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Research Objective

Research Goal: Compare/contrast implications of macroeconomic
models with financial frictions through study of their non-linear
transmission mechanisms

Environment
Continuous time with Brownian shocks
Two types of agents (one of them is like “financial intermediary”)
Heterogeneous productivity, financial constraints, preferences

Comparison Targets
Macroeconomic quantity implications
Asset pricing implications
Macro- and micro-prudential policies

Approach: Nesting model



“Nesting” Model

Technology Technology

A-K production function with ae ≥ ah and adjustment costs
TFP shocks (also called “capital quality shocks”)
growth rate and stochastic vol shocks (long-run risk)
idiosyncratic shocks (nothing on this today)

Markets Markets

Capital traded with shorting constraint
Experts face “skin-in-the-game” equity issuance constraint

Preferences Preferences

Recursive utility, discount rate ρ, EIS ψ−1, risk aversion γ
Households and experts potentially different
OLG for technical reasons
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Models Nested

Complete markets with long run risk
Bansal & Yaron (2004)
Hansen, Heaton & Li (2008)

Complete markets with heterogeneous preferences
Longstaff & Wang (2012)
Garleanu & Panageas (2015)

Incomplete market / limited participation
Basak & Cuoco (1998)
Kogan & Makarov & Uppal (2007)
He & Krishnamurthy (2012)

Incomplete market / capital misallocation
Brunnermeier & Sannikov (2014)

Complete markets for agg. risk with idiosyncratic shocks
Di Tella (2017)



Overview of Solution Method

Markov equilibrium – aggregate state vector Xt :
Exogenous states gt (growth), st (agg. stochastic vol.), and ςt (idio.
stochastic vol.)
Endogenous state wt := Ne,t

Ne,t +Nh,t
(wealth share)

“Value function” approach: Vi (ni ,t ,Xt) = n1−γi
i ,t ξi (Xt)

(ξe , ξh) solutions to second order non-linear PDEs – implicit FD
scheme with artificial time derivative (“false transient”)

Each time-step: compute aggregate state dynamics and prices using
the value functions from the previous time-step

Endogenous state partition due to occasionally-binding constraints

Implementation in C++ allowing for HPC
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Numerical Implementation: Value Functions
Statement of the problem. Scaled value functions ξi solve PDEs like

0 = Ki + Aiξi + Bi · ∂xξi + trace[CiC ′i ∂xx ′ξi ], x = (w , g , s, ς),
where the coefficients are:

Ki = Ki (x , ξe , ξh, ∂xξe , ∂xξh)
Ai = Ai (x , ξe , ξh, ∂xξe , ∂xξh)
Bi = Bi (x , ξe , ξh, ∂xξe , ∂xξh)
Ci = Ci (x , ξe , ξh, ∂xξe , ∂xξh)

The dependence of A,B,C on (ξe , ξh) arises due to general equilibrium.

We solve this PDE system with a 2-step iterative approach:
given coefficients, we solve the linear PDE and obtain {ξi}i=e,h
given PDE solution {ξi}i=e,h, we update coefficients



Numerical Implementation: Value Functions
Step 1. Augment the PDE with a “false transient,” which is an artificial
time-derivative ∂tξi :

∂tξi = Ki + Aiξi + Bi · ∂xξi + trace[CiC ′i ∂xx ′ξi ],
where

Ki = Ki (x , ξe , ξh, ∂xξe , ∂xξh)
Ai = Ai (x , ξe , ξh, ∂xξe , ∂xξh)
Bi = Bi (x , ξe , ξh, ∂xξe , ∂xξh)
Ci = Ci (x , ξe , ξh, ∂xξe , ∂xξh)



Numerical Implementation: Value Functions
Step 2. Given an iterant or guess (ξ(t)

e , ξ
(t)
h ), we substitute the coefficients

(K (t)
i ,A(t)

i ,B(t)
i ,C (t)

i ).

∂tξi = K (t)
i + A(t)

i ξi + B(t)
i · ∂xξi + trace[C (t)

i C (t)
i
′∂xx ′ξi ],

where
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Numerical Implementation: Value Functions
Step 3. Discretize the time derivatives and write all spatial derivatives in
terms of ξ(t+∆)

i (“implicit”, as opposed to “explicit” scheme), i.e.,

ξ
(t+∆)
i − ξ(t)

i
∆ = K (t)

i +A(t)
i ξ
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To insure scheme “monotonicity”,
“Upwinding” for discretization of ∂xξ

(t+∆)
i ;

Cross-partial derivatives computed using ξ(t)
i and added into K (t)

i



Numerical Implementation: Value Functions
Step 4. By discretizing the spatial derivatives ∂xξ

(t+∆)
i and ∂xx ′ξ

(t+∆)
i ,

the PDE becomes a system of linear equations in the unknown value
function at the discretization points:[

I −∆L(t)
i

]
ξ

(t+∆)
i = ξ

(t)
i + ∆K (t)

i

Solve this system for (ξ(t+∆)
e , ξ

(t+∆)
h ). Coded with assistance from

Scheidegger (2011).



Numerical Implementation: Value Functions
Computational Considerations.

Brownian information structure implies L(t)
i is a highly sparse matrix,

with I −∆L(t)
i diagonally dominant for ∆ sufficiently small

Solving
[
I −∆L(t)

i

]
ξ

(t+∆)
i = ξ

(t)
i + ∆K (t)

i :
direct approach: LU decomposition with PARDISO 6.0. See Kourounis,
Fuchs, Schenk (2018); Verbosio, De Coninck, Kourounis, Schenk
(2017); De Coninck, De Baets, Kourounis, Verbosio, Schenk,
Maenhout, and Fostier (2016); https://www.pardiso-project.org.
iterative approach: conjugate gradient (CG) for symmetrized system,
using different preconditioners and utilizing initial guess from previous
time iteration.

https://www.pardiso-project.org


Numerical Implementation: Value Functions
LU versus CG. Solve

[
I −∆L(t)

i

]
ξ

(t+∆)
i = ξ

(t)
i + ∆K (t)

i for ξ(t+∆)
i



Numerical Implementation: Value Functions
Time-step trade-off with CG. Lower ∆ means more iterations to
converge, but better initial guesses in each iteration (and better matrix
conditioning).



Numerical Implementation: Value Functions
Other computational issues.

Explicit versus Implicit scheme
Preconditioners for CG
Non-uniform grids
GPU computing suited to explicit scheme



Numerical Implementation: Constraints
Statement of the problem. Capital distribution κ ∈ [0, 1] and expert
equity issuance χ ∈ [χ, 1] determine occasionally-binding constraints

0 = min(1− κ,−αh)
0 = min(χ− χ, αe),

where αi is agent i ’s endogenous premium on capital (relative to financial
securities that replicate capital’s shocks)

Economic intuition.
Experts hold all capital (κ = 1) if and only if households obtain no
premium for holding it (αh < 0)
Experts issue as much equity as possible (χ = χ) if and only if their
inside equity premium exceeds the outside equity premium (αe > 0)



Numerical Implementation: Constraints
Variational inequalities. Algebraic equations on part of the state space
(when constraints bind) and first-order non-linear elliptic PDEs on the
complement (when constraints are slack).

0 = min(1− κ,−αh)
0 = min(χ− χ, αe),

where
αh = Fh(x , κ, ∂xκ, χ, ∂xχ)
αe = Fe(x , κ, ∂xκ, χ, ∂xχ).

Solution method.
Explicit FD scheme with false transient and “CFL” condition, e.g.,

κ(τ+∆̃) − κ(τ)

∆̃
= min

(
1− κ(τ),Fh(x , κ(τ), ∂xκ

(τ), χ(τ), ∂xχ
(τ))

)
See Oberman (2006) for nonlinear first-order PDE schemes



Diagnostic Tools I

Quantities
Consumption/wealth ratio (ci/ni ) (x)
Investment rate ι(x)
Output growth µy (x)

Prices
Risk-free rate r(x)
Risk-price vectors πi (x) (one per agent)
Capital price q(x)

State dynamics
Drift µX (x) and diffusion σX (x) of aggregate state vector
Ergodic density f (x)



Diagnostic Tools II

Transition dynamics and valuation through altering cashflow
exposure to shocks

Focused on stochastically growing cashflows Yt ,Ct ,Ce,t ,Ch,t

Shock-exposure elasticities: effect on future expected cashflow

Shock-cost elasticities: effect on today’s cashflow price

Shock-price elasticities: effect on log expected returns
difference between shock-exposure and shock-cost elasticities
pricing counterpart to impulse response functions



Diagnostic Tools II

Consider a martingale perturbation Hs
t in direction ν

d log Hs
t = −‖ν(Xt)‖2

2 dt + ν(Xt) · dZt 0 ≤ t ≤ s

d log Mt = µM(Xt)dt + σM(Xt) · dZt

εM(x , t) : = lim
s→0

1
s logE

[Mt
M0

Hs
t |X0 = x

]

Applications for a cash-flow Ct received at time t

Shock-exposure elasticity εC (x , t);
Shock-cost elasticity εSC (x , t);
Shock-price elasticity εC (x , t)− εSC (x , t)

Two interpretations

Altering the probability distribution of cashflow
Altering the exposure of cashflow (Malliavin derivative)
See Borovička-Hansen-Scheinkman (2014, Math and Fin Econ) for
equivalence to nonlinear IRFs under Brownian shocks



Diagnostic Tools II

Consider a martingale perturbation Hs
t in direction ν

d log Hs
t = −‖ν(Xt)‖2

2 dt + ν(Xt) · dZt 0 ≤ t ≤ s

d log Mt = µM(Xt)dt + σM(Xt) · dZt

εM(x , t) : = lim
s→0

1
s logE

[Mt
M0

Hs
t |X0 = x

]
Applications for a cash-flow Ct received at time t

Shock-exposure elasticity εC (x , t);
Shock-cost elasticity εSC (x , t);
Shock-price elasticity εC (x , t)− εSC (x , t)

Two interpretations

Altering the probability distribution of cashflow
Altering the exposure of cashflow (Malliavin derivative)
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Baseline Model: 1D limited participation model

Baseline version of model is like Basak-Cuoco (1998)

Experts are the only producers (i.e. ah = −∞)
Skin-in-the-game constraint χ ≡ χ = 1
TFP shocks only
log utility RRA γ = 1, EIS ψ−1 = 1



Baseline Model: 1D limited participation model



Always vs. Occasionally Binding Constraints

When is an always-binding-constraint assumption legitimate?

Economic setting of focus

Experts are the only producers (i.e. ah = −∞)
Skin-in-the-game constraint χ ≥ χ
TFP shocks only
EIS ψ−1 = 1

Compare

1 homogeneous RRA (γe = γh) vs.
2 heterogeneous RRA (γe < γh)
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Always vs. Occasionally Binding Constraints

Expert’s risk-retention χ in the two models.



Always vs. Occasionally Binding Constraints

Proposition. If γe = γh and wt is the only state variable (i.e.,
1-dimensional model), then Pr{∃t : χt > χ} = 0.

Numerical result so far. Proposition above holds even in higher
dimensions (i.e., (gt , st) are state variables), as long as ψe = ψh (same
EIS).



Other Shocks and Financial Frictions

How do financial frictions affect agents’ attitudes about shocks?

Economic setting of focus

Experts are the only producers (i.e. ah = −∞)
Skin-in-the-game constraint χ ≥ χ
Shocks to TFP level, growth rate, and volatility
RRA γ = 3, EIS ψ−1 = 1

Compare

1 model with frictions (χ = 0.5) vs.
2 model without frictions (χ = 0)
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Other Shocks and Financial Frictions

Expert’s and Household’s TFP risk prices π(1)
e , π

(1)
h , along with the

“Single Agent” TFP risk price.

Note: “Single Agent” denotes the “frictionless” model (χ = 0).



Other Shocks and Financial Frictions

Expert’s and Household’s volatility risk prices π(3)
e , π

(3)
h , along with

the “Single Agent” volatility risk price.

Note: “Single Agent” denotes the “frictionless” model (χ = 0).



Volatility Paradox

How does volatility affect the wealth distribution under financial
frictions? (c.f., Brunnermeier-Sannikov “volatility paradox”)

Economic setting of focus

Experts are the only producers (i.e. ah = −∞)
Skin-in-the-game constraint χ ≥ χ
Shocks to TFP level, growth rate, and volatility
EIS ψ−1 = 1

Compare the dynamic and long-run effects of st on wt

1 diffusion of volatility σs
2 mean-reversion of volatility shocks λs
3 skin-in-the-game χ
4 common risk aversion γ
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Volatility Paradox

Volatility shock-exposure elasticity of wt .



Volatility Paradox
Corr(wt , st) as a function of model parameters.

Note: other parameters held fixed when modifying parameter of interest.



Productivity vs. Risk-Tolerance

Are the “expert” agents in the economy more productive or more
risk-tolerant?

Economic setting of focus

Experts and households can both produce (i.e. ae ≥ ah > −∞)
No equity-issuance χ ≡ χ = 1
Shocks to TFP level, growth rate, and volatility
EIS ψ−1 = 1

Compare

1 experts more productive (ae > ah but γe = γh) vs.
2 experts more risk-tolerant (γe < γh but ae = ah)
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Productivity vs. Risk-Tolerance

Capital distribution κ as a function of (w , s) in the two models.



Productivity vs. Risk-Tolerance

Expert’s TFP risk price π(1)
e in the two models.

Note: adjusted other parameters to make the wealth distributions more
similar across the two models.



Productivity vs. Risk-Tolerance

TFP shock-exposure and -price elasticities of Ct in both models.



Productivity vs. Risk-Tolerance

TFP shock-exposure elasticity of Ce,t in both models.



Productivity vs. Risk-Tolerance

Volatility shock-exposure and -price elasticities of Ct in both models.



Productivity vs. Risk-Tolerance

Volatility shock-exposure elasticity of Ce,t in both models.



Conclusion / Next Steps

Additional computational explorations (e.g., GPU computing)

Additional types of financial constraints (e.g., leverage constraints)

User-friendly web application to compare and contrast models...
https://modelcomparisons.shinyapps.io/modelcomparisonssite/

https://modelcomparisons.shinyapps.io/modelcomparisonssite/


Technology

Efficiency units of capital kt follow

dkt = kt [(gt + ιt − δ) dt +
√

stσ · dZt ] , (1)

Exogenous state variables (st , gt) follow

dgt = λg (g − gt)dt +
√

stσg · dZt (2)
dst = λs(s − st)dt +

√
stσs · dZt (3)

Adjustment costs: investment ιtktdt costs Φ (ιt) ktdt in output
back



Markets

Capital is freely traded (subject to no-shorting constraints), at price qt

dqt = qt [µq,tdt + σq,t · dZt ] (4)

Households facing dynamically complete markets, leading to SDF

dSh,t = −Sh,t [rtdt + πh,t · dZt ] (5)

Experts face skin-in-the-game constraint via minimum risk retention:

χt ≥ χ (6)

Experts’ SDF differs from Households’ SDF:

dSe,t = −Se,t [rtdt + πe,t · dZt ] (7)

back



Preferences and Single-Agent Problem

Agent i will solve the following problem:

Ui,t = max
{ki≥0,ci ,θi ,ιi}

E

[∫ +∞

t

ϕ (ci,s ,Ui,s ) ds

]
s.t.

dni,t

ni,t
=
[
µn,i,t −

ci,t

ni,t

]
dt + σn,i,t · dZt

µn,i,t = rt +
qtki,t

ni,t
(µR,i,t − rt ) + θi,t · πt

σn,i,t =
qtki,t

ni,t
σR,t + θi,t

θi,t ∈ Θi,t

Financial constraint set Θi ,t :
Θi,t = {0}: agent cannot issue “equity” securities
Θi,t = {(χt − 1) qt ki,t

ni,t
σR,t , χt ≥ χ}: “skin-in-the-game” constraint

Θi,t = Rd : unconstrained agent

back


