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Today’s Agenda

1. Overview of the project
2. Today’s outline

1. Continuous-time recursive utility (Du�e-Epstein-Zin)
2. Baseline model with complete markets
3. Elasticity of intertemporal substitution
4. Introduction to shock elasticities as a diagnostic tool



Project overview

• Research Goal: Compare/contrast implications of DSGE models with
�nancial frictions through study of their non-linear transmission
mechanisms

• Models of Focus
• Continuous time with Brownian shocks
• Financial intermediaries
• Heterogeneous productivity, market access and preferences

• Comparisons
• Macroeconomic quantity implications
• Asset pricing implications
• Welfare consequences and policy rami�cations

• Approach: Nesting model
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Recursive utility

1. Discrete-time Kreps-Porteus recursive preference speci�cation

Ut =
[
[1− exp(−δε)] (Ct)1−ρ + exp(−δε)R(Ut+ε | Ft)1−ρ

] 1
1−ρ

R(Ut+ε | Ft) =
(
E
[
(Ut+ε)1−γ | Ft

]) 1
1−γ

2. R(Ut+ε | Ft): certainty equivalent with parameter γ
3. Recursion governed by 3 key parameters

• δ – subjective discount rate
• 1/ρ – IES
• γ – relative risk aversion

4. Special case: ρ = γ

Ut =

(
E
[
δ

∫ ∞
0

exp(−δs) (Ct+s)1−γ ds | Ft
]) 1

1−γ



Recursive utility risk adjustment

R(Ut+ε | Ft) =
(
E
[
(Ut+ε)1−γ | Ft

]) 1
1−γ

1. Construct logarithmic counterpart

r(logUt+ε) =
1

1− γ logE (exp [(1− γ) logUt+ε] | Ft)

2. Posit dUt = Utµu,tdt+ Utσu,t · dBt
3. Ito’s Lemma: d logUt = µu,tdt− 1

2 |σu,t|
2dt+ σu,t · dBt.

4. Derivative: d
dε r(logUt+ε)|ε=0 = µu,t − γ

2 |σu,t|
2

Includes an adjustment for the local variance.



Continuous-time recursion (Duffie, Epstein, Lions)

Recall

Ut =
[
[1− exp(−δε)] (Ct)1−ρ + exp(−δε)R(Ut+ε | Ft)1−ρ

] 1
1−ρ

1. Logarithmic counterpart

logUt

=
1

1− ρ log
[
[1− exp(−δε)] (Ct)1−ρ + exp(−δε) exp [(1− ρ)r(logUt+ε | Ft)]

]
2. Subtract logUt from both sides and di�erentiate with respect to ε:

0 =
δ

1− ρ

[(
Ct
Ut

)1−ρ
− 1
]

+ µu,t −
γ

2 |σu,t|
2

3. ρ = 1 limit
0 = δ (log Ct − logUt) + µu,t −

γ

2 |σu,t|
2



Stochastic discount factor over an interval

1. Use homogeneity of the utility recursion and compute three marginal
utilities: associated with the two CES recursions:

MCt = [1− exp(−δε)](Ct)−ρ(Ut)ρ

MRt = exp(−δε)(Rt)−ρ(Ut)ρ

MUt,t+ε = (Ut+ε)−γ (Rt)γ

where Rt is the date t risk adjusted continuation value.
2. Form the stochastic discount ratio as

St+ε
St

=
MRtMUt,t+εMCt+ε

MCt

= exp(−εδ)

(
Ct+ε
Ct

)−ρ [ Ut+ε
R (Ut+ε | Ft)

]ρ−γ



Stochastic discount factor

1. Discrete-time SDF over an interval ε:

St+ε
St

= exp(−εδ)

(
Ct+ε
Ct

)−ρ [ Ut+ε
R (Ut+ε | Ft)

]ρ−γ
2. Depict continuous-time evolution of SDF as:

dSt = Stµs,tdt+ Stσs,t · dBt

3. Depict a valuation or cumulative return process:

dAt = Atµa,tdt+ Atσa,t · dBt.

where AS is a positive martingale. Martingale restriction:

µa,t + µs,t + σa,t · σs,t = 0.

4. Risk free rate rt = −µs,t; risk price vector πt = −σs,t.



Stochastic discount factor characterization

Recall: St+ε

St = exp(−εδ)
(
Ct+ε

Ct

)−ρ [ Ut+ε

R(Ut+ε|Ft)

]ρ−γ
1. Consumption

d log Ct = µc,tdt−
1
2 |σc,t|

2dt+ σc,t · dBt

2. Continuation value

d logUt = µu,tdt−
1
2 |σu,t|

2dt+ σu,t · dBt

3. Local coe�cients (prices):

σs,t = −ρσc,t + (ρ− γ)σu,t

µs,t −
1
2 |σs,t|

2 = −δ − ρµc,t +
ρ

2 |σc,t|
2dt+

(ρ− γ)(γ − 1)

2 |σu,t|2



Long-run risk model with complete markets

1. The long-run risk processes (Z, V):

dZt = −λzZtdt+
√
Vtσz · dBt

dVt = −λv(Vt − 1)dt+
√
Vtσv · dBt

2. The A-K production technology with adjustment costs

dKt
Kt

=

[
Φ

(
It
Kt

)
+ Zt − αk

]
dt+

√
Vtσk · dBt

3. Φ is the concave and increasing installation cost function
4. The economy’s resource constraint:

Ct + It = aKt



Planner problem

1. State vector X .
= (Z, V)

2. Capital evolution in logarithms:

d log Kt =

[
Φ

(
It
Kt

)
+ Zt − αk −

Vt|σk|2

2

]
dt+

√
Vtσk · dBt

2. Homogeneity properties of the model lead to: logUt = log Kt + ξ(Xt).
3. HJB equation for planner problem:

0 = max
c+i=a

{
δ

1− ρ
(
c1−ρ exp ((ρ− 1)ξ)− 1

)
+ Φ(i) + z− αk −

1
2v|σk|

2

+µx · ∂xξ +
1
2tr (σ′x∂xx′ξσx) +

1− γ
2 |
√
vσk + σ′x∂xξ|2

}
where c (consumption-to-capital ratio) and i (investment-to-capital
ratio).



Aggregate Wealth

1. Marginal utility of consumption satis�es

MCt = δC−ρt Uρt

2. Use (i) Euler’s theorem and (ii) total wealth = value of capital stock to
obtain

QtKt =
Ut
MCt

=
1
δ

(
Ct
Kt

)ρ(Ut
Kt

)1−ρ
Kt

where Qt is the price of capital.
3. Return on wealth is exposed to direct shocks to the capital stock and

also to shocks to its value Qt.



Unitary elasticity

HJB equation for planner problem when ρ = 1

0 = max
c+i=a

{
δ (log c− ξ) + Φ(i) + z− αk −

1
2v|σk|

2

+µx · ∂xξ +
1
2tr (σ′x∂xx′ξσx) +

1− γ
2 |
√
vσk + σ′x∂xξ|2

}
where c (consumption-to-capital ratio) and i (investment-to-capital ratio).

1. i and c are constant independent of the Markov state.
2. A�ne value function: ξ(x) = β0 + β1 · x

2.1 The dependence on growth state variable β1zz satis�es:

β1zz =
(

1
δ + λz

)
z = E

[∫ ∞
0

exp(−δτ)Zt+τdτ | Zt = z
]

2.2 Coe�cient on the volatility state variable β1v satis�es a quadratic
equation



Sensitivity to changes ρ

Construct an expansion around ρ = 1.

1. The sign of ρ changes the quantity dynamics
2. Responses when ρ < 1

a. c∗ is decreasing in growth z
b. c∗ is increasing in volatility v

and conversely when ρ > 1.



Models of Asset Valuation

Two channels:

1. Stochastic growth modeled as a process G = {Gt} where Gt captures
growth between dates zero and t.

2. Stochastic discounting modeled as a process S = {St} where St
assigns risk-adjusted prices to cash �ows at date t.

Date zero prices of a payo� Gt are

Price = E (StGt|F0)

where F0 captures current period information.

Stochastic discounting re�ects investor preferences through the
intertemporal marginal rate of substitution for marginal investors.



Impulse Problem

Ragnar Frisch (1933):
There are several alternative ways in which one may approach the
impulse problem .... One way which I believe is particularly fruit-
ful and promising is to study what would become of the solution
of a determinate dynamic system if it were exposed to a stream
of erratic shocks that constantly upsets the continuous evolution,
and by so doing introduces into the system the energy necessary
to maintain the swings.

Irving Fisher (1930):
The manner in which risk operates upon time preference will dif-
fer, among other things, according to the particular periods in the
future to which the risk applies.



Diagnostic Tool

Transition dynamics and valuation through altering cash �ow exposure to
shocks.

1. Study implication on the price today of changing the exposure
tomorrow on a cash �ow at some future date.

2. Represent shock price elasticities by normalizing the exposure and
studying the impact on the logarithms of the expected returns.

3. Construct pricing counterpart to impulse response functions.



Unpack the Term Structure of Risk Premia

1. Proportional risk premium over horizon t:

logE
(
Gt
G0

)
− logE

(
StGt
S0G0

| F0

)
+ logE

(
St
S0
| F0

)
where the �rst term is the expected cash �ow growth, the second is
the value, and the third term is the negative of the expected risk-less
return all in logarithms.

2. Counterparts to impulse response functions pertinent to valuation:
2.1 shock-exposure elasticities
2.2 shock-price elasticities

These are the ingredients to risk premia, and they have a term
structure induced by the changes in the investment horizons.

Hansen-Scheinkman (Finance and Stochastics), Borovička and Hansen
((Journal of Econometrics), Borovička-Hansen-Scheinkman (Mathematical
and Financial Economics)



Construct Elasticities

1. Construct shock elasticities as counterparts to impulse response
functions

2. Use (exponential) martingale D(τ), perturbing an underlying positive
(multiplicative) process M over the time horizon [0, τ), where:

logMt =

∫ t

0
µm(Xs)ds+

∫ t

0
σm(Xs) · dBs

logD(τ)
t = −

∫ t∧τ

0

|σd(Xs)|2

2 ds+

∫ t∧τ

0
σd(Xs) · dBs

where E (|σd(Xt)|2) = 1.
3. Shock elasticity (for example, if σd = (1,0), then D(τ) perturbs in the

direction of the �rst shock):

εm(x, t) .
= lim
τ↓0

1
τ

logE
[
Mt

M0
D(τ)
t |X0 = x

]



Shock elasticity

εm(x, t) .
= lim
τ↓0

1
τ

logE
[
Mt

M0
D(τ)
t |X0 = x

]

Apply to a cash-�ow G, stochastic discount factor S and product SG

1. shock exposure elasticity εg(x, t);
2. shock cost elasticity εsg(x, t);
3. shock price elasticity εg(x, t)− εsg(x, t)



Interpret Elasticities

Recall
εm(x, t) = lim

τ↓0

1
τ

logE
[
Mt

M0
D(τ)
t |X0 = x

]
where D(τ) is an exponential martingale perturbation over the time
interval [0, τ).

Two interpretations:

1. Change in probability measure - local impulse response
2. Change in cash �ow exposure - local risk return

Depend on current state and horizon.



What do These Elasticities Contribute?

1. What shocks investors do care about as measured by expected return
compensation?

2. How do these compensations vary across states and over horizons?
3. How do the shadow compensation di�er across agent type?



Inputs for the computations

1. σk only depends on the �rst shock while σz depends on both shocks.
The numbers were chosen to better track the observed consumption
dynamics.

2. The computations used a �rst-order small noise, large risk aversion
parameterization. In this approximation γ only alters the implied
deterministic steady states and not the impulse responses to shocks.
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