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Research Objective

©

Research Goal: Compare/contrast implications of macroeconomic
models with financial frictions through study of their non-linear
transmission mechanisms

Environment
o Continuous time with Brownian shocks
o Two types of agents (one of them is like “financial intermediary™)
o Heterogeneous productivity, financial constraints, preferences

©

o Comparison Targets
o Macroeconomic quantity implications
o Asset pricing implications
o Macro- and micro-prudential policies

©

Approach: Nesting model



“Nesting” Model

o Technology
o A-K production function with a, > aj and adjustment costs
o TFP shocks (also called “capital quality shocks")
o growth rate and stochastic vol shocks (long-run risk)
o idiosyncratic shocks (nothing on this today)
o Markets

o Capital traded with shorting constraint
o Experts face “skin-in-the-game” equity issuance constraint

o Preferences
o Recursive utility, discount rate p, EIS 11, risk aversion
o Households and experts potentially different
o OLG for technical reasons
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Models Nested

©

Complete markets with long run risk
o Bansal & Yaron (2004)
o Hansen, Heaton & Li (2008)
Complete markets with heterogeneous preferences
o Longstaff & Wang (2012)
o Garleanu & Panageas (2015)
Incomplete market / limited participation
o Basak & Cuoco (1998)
o Kogan & Makarov & Uppal (2007)
o He & Krishnamurthy (2012)
Incomplete market / capital misallocation
o Brunnermeier & Sannikov (2014)
Complete markets for agg. risk with idiosyncratic shocks
o Di Tella (2017)

©

©

©

©



Overview of Solution Method

o Markov equilibrium — aggregate state vector X;:
o Exogenous states g; (growth), s; (agg. stochastic vol.), and ¢; (idio.
stochastic vol.)

o Endogenous state w; := 5—>;

No:+Nis (Wealth Share)
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Endogenous state partition due to occasionally-binding constraints



Overview of Solution Method

o Markov equilibrium — aggregate state vector X;:

o Exogenous states g; (growth), s; (agg. stochastic vol.), and ¢; (idio.
stochastic vol.)

N,
o Endogenous state w; := ﬁfv“
€, 5

(wealth share)
o "Value function” approach: V;(nj¢, Xt) = n};%f,-(Xt)

o (&, &p) solutions to second order non-linear PDEs — implicit FD
scheme with artificial time derivative (“false transient”)

o Each time-step: compute aggregate state dynamics and prices using
the value functions from the previous time-step

o Endogenous state partition due to occasionally-binding constraints

o Implementation in C+—+ allowing for HPC



Numerical Implementation: Value Functions

Statement of the problem. Scaled value functions &; solve PDEs like
0= Ki + Ai§j + Bi - 0x&i + trace[ G C0xe€i],  x = (W, g,5,9),

where the coefficients are:

Ki = Ki(x, e, §hy OxEe, OxEn)

Ai = Ai(x, e, Eny OxEe, OxEn)

B; = Bi(x,&e,&ny Ox€e, OxEn)

Ci = Ci(x,&e; En, OxEe, OxEn)
The dependence of A, B, C on (&, &) arises due to general equilibrium.
We solve this PDE system with a 2-step iterative approach:

o given coefficients, we solve the linear PDE and obtain {{;}i=c n
o given PDE solution {&;}i—e n we update coefficients



Numerical Implementation: Value Functions
Step 1. Augment the PDE with a “false transient,” which is an artificial
time-derivative 0;&;:
9:&i = Ki + Ai&i + Bi - 9,& + trace[ G (0, &,
where

Ki = Ki(x, e, §hy Ox€es OxEn)
= Ai(x; &e; En, OxEe, OxEn)
( )
( )

9>

BI BI X éeafhaa 5678 gh
CI CI X §e7§h78 5678 fh



Numerical Implementation: Value Functions
Step 2. Given an iterant or guess ( ét),g,(f)), we substitute the coefficients
(19, A, B0, ct)
deci = K\ + Ag + B 0.8 + trace[ () [V 00 €)),
where
K9 = Ki(x, 9,60, 0,60, 0.£(1)
A = Ai(x, 60,9, 0, 5“ )
= Bi(x, 6,61, 0.1, 0,64
(€0, 680, 0,69, 061



Numerical Implementation: Value Functions

Step 3. Discretize the time derivatives and write all spatial derivatives in

terms of f,(HA) (“implicit”, as opposed to “explicit” scheme), i.e.,
A §(t) A A ! A
S A K(t)+A(t)€(f+ ) B’_(t)_(‘)xéfpf )thr[C,-(t)Ci(t) axx/gl(ﬂr )]7
where
,(x (1), 619, 0,60, 0.7)

A“ Ailx, €8, €9, 0,0 5“ )

B = Bi(x, 6, &), 0.0, 0.£(1)

C,(t) — i(X7£ ght)aa g )

To insure scheme “monotonicity”,
o “Upwinding” for discretization of 8X£§t+A);

o Cross-partial derivatives computed using f,(t) and added into K,-(t)



Numerical Implementation: Value Functions

Step 4. By discretizing the spatial derivatives 8X§,(t+A) and 8XX/§,(HA),
the PDE becomes a system of linear equations in the unknown value
function at the discretization points:

1 AL 68 Z 0 | o

Solve this system for ( ff*“,gff*“). Coded with assistance from

Scheidegger (2011).



Numerical Implementation: Value Functions

Computational Considerations.
(1)

o Brownian information structure implies L;” is a highly sparse matrix,

with | — AL diagonally dominant for A sufficiently small
o Solving [1 — ALP] (4 = £ 1+ Ak

o direct approach: LU decomposition with PARDISO 6.0. See Kourounis,
Fuchs, Schenk (2018); Verbosio, De Coninck, Kourounis, Schenk
(2017); De Coninck, De Baets, Kourounis, Verbosio, Schenk,
Maenhout, and Fostier (2016); https://www.pardiso-project.org.

o iterative approach: conjugate gradient (CG) for symmetrized system,
using different preconditioners and utilizing initial guess from previous
time iteration.


https://www.pardiso-project.org

Numerical Implementation: Value Functions

LU versus CG. Solve [l - ALEt)} §ft+A) = gft) + AK,.(t) for f,(HA)

O Pardiso
10 O CG (No Smart Guess)
® CG (with Smart Guess)

Time (seconds)
o

. I L . I I L )
0 50 100 150 200 250 300 350 400
Number of iterations



Numerical Implementation: Value Functions

Time-step trade-off with CG. Lower A means more iterations to
converge, but better initial guesses in each iteration (and better matrix
conditioning).

oo
sassassa

oo

Total Time (minutes)

1000 2000 3000 4000 5000 6000 0075 0.1 02
Number of outer loop iterations Time step




Numerical Implementation: Value Functions

Other computational issues.

Explicit versus Implicit scheme
Preconditioners for CG

Non-uniform grids

GPU computing suited to explicit scheme

©
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Numerical Implementation: Constraints

Statement of the problem. Capital distribution s € [0, 1] and expert
equity issuance x € [x, 1] determine occasionally-binding constraints

0 =min(1 — K, —an)
0 = min(x — x, @e),

where «; is agent i's endogenous premium on capital (relative to financial
securities that replicate capital’s shocks)

Economic intuition.
o Experts hold all capital (k = 1) if and only if households obtain no
premium for holding it (v < 0)
o Experts issue as much equity as possible (x = x) if and only if their
inside equity premium exceeds the outside equity premium (e > 0)



Numerical Implementation: Constraints

Variational inequalities. Algebraic equations on part of the state space
(when constraints bind) and first-order non-linear elliptic PDEs on the
complement (when constraints are slack).

0 =min(1 — k, —ap)

0 = min(x — X, ae),
where

ap = Fh(X>’€7 aXH7X76XX)
Qe = Fe(Xﬂ%aaX/{?XaaXX)‘

Solution method.
o Explicit FD scheme with false transient and “CFL" condition, e.g.,
(r+8) _ (1)
K K
e mi G (7) (7) () (1)
X fm|n<1 R Fr(x, &\ 05\ X\ Oy x ))
o See Oberman (2006) for nonlinear first-order PDE schemes



Diagnostic Tools |

o Quantities
o Consumption/wealth ratio (c;/n;) (x)
o Investment rate ¢(x)
o Output growth g, (x)

o Prices

o Risk-free rate r(x)
o Risk-price vectors 7;(x) (one per agent)
o Capital price g(x)

o State dynamics

o Drift ux(x) and diffusion ox(x) of aggregate state vector
o Ergodic density f(x)



Diagnostic Tools Il

©

Transition dynamics and valuation through altering cashflow
exposure to shocks

©

Focused on stochastically growing cashflows Y;, C;, Ce ¢, Cp ¢

©

Shock-exposure elasticities: effect on future expected cashflow

o Shock-cost elasticities: effect on today's cashflow price

©

Shock-price elasticities: effect on log expected returns

o difference between shock-exposure and shock-cost elasticities
o pricing counterpart to impulse response functions



Diagnostic Tools Il

o Consider a martingale perturbation H; in direction v

[ (Xe)[|>
2
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Diagnostic Tools Il

o Consider a martingale perturbation H; in direction v

X, 2
dIogHtS:—HV(zt)Hdt—i—u(Xt)-dZt 0<t<s

dlog My = pum(Xe)dt + om(Xt) - dZ;
o1 M siv
em(x, t) 1= s!l_%g log E [MOHt\XO = x}
o Applications for a cash-flow C; received at time t
o Shock-exposure elasticity ec(x, t);

o Shock-cost elasticity esc(x, t);
o Shock-price elasticity ec(x, t) — esc(x, t)

o Two interpretations
o Altering the probability distribution of cashflow
o Altering the exposure of cashflow (Malliavin derivative)
o See Borovi¢ka-Hansen-Scheinkman (2014, Math and Fin Econ) for
equivalence to nonlinear IRFs under Brownian shocks



Baseline Model: 1D limited participation model

Baseline version of model is like Basak-Cuoco (1998)

o Experts are the only producers (i.e. ap = —o0)
o Skin-in-the-game constraint y = x = 1

o TFP shocks only

o log utility RRAy=1,EISy~ 1 =1



Baseline Model: 1D limited participation model
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o Compare

@ homogeneous RRA (v = 74) vs.
@ heterogeneous RRA (ve < vp)



Always vs. Occasionally Binding Constraints

Expert’s risk-retention x in the two models.

, X (e =71 =3) , X (Ye=1,7m =3)
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Always vs. Occasionally Binding Constraints

Proposition. If v, = 7, and w; is the only state variable (i.e.,
1-dimensional model), then Pr{3t : x; > x} = 0.

Numerical result so far. Proposition above holds even in higher
dimensions (i.e., (g¢, st) are state variables), as long as ¥ = 1, (same
EIS).
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o Compare

@ model with frictions (x = 0.5) vs.
@ model without frictions (x = 0)



Other Shocks and Financial Frictions

Expert’s and Household’s TFP risk prices me
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Other Shocks and Financial Frictions

Expert’s and Household’s volatility risk prices 7r£3), 7r,(73), along with

the “Single Agent” volatility risk price.
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o Compare the dynamic and long-run effects of s; on w;

@ diffusion of volatility o

@ mean-reversion of volatility shocks Ag
@ skin-in-the-game x

@ common risk aversion



Volatility Paradox

Volatility shock-exposure elasticity of w;.
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Volatility Paradox

Corr(w;, st) as a function of model parameters.
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Productivity vs. Risk-Tolerance

o Are the “expert” agents in the economy more productive or more
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Productivity vs. Risk-Tolerance

o Are the “expert” agents in the economy more productive or more
risk-tolerant?

o Economic setting of focus

©

Experts and households can both produce (i.e. ac > ap > —o0)

o No equity-issuance x = x =1
o Shocks to TFP level, growth rate, and volatility
o EISy~t=1

o Compare

@ experts more productive (2. > ap but ye = yp) vs.
@ experts more risk-tolerant (e < v, but a. = ap)
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Productivity vs. Risk-Tolerance

Expert’s TFP risk price 7r((91) in the two models.

7e: TFP Shock 7e: TFP Shock
1 1
s at 10th pot s at 10th pot
= = sat90th pct = = sat90th pct
0.8 N 0.8
06 06
0.4 S e - 0.4
= - ~ = ~ -~
=~ — ~ -~
02 = 02 &
0 0
0 01 02 03 04 05 06 0 01 02 03 04 05 06
w w

Note: adjusted other parameters to make the wealth distributions more
similar across the two models.



Productivity vs. Risk-Tolerance

TFP shock-exposure and -price elasticities of C; in both models.
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Productivity vs. Risk-Tolerance

TFP shock-exposure elasticity of C. ; in both models.
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Productivity vs. Risk-Tolerance

Volatility shock-exposure and -price elasticities of C; in both models.
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Productivity vs. Risk-Tolerance

Volatility shock-exposure elasticity of C.; in both models.
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Conclusion / Next Steps

o Additional computational explorations (e.g., GPU computing)
o Additional types of financial constraints (e.g., leverage constraints)

o User-friendly web application to compare and contrast models...

https://modelcomparisons.shinyapps.io/modelcomparisonssite/


https://modelcomparisons.shinyapps.io/modelcomparisonssite/

Technology

o Efficiency units of capital k; follow
dke = ke [(gt + te — 0) dt + /st0 - dZ4] (1)

o Exogenous state variables (s¢, g¢) follow

dgr = A\g(& — g¢)dt + \/stog - dZ; (2)
dSt = )\s(g — St)dt + \/50'5 . dZt (3)

o Adjustment costs: investment tqk;dt costs @ (i¢) k¢ dt in output



Markets

o Capital is freely traded (subject to no-shorting constraints), at price g
dqe = qtlpiq,edt + 0g,t - dZi] (4)
o Households facing dynamically complete markets, leading to SDF
dSht = —Shelredt + mht - dZy] (5)
o Experts face skin-in-the-game constraint via minimum risk retention:
Xt = X (6)
o Experts’ SDF differs from Households' SDF:
dSet = —Set[redt + et - dZy] (7)



Preferences and Single-Agent Problem

o Agent i will solve the following problem:

+o0
Uit = max E [/ w(ciss Uis) ds:|
{ki>0,¢;,0;,0;} .

dn;,t C
st. — = Mn,it —

i’t:| dt + on,ie - dZ;

nj ¢ nj ¢
qeki¢e
Wnyiye = re + (mR,ie — re) + 0i¢ - 7y
nit
Cltk: t
On,i,t = R,t + ef,t
njt
0i¢ € O

o Financial constraint set ©; ;:
o ©; = {0}: agent cannot issue “equity” securities
0 Oy ={(xt— l)qfk’ YOR,t, Xt > X}: “skin-in-the-game" constraint

0 O = RY: unconstralned agent



