}\xi_{e}^{(t)},\partial_{x}\xi_{h}^{(t)}) \end{split}$$

To insure scheme "monotonicity",

- "Upwinding" for discretization of $\partial_x \xi_i^{(t+\Delta)}$;
- Cross-partial derivatives computed using $\xi_i^{(t)}$ and added into $K_i^{(t)}$

Step 4. By discretizing the spatial derivatives $\partial_x \xi_i^{(t+\Delta)}$ and $\partial_{xx'} \xi_i^{(t+\Delta)}$, the PDE becomes a system of linear equations in the unknown value function at the discretization points:

$$\left[I - \Delta L_i^{(t)}\right] \xi_i^{(t+\Delta)} = \xi_i^{(t)} + \Delta K_i^{(t)}$$

Solve this system for $(\xi_e^{(t+\Delta)}, \xi_h^{(t+\Delta)})$. Coded with assistance from Scheidegger (2011).

Computational Considerations.

• Brownian information structure implies $L_i^{(t)}$ is a highly sparse matrix, with $I - \Delta L_i^{(t)}$ diagonally dominant for Δ sufficiently small

• Solving
$$\left[I - \Delta L_i^{(t)}\right] \xi_i^{(t+\Delta)} = \xi_i^{(t)} + \Delta K_i^{(t)}$$
.

- direct approach: LU decomposition with PARDISO 6.0. See Kourounis, Fuchs, Schenk (2018); Verbosio, De Coninck, Kourounis, Schenk (2017); De Coninck, De Baets, Kourounis, Verbosio, Schenk, Maenhout, and Fostier (2016); https://www.pardiso-project.org.
- iterative approach: conjugate gradient (CG) for symmetrized system, using different preconditioners and utilizing initial guess from previous time iteration.

LU versus CG. Solve $\left[I - \Delta L_i^{(t)}\right] \xi_i^{(t+\Delta)} = \xi_i^{(t)} + \Delta K_i^{(t)}$ for $\xi_i^{(t+\Delta)}$

Time-step trade-off with CG. Lower Δ means more iterations to converge, but better initial guesses in each iteration (and better matrix conditioning).

Other computational issues.

- Explicit versus Implicit scheme
- Preconditioners for CG
- Non-uniform grids
- GPU computing suited to explicit scheme

Numerical Implementation: Constraints

Statement of the problem. Capital distribution $\kappa \in [0, 1]$ and expert equity issuance $\chi \in [\chi, 1]$ determine occasionally-binding constraints

$$0 = \min(1 - \kappa, -\alpha_h)$$

$$0 = \min(\chi - \underline{\chi}, \alpha_e),$$

where α_i is agent *i*'s endogenous premium on capital (relative to financial securities that replicate capital's shocks)

Economic intuition.

- Experts hold all capital ($\kappa = 1$) if and only if households obtain no premium for holding it ($\alpha_h < 0$)
- Experts issue as much equity as possible (χ = χ) if and only if their inside equity premium exceeds the outside equity premium (α_e > 0)

Numerical Implementation: Constraints

Variational inequalities. Algebraic equations on part of the state space (when constraints bind) and first-order non-linear elliptic PDEs on the complement (when constraints are slack).

$$0 = \min(1 - \kappa, -\alpha_h)$$

$$0 = \min(\chi - \underline{\chi}, \alpha_e),$$

where

$$\begin{aligned} \alpha_h &= F_h(x,\kappa,\partial_x\kappa,\chi,\partial_x\chi) \\ \alpha_e &= F_e(x,\kappa,\partial_x\kappa,\chi,\partial_x\chi). \end{aligned}$$

Solution method.

• Explicit FD scheme with false transient and "CFL" condition, e.g.,

$$\frac{\kappa^{(\tau+\tilde{\Delta})}-\kappa^{(\tau)}}{\tilde{\Delta}} = \min\left(1-\kappa^{(\tau)}, F_h(x,\kappa^{(\tau)},\partial_x\kappa^{(\tau)},\chi^{(\tau)},\partial_x\chi^{(\tau)})\right)$$

• See Oberman (2006) for nonlinear first-order PDE schemes

Diagnostic Tools I

Quantities

- Consumption/wealth ratio $(c_i/n_i)(x)$
- Investment rate $\iota(x)$
- Output growth $\mu_y(x)$

Prices

- Risk-free rate r(x)
- Risk-price vectors $\pi_i(x)$ (one per agent)
- Capital price q(x)

State dynamics

- Drift $\mu_X(x)$ and diffusion $\sigma_X(x)$ of aggregate state vector
- Ergodic density f(x)

- Transition dynamics and valuation through altering cashflow exposure to shocks
- Focused on stochastically growing cashflows $Y_t, C_t, C_{e,t}, C_{h,t}$
- Shock-exposure elasticities: effect on future expected cashflow
- Shock-cost elasticities: effect on today's cashflow price
- Shock-price elasticities: effect on log expected returns
 - difference between shock-exposure and shock-cost elasticities
 - pricing counterpart to impulse response functions

Diagnostic Tools II

• Consider a martingale perturbation H_t^s in direction ν

$$d \log H_t^s = -\frac{\|\nu(X_t)\|^2}{2} dt + \nu(X_t) \cdot dZ_t \qquad 0 \le t \le s$$

$$d \log M_t = \mu_M(X_t) dt + \sigma_M(X_t) \cdot dZ_t$$

$$\epsilon_M(x, t) := \lim_{s \to 0} \frac{1}{s} \log \mathbb{E} \left[\frac{M_t}{M_0} H_t^s | X_0 = x \right]$$

Diagnostic Tools II

• Consider a martingale perturbation H_t^s in direction ν

$$d \log H_t^s = -\frac{\|\nu(X_t)\|^2}{2} dt + \nu(X_t) \cdot dZ_t \qquad 0 \le t \le s$$

$$d \log M_t = \mu_M(X_t) dt + \sigma_M(X_t) \cdot dZ_t$$

$$\epsilon_M(x, t) := \lim_{s \to 0} \frac{1}{s} \log \mathbb{E} \left[\frac{M_t}{M_0} H_t^s | X_0 = x \right]$$

• Applications for a cash-flow C_t received at time t

- Shock-exposure elasticity $\epsilon_C(x, t)$;
- Shock-cost elasticity $\epsilon_{SC}(x, t)$;
- Shock-price elasticity $\epsilon_C(x, t) \epsilon_{SC}(x, t)$

Diagnostic Tools II

• Consider a martingale perturbation H_t^s in direction ν

$$d \log H_t^s = -\frac{\|\nu(X_t)\|^2}{2} dt + \nu(X_t) \cdot dZ_t \qquad 0 \le t \le s$$

$$d \log M_t = \mu_M(X_t) dt + \sigma_M(X_t) \cdot dZ_t$$

$$\epsilon_M(x, t) := \lim_{s \to 0} \frac{1}{s} \log \mathbb{E} \left[\frac{M_t}{M_0} H_t^s | X_0 = x \right]$$

- Applications for a cash-flow C_t received at time t
 - Shock-exposure elasticity $\epsilon_C(x, t)$;
 - Shock-cost elasticity $\epsilon_{SC}(x, t)$;
 - Shock-price elasticity $\epsilon_C(x, t) \epsilon_{SC}(x, t)$
- Two interpretations
 - Altering the probability distribution of cashflow
 - Altering the exposure of cashflow (Malliavin derivative)
 - See Borovička-Hansen-Scheinkman (2014, *Math and Fin Econ*) for equivalence to nonlinear IRFs under Brownian shocks

Baseline version of model is like Basak-Cuoco (1998)

- Experts are the only producers (i.e. $a_h = -\infty$)
- Skin-in-the-game constraint $\chi \equiv \underline{\chi} = 1$
- TFP shocks only
- $\bullet~{\rm log}$ utility RRA $\gamma=$ 1, EIS $\psi^{-1}=1$

Baseline Model: 1D limited participation model

• When is an always-binding-constraint assumption legitimate?

- When is an always-binding-constraint assumption legitimate?
- Economic setting of focus
 - Experts are the only producers (i.e. $a_h = -\infty$)
 - Skin-in-the-game constraint $\chi \geq \chi$
 - TFP shocks only
 - $\bullet ~ {\sf EIS} ~ \psi^{-1} = 1$

- When is an always-binding-constraint assumption legitimate?
- Economic setting of focus
 - Experts are the only producers (i.e. $a_h = -\infty$)
 - Skin-in-the-game constraint $\chi \geq \underline{\chi}$
 - TFP shocks only
 - EIS $\psi^{-1} = 1$
- Compare
 - 1 homogeneous RRA ($\gamma_e = \gamma_h$) vs.
 - 2 heterogeneous RRA ($\gamma_e < \gamma_h$)

Expert's risk-retention χ in the two models.

Proposition. If $\gamma_e = \gamma_h$ and w_t is the only state variable (i.e., 1-dimensional model), then $Pr\{\exists t : \chi_t > \chi\} = 0$.

Numerical result so far. Proposition above holds even in higher dimensions (i.e., (g_t, s_t) are state variables), as long as $\psi_e = \psi_h$ (same EIS).

Other Shocks and Financial Frictions

• How do financial frictions affect agents' attitudes about shocks?

- How do financial frictions affect agents' attitudes about shocks?
- Economic setting of focus
 - Experts are the only producers (i.e. $a_h = -\infty$)
 - Skin-in-the-game constraint $\chi \geq \chi$
 - Shocks to TFP level, growth rate, and volatility
 - RRA $\gamma=$ 3, EIS $\psi^{-1}=1$

- How do financial frictions affect agents' attitudes about shocks?
- Economic setting of focus
 - Experts are the only producers (i.e. $a_h=-\infty)$
 - Skin-in-the-game constraint $\chi \geq \chi$
 - Shocks to TFP level, growth rate, and volatility
 - RRA $\gamma=$ 3, EIS $\psi^{-1}=1$
- Compare
 - 1 model with frictions ($\chi = 0.5$) vs.
 - 2 model without frictions ($\chi = 0$)

Other Shocks and Financial Frictions

Expert's and Household's TFP risk prices $\pi_e^{(1)}, \pi_h^{(1)}$, along with the "Single Agent" TFP risk price.

Note: "Single Agent" denotes the "frictionless" model ($\chi = 0$).

Other Shocks and Financial Frictions

Expert's and Household's volatility risk prices $\pi_e^{(3)}, \pi_h^{(3)}$, along with the "Single Agent" volatility risk price.

Note: "Single Agent" denotes the "frictionless" model ($\chi = 0$).

• How does volatility affect the wealth distribution under financial frictions? (c.f., Brunnermeier-Sannikov "volatility paradox")

- How does volatility affect the wealth distribution under financial frictions? (c.f., Brunnermeier-Sannikov "volatility paradox")
- Economic setting of focus
 - Experts are the only producers (i.e. $a_h = -\infty$)
 - Skin-in-the-game constraint $\chi \geq \chi$
 - Shocks to TFP level, growth rate, and volatility
 - EIS $\psi^{-1} = 1$

- How does volatility affect the wealth distribution under financial frictions? (c.f., Brunnermeier-Sannikov "volatility paradox")
- Economic setting of focus
 - Experts are the only producers (i.e. $a_h = -\infty$)
 - Skin-in-the-game constraint $\chi \geq \underline{\chi}$
 - Shocks to TFP level, growth rate, and volatility
 - EIS $\psi^{-1} = 1$
- Compare the dynamic and long-run effects of s_t on w_t
 - 1 diffusion of volatility σ_s
 - 2) mean-reversion of volatility shocks λ_s
 - 3 skin-in-the-game $\underline{\chi}$
 - ${f 4}$ common risk aversion γ

Volatility shock-exposure elasticity of w_t .

 $Corr(w_t, s_t)$ as a function of model parameters.

• Are the "expert" agents in the economy more productive or more risk-tolerant?

- Are the "expert" agents in the economy more productive or more risk-tolerant?
- Economic setting of focus
 - Experts and households can both produce (i.e. $a_e \geq a_h > -\infty$)
 - No equity-issuance $\chi \equiv \chi = 1$
 - Shocks to TFP level, growth rate, and volatility
 - EIS $\psi^{-1} = 1$

- Are the "expert" agents in the economy more productive or more risk-tolerant?
- Economic setting of focus
 - Experts and households can both produce (i.e. $a_e \geq a_h > -\infty$)
 - No equity-issuance $\chi \equiv \underline{\chi} = 1$
 - Shocks to TFP level, growth rate, and volatility
 - EIS $\psi^{-1} = 1$
- Compare
 - 1) experts more productive $(a_e > a_h \text{ but } \gamma_e = \gamma_h)$ vs.
 - 2) experts more risk-tolerant ($\gamma_e < \gamma_h$ but $a_e = a_h$)

Capital distribution κ as a function of (w, s) in the two models.

Note: adjusted other parameters to make the wealth distributions more similar across the two models.

TFP shock-exposure and -price elasticities of C_t in both models.

TFP shock-exposure elasticity of $C_{e,t}$ in both models.

Volatility shock-exposure and -price elasticities of C_t in both models.

Volatility shock-exposure elasticity of $C_{e,t}$ in both models.

- Additional computational explorations (e.g., GPU computing)
- Additional types of financial constraints (e.g., leverage constraints)
- User-friendly web application to compare and contrast models... https://modelcomparisons.shinyapps.io/modelcomparisonssite/

• Efficiency units of capital k_t follow

$$dk_t = k_t \left[\left(g_t + \iota_t - \delta \right) dt + \sqrt{s_t} \sigma \cdot dZ_t \right], \tag{1}$$

• Exogenous state variables (s_t, g_t) follow

$$dg_t = \lambda_g (\overline{g} - g_t) dt + \sqrt{s_t} \sigma_g \cdot dZ_t$$
⁽²⁾

$$ds_t = \lambda_s(\overline{s} - s_t)dt + \sqrt{s_t}\sigma_s \cdot dZ_t$$
(3)

• Adjustment costs: investment $\iota_t k_t dt$ costs $\Phi(\iota_t) k_t dt$ in output

back

Markets

• Capital is freely traded (subject to no-shorting constraints), at price q_t

$$dq_t = q_t [\mu_{q,t} dt + \sigma_{q,t} \cdot dZ_t]$$
(4)

Households facing dynamically complete markets, leading to SDF

$$dS_{h,t} = -S_{h,t}[r_t dt + \pi_{h,t} \cdot dZ_t]$$
(5)

Experts face skin-in-the-game constraint via minimum risk retention:

$$\chi_t \ge \underline{\chi} \tag{6}$$

• Experts' SDF differs from Households' SDF:

$$dS_{e,t} = -S_{e,t}[r_t dt + \pi_{e,t} \cdot dZ_t]$$
(7)

Preferences and Single-Agent Problem

• Agent *i* will solve the following problem:

$$U_{i,t} = \max_{\{k_i \ge 0, c_i, \theta_i, \iota_i\}} \mathbb{E}\left[\int_t^{+\infty} \varphi\left(c_{i,s}, U_{i,s}\right) ds\right]$$

s.t. $\frac{dn_{i,t}}{n_{i,t}} = \left[\mu_{n,i,t} - \frac{c_{i,t}}{n_{i,t}}\right] dt + \sigma_{n,i,t} \cdot dZ_t$
 $\mu_{n,i,t} = r_t + \frac{q_t k_{i,t}}{n_{i,t}} \left(\mu_{R,i,t} - r_t\right) + \theta_{i,t} \cdot \pi_t$
 $\sigma_{n,i,t} = \frac{q_t k_{i,t}}{n_{i,t}} \sigma_{R,t} + \theta_{i,t}$
 $\theta_{i,t} \in \Theta_{i,t}$

• Financial constraint set $\Theta_{i,t}$:

• $\Theta_{i,t} = \{0\}$: agent cannot issue "equity" securities • $\Theta_{i,t} = \{(\chi_t - 1)\frac{q_t k_{i,t}}{n_{i,t}}\sigma_{R,t}, \chi_t \ge \underline{\chi}\}$: "skin-in-the-game" constraint • $\Theta_{i,t} = \mathbb{R}^d$: unconstrained agent