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1 Introduction

Which shocks are the source of macroeconomic fluctuations? Much of the macroeconomic
literature points to aggregate shocks affecting representative firms or representative con-
sumers. Some example candidates are total factor productivity shocks, investment-specific
shocks, intertemporal preference shocks, labor supply shocks, price mark-up shocks, gov-
ernment spending shocks, and monetary policy shocks. These are the shocks used, for
example, in the seminal work of Smets and Wouters (2007). In the aftermath of the 2008
financial crisis, recent research has focused on the importance of financial or uncertainty
shocks, e.g., Jermann and Quadrini (2012) and Christiano, Motto and Rostagno (2014).

This paper joins a different literature that views aggregation failure as an important
source of business cycle fluctuations. In other words, firms or consumers are subject to
idiosyncratic shocks that do not “average out” in the aggregate. The motivation for doing
this stems from the direct evidence available on micro-level shocks and lack of direct, non-
structural evidence on macro-level shocks.

Non-aggregation can occur for a variety of reasons. For example, if there is a fat-tailed
size distribution, some idiosyncratic shocks are weighed heavily in aggregates (e.g., Gabaix
(2011)). Alternatively, highly concentrated network linkages can lead to extreme shock
propagation, which translates into aggregate volatility (e.g., Carvalho (2010) and Ace-
moglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012)).1

In this paper, I adopt a blend of these two philosophies. I model a continuum of corre-
lated but idiosyncratic shocks and think about aggregating these shocks against an endoge-
nous wealth distribution. The shocks are idiosyncratic microeconomic shocks, in the sense
that they aggregate to zero when weighed against the unit kernel. This kernel represents
the distribution of sizes or wealths, and this will be a key object in determining aggregate
volatility, as in the “granularity” hypothesis of Gabaix (2011). But the shocks are correlated
with each other, which is a reduced-form assumption meant to capture the possibility of an
underlying network of interlinkages, as in Acemoglu et al. (2012).

In the presence of such correlated idiosyncratic shocks, I prove a technical result driv-
ing all my main findings: for (almost) any non-unit kernel, the shocks do not aggregate.
In words, for any distribution of sizes or wealths besides the degenerate symmetric dis-
tribution, idiosyncratic shocks translate into aggregate fluctuations, which are the kernel-
weighted sum of the idiosyncratic shocks. Because of the assumed shock correlation struc-
ture, my economy features a non-aggregation result that does not require fat-tailed size dis-
tributions (“granularity”) or highly-concentrated production networks with critical nodes

1Other mechanisms are explored in the papers of Jovanovic (1987), Durlauf (1993), and Nirei (2006).
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(“network hubs”).
Economically, the non-degeneracy of the wealth distribution arises if and only if finan-

cial frictions are present. Due to moral hazard considerations, agents must bear some frac-
tion φ of the idiosyncratic risk embodied in the capital that they manage. This parameter
represents the “skin in the game” required for incentive provision. Because of this non-
diversifiability, the wealth distribution across agents cannot evolve symmetrically, even if
the economy starts with equally-distributed wealth. Thus, the entire wealth distribution
across agents becomes a state variable in dynamic equilibrium. This dynamic drifting apart
generates positive volatility of aggregate variables, due to the technical non-aggregation
result discussed above. Conversely, without moral hazard, or with perfect observability and
contractibility (such that φ = 0), the equilibrium wealth distribution becomes symmetric
and aggregate volatility vanishes.

My paper features a failure of the law of large numbers, which is a difference relative to
most of the extant literature. For example, in the granularity hypothesis of Gabaix (2011),
a law of large numbers still holds as the number of firms N →∞, but the standard central
limit theory does not hold.2 The network papers of Carvalho (2010) and Acemoglu et al.
(2012) also have a law of large numbers under most network structures.3 Those papers
consider the rate of decay in aggregate volatility as N gets large. In my model, even a
continuum of idiosyncratic shocks do not wash out in the aggregate.

To illustrate this difference, consider the following series of examples. In all of them,
there areN firms with sizes ωi, with average sizeN−1

∑N
i=1 ωi = 1. Each firm draws a shock

εi having volatility σ. Consider aggregate output growth g := N−1
∑N

i=1 ωiεi.
With iid shocks and equal sizes (ωi = 1 for all i), the standard deviation of g is σ/N1/2.

This fast decay of risk corresponds to the standard diversification arguments given in the
traditional macroeconomics literature.4

Now, suppose the size distribution if fat-tailed, in the following sense. The first firm
has ω1 = ρNα, with 0 < α, ρ < 1, so that its absolute size grows with the size of the
economy, but its relative size becomes negligible. Suppose the other firms are equal-sized,
so ωi = (N−ω1)/(N−1) for all i ∈ {2, . . . , N}. Then the standard deviation of g is (σ/(N−
1)1/2)

[
1− 2ρNα−1 +N(ρNα−1)2

]1/2, which asymptotically behaves like σ/N1/2 + ρσ/N1−α.
The second term, which can decay very slowly for α close to 1, arises due to the non-trivial

2This is also true for the papers cited above: Jovanovic (1987), Durlauf (1993), Nirei (2006).
3The prominent counterexample from those papers is the “star network” in which one firm is a supplier to

every other firm in the economy. In such a case, aggregate volatility does not vanish as N gets large because
the influence of that central supplier firm grows with the size of the economy.

4See, more generally, the irrelevance theorems of Dupor (1999), which arrive at the same diversification
conclusion even under input-output linkages.
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size of firm 1. This is the “granularity” argument of Gabaix (2011).
Next, suppose again that all firms are equal-sized (ωi = 1 for all i) but that the shocks

have some correlation. Indeed, let the shocks of all firms i 6= 1 depend on firm 1 via
εi = ρNα−1ε1 +

√
1− (ρNα−1)2ε̃i, where 0 < α, ρ < 1 and {ε̃i}i 6=1 are iid copies of ε1. Such

strong dependence might arise endogenously if the first firm is a key supplier to all other
firms in the economy, as in a “star network.” In this model, the standard deviation of g
is (σ/N1/2)

[
1 + N−1

N
(ρNα−1) + N−1

N
(N − 2)(ρNα−1)2

]1/2, which asymptotically behaves like
σ/N1/2 + ρσ/N1−α. In structural network models like Acemoglu et al. (2012), the deep
shocks are assumed independent, but linkages lead to behavior that looks as if the shocks
were correlated. This reduced-form example shows how such correlated shocks can lead to
slow decay in aggregate volatility.

My paper combines these arguments – correlated shocks and a non-trivial size distri-
bution – thus leading to a stronger form of non-aggregation than each of these theories
individually. The starting point of my paper is a reduced-form assumption that shocks are
correlated, but still idiosyncratic in the sense that Var(N−1

∑N
i=1 εi) → 0 as N → ∞. Over

time, due to financial frictions in the economy, the size distribution {ωi}Ni=1 endogenously
deviates from the symmetric distribution. My key technical result, under these assumptions,
is that Var(N−1

∑N
i=1 ωiεi) → 0 if and only if ωi = 1 for (essentially) all i. This technical

lemma drives the non-aggregation result in this paper.5

Relative to the network and granularity literatures, the relatively stronger non-aggregation
results of this paper can emerge out of relatively weaker primitive conditions. My shock de-
pendence structure features less prominent linkages than the “star network” example above.
My size distribution does not need to be fat-tailed as in the example above. By combining
insights, my paper can weaken the premises of the network and granularity arguments.

The remainder of the paper is organized as follows. Section 2 develops the correlated
shock structure and the economic environment. Section 3 then derives the equilibrium in
closed-form. Section 4 analyzes the equilibrium, focusing on the effect of financial frictions
on aggregate fluctuations. Section 5 concludes. Proofs are in Appendix A, unless indicated
otherwise.

2 Model Setup

Time is continuous t ≥ 0. The model features two groups of agents: experts (E) and house-
holds (H). Agents in each group are additionally indexed by i ∈ [0, 1], which will represent

5I work directly in the continuum limit i ∈ [0, 1] rather than directly taking N →∞.
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an agent’s location, to be described below. Experts invest in and manage capital. Because
of their higher productivity, they will typically be levered, borrowing from households in
the riskless bond market. Households are less productive at managing capital, and will typ-
ically abstain from production, instead holding fully diversified positions in expert outside
equity as well as riskless savings.

Preferences

Experts and households are infinitely-lived and have logarithmic utility over the single non-
durable consumption good (the numeraire). Mathematically,

Ut := Et
[ ∫ ∞

t

ρe−ρ(s−t) log(cs)ds
]
, ρ > 0. (1)

I assume experts and households have potentially different subjective discount rates ρE and
ρH .

Locations and Idiosyncratic Risk

Agents are arranged on a circle, which has locations indexed by i ∈ [0, 1]. Locations will be
special because they feature different shocks. The technical results of this section borrow
heavily from Khorrami (2018). All proofs of claims in this section are in Appendix B of that
paper.

Each location i has its own productive capital stock ki,t. The consumption good is pro-
duced in every location by the capital stock of that location, but the good is freely tradable
across locations. Similarly, capital stocks are tradable within and across locations.

Over time, shocks directly hit the evolution of ki,t. Capital held by an agent at location
i evolves dynamically as

dki,t = ki,t[ιi,tdt+ σdWi,t], (2)

where ιi,t is the desired investment rate andWi,t is the location-specific shock (more on this
below). These “capital-quality shocks” σdWi,t are a simple way to capture permanent pro-
ductivity shocks, without introducing additional state variables. Investment is not subject
to any adjustment costs.

I assume the idiosyncratic shock Wi,t has the following properties.

Assumption 1 (Shock Structure). Assume the following for W := {Wi,t : i ∈ [0, 1], t ≥ 0}.

(i) At each location i ∈ [0, 1], Wi,t is a standard Brownian motion, independent of Zt.
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(ii) For any two locations i, j ∈ [0, 1], the shock correlation is

corr(dWi,t, dWj,t) = 1− 6dist(i, j)(1− dist(i, j)),

where dist(i, j) := min(|i− j|, 1− |i− j|) is the distance on a circle of circumference 1.

(iii) Wi,t is continuous in (i, t) almost-surely, under the Euclidean distance metric on the cylin-
der, i.e., d̃ist((i, s), (j, t)) := [|s− t|2 + dist(i, j)2]1/2.

Given part (i) of Assumption 1, dWi,t is iid over time, for fixed location i. Part (ii)
of Assumption 1 means that the shock correlations between locations decrease with their
distance from one another.6 Nearer locations have higher shock correlations than further
locations. I will call W a Brownian cylinder, because it evolves on a circle over time, which
looks like a cylinder. A key question is whether any such stochastic process exists.

Lemma 2.1. The Brownian cylinder exists on some probability space.

With the properties in Assumption 1, we can establish that the Brownian cylinder W
contributes no aggregate risk.

Lemma 2.2. Under Assumption 1,
∫ 1

0
(dWi,t)di = 0 almost-surely.7

Given Lemma 2.2, the shock dWi,t is correlated across locations but washes out in the
aggregate, the sense in which it is idiosyncratic. However, this aggregation result is fragile.
This is the content of the following lemma, which is the linchpin in all of the equilibrium
results about aggregate fluctuations arising from idiosyncratic shocks.

Lemma 2.3. Let {ωi,t : i ∈ [0, 1], t ≥ 0} be a positive stochastic process satisfying
∫ 1

0
ωi,tdi = 1

for all t and continuous in (i, t) almost-surely. Then, Vart(
∫ 1

0
ωi,tdWi,tdi) = 0 if and only if

ωi,t = 1 for almost every i.

Lemma 2.3 says that, if there exists any positive measure subset of locations having a
non-degenerate size distribution, the aggregation of the Brownian cylinder against this size
kernel fails. This is important for my results because my model generates a non-degenerate
distribution of wealth over time. This will be the source of aggregate fluctuations.

6This presumption on the shock correlation owes to Gârleanu, Panageas and Yu (2015). Using the Brown-
ian bridge on a “circle,” they show how to construct discrete-time idiosyncratic shocks that are cross-sectionally
correlated but contain zero aggregate risk. In the process, they find that the dividend correlation is exactly
1−6dist(i, j)(1−dist(i, j)). The proof that there exists a process satisfying Assumption 1, Lemma 2.1, would
apply for any appropriate correlation function v(i, j) that depends only on dist(i, j) (i.e., stationary correlation
function).

7The notation “dWi,tdi” is shorthand for the correct notation “W (di, dt)” whereW is a measure on [0, 1]×R.
However, given the multiplicatively separable correlation structure in Assumption 1, writing “dWi,tdi” is also
valid.
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Return-on-Capital

A firm is just a collection of capital, which produces according to an “AK” technology. I
assume experts are more productive than households, so aE > aH . With zero capital ad-
justment costs, the unit price of capital is always equal to one, so there is a very simple
return on capital:

dRg
i,t = agdt+ σdWi,t, g ∈ {E,H}. (3)

Constant expected returns makes the analysis easier.

Outside Equity

Any agent (expert or household) that manages capital may partially finance their purchases
by issuing outside equity. Issuance is a way for an insider (whether that be an expert or
household) to shed some of the idiosyncratic risk associated with their capital holdings.

For simplicity, I assume that an insider issues a fixed fraction 1 − φ of their capital
holdings as outside equity and retains φ fraction as inside equity. With the fixed fraction,
insiders pay (1 − φ)dR̃i,t per unit of capital to the equity market, where dR̃i,t is the return
on outside equity (to be described below). Although I specify this friction exogenously,
such a fixed risk-sharing arrangement can be derived as the optimal short-term contract in
a standard moral hazard problem, as in Di Tella (2017). See also Appendix A of Khorrami
(2018). When φ = 0, there are no moral hazard frictions, which corresponds to perfect
observability and contractibility.8

The outside equity return is given by

dR̃i,t := (rt + γt)dt+ σdWi,t. (4)

A discussion of equation (4) is in order. First, notice that dR̃i,t has the same risk loadings
as dRE

i,t and dRH
i,t, which is why I have called this contract equity. Second, the expected

excess return required is given by γt, which is independent of location i, because I assume
that anytime experts or households access equity markets, they trade the complete market
portfolio of equity.

8Under the moral hazard interpretation, the restriction that experts keep φ fraction of capital risk on
their balance sheets is called a “skin-in-the-game” constraint. Given sufficient skin in the game, the exact
composition of outside contracts is irrelevant. Indeed, once moral hazard problems are resolved between
insiders and outsiders, the outside securities issued by households are indeterminate due to Modigliani-Miller
holding on these securities. In particular, there are no taxes, costs of default, incomplete financial markets,
or any other frictions that would violate MM, after agency problems are resolved. Therefore, the equity-like
contract is without loss of generality under this interpretation.
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Indeed, I do not allow an insider unrestricted location-specific trading positions in out-
side equity. Allowing this would remove all agency constraints. For example, an expert in
location i could short the equity of the expert in location i+ ε, for some ε arbitrarily small.
Since the correlations between location i and i + ε converge monotonically to 1 as ε → 0,
such a strategy can dissolve expert i’s idiosyncratic risk. Thus, agency considerations would
typically restrict the trading of equity securities to a diversified portfolio.9

This diversified portfolio pays

dR̃∗t = (rt + γt)dt+ σdZ∗R,t, (5)

where
dZ∗R,t =

∫ 1

0

λi,tdWi,t,

∫ 1

0

λi,tdi = 1, (6)

and λi,t is to be determined in equilibrium. In standard models with iid shocks, the idiosyn-
cratic risks would wash out in the aggregate, so Z∗R,t = 0 almost-surely. In such a case, dR̃t

is locally deterministic, and arbitrage dictates that γt = 0 as well. But λi,t 6= 1 on a positive
measure subset of [0, 1], as I will show in equilibrium. According to Lemma 2.3, this causes
aggregation to fail, and dZ∗R,t survives as an aggregate shock.

Expert Problem

Experts are the high-productivity agents in the economy. Some examples might be special-
ists in production and innovation, entrepreneurs, and certain types of financial profession-
als. On the asset side, experts hold capital that returns (3). On the liability side, experts
are financed by their own net worth as well as outside equity that pays (4). Experts are also
marginal in the risk-free bond market, at the interest rate rt. Finally, experts are allowed to
hold unrestricted positions in the market portfolio of outside equity.

9For an agent that chooses to hold no capital, holding the market equity portfolio is optimal. Indeed,
agents have symmetric risk preferences, their portfolio problems are scale-invariant, and the probability dis-
tribution of asset returns (capital, outside equity) is location-invariant. Using these facts, one can show that
all agents within a group (experts, households) hold positive quantities of capital or zero, regardless of lo-
cation. When households do hold capital, agency considerations would typically restrict them from taking
completely unrestricted positions in other locations’ equity, as with experts. Please see the discussion above.
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Combining the assumptions above, expert net worth nEi,t evolves as

dnEi,t = (nEi,trt − cEi,t)dt︸ ︷︷ ︸
consumption-savings

+ kEi,t(dR
E
i,t − rtdt)︸ ︷︷ ︸

capital holdings

(7)

− (1− φ)kEi,t(dR̃i,t − rtdt)︸ ︷︷ ︸
outside equity

+ θEi,tn
E
i,t(dR̃

∗
t − rtdt)︸ ︷︷ ︸

market indeces

,

Mathematically, experts solve
max

nE
i ,c

E
i ,k

E
i

UEi,t (8)

subject to (7), nEi,t ≥ 0, kEi,t ≥ 0, where UEi,t is given by the logarithmic utility function (1).

Household Problem

Households are the same as experts in every way, except they have a lower productivity
when managing capital. Thus, the household’s net worth evolves dynamically as follows:

dnHi,t = (nHi,trt − cHi,t)dt︸ ︷︷ ︸
consumption-savings

+ kHi,t(dR
H
i,t − rtdt)︸ ︷︷ ︸

capital holdings

(9)

− (1− φ)kHi,t(dR̃i,t − rtdt)︸ ︷︷ ︸
outside equity

+ θHi,tn
H
i,t(dR̃

∗
t − rtdt)︸ ︷︷ ︸

market indeces

.

Households solve
max

nH
i ,c

H
i ,k

H
i

UHi,t (10)

subject to (9), nHi,t ≥ 0, kHi,t ≥ 0, where UHi,t is given by the logarithmic utility function (1).

Limited Mobility

To generate aggregate fluctuations, I must prohibit net worth from flowing frictionlessly
across locations, in such a way as to equalize capital and wealth distributions. I make an
extreme version of this assumption below.

Assumption 2 (Limited Mobility). Experts and households cannot choose to move across
locations i. At Poisson rate δ > 0, agents independently move to another location i′, which is
chosen at random (according to the uniform distribution).

Under Assumption 2, idiosyncratic shocks will not wash out in aggregate. Khorrami
(2018) considers the polar opposite case where agents maymove costlessly across locations.
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In that case, it is possible to study a symmetric equilibrium, in which idiosyncratic shocks
do wash out in the aggregate.

3 Equilibrium

Definition 1. An equilibrium consists of price and allocation processes, adapted to the aggre-
gate and idiosyncratic shocks {(Zt,Wi,t) : i ∈ [0, 1], t ≥ 0}, such that all agents solve their
optimization problems and all markets clear. These objects consist of the interest rate rt, the
spread γt, capital holdings (kEi,t, k

H
i,t), and consumption choices (cEi,t, c

H
i,t). The market clearing

conditions at every point in time are as follows.

• Goods market:∫ 1

0

[aE − ιEi,t]kHi,tdi+

∫ 1

0

[aH − ιHi,t]kHi,tdi =

∫ 1

0

[cEi,t + cHi,t]di.

• Bond market: ∫ 1

0

[nEi,t + nHi,t]di =

∫ 1

0

[kEi,t + kHi,t]di.

• Equity market: ∫ 1

0

[θEi,tn
E
i,t + θHi,tn

H
i,t]di = (1− φ)

∫ 1

0

[kEi,t + kHi,t]di.

• Capital market:
kEi,t + kHi,t = ki,t, i ∈ [0, 1].

We proceed to construct an equilibrium. In short, because agents have log preferences
and scale-invariant portfolio choice problems, the equilibrium can be obtained in closed-
form. This is despite the presence of financial and mobility frictions.

To start, define the aggregates

KE,t :=

∫ 1

0

kEi,tdi and KH,t :=

∫ 1

0

kHi,tdi

NE,t :=

∫ 1

0

nEi,tdi and NH,t :=

∫ 1

0

nHi,tdi.

Because of scale-invariance of this economy, several equilibrium objects will scale with the
levels of total capital Kt := KE,t +KH,t and total wealth NE,t +NH,t. As such, let xt and ηt
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be defined by experts’ aggregated capital and wealth shares:

xt := KE,t/(KE,t +KH,t)

ηt := NE,t/(NE,t +NH,t).

In addition, description of the equilibrium requires variables pertaining to the distributions
of capital and wealth among experts and households:

ωi,t := ki,t/Kt

ηEi,t := nEi,t/NE,t

ηHi,t := nHi,t/NH,t.

The wealth share variables (ηt, {ηEi,t, ηHi,t : i ∈ [0, 1]})t≥0 are state variables for this econ-
omy, whereas the capital share variables (xt, {ωi,t : i ∈ [0, 1]}t≥0 are determined based on
the wealth shares, because capital holdings are choice variables for individual agents. Fur-
thermore, because these capital choice decisions are homogeneous in agents’ wealth, the
aggregate capital share xt can be determined simply from the aggregate wealth share ηt. By
contrast, the capital distribution across locations is determined by the wealth distribution
across locations. These results are collected in the following lemma.

Lemma 3.1. Let φ > 0, and let Assumptions 1 and 2 hold. Define expert and household
idiosyncratic risk prices

πE,t :=
aE − rt − (1− φ)γt

φσ
and πH,t :=

(aH − rt − (1− φ)γt
φσ

)+
. (11)

In equilibrium,

πE,t = min
(
φσ +

(1− ηt)(aE − aH)

φσ
,
φσ

ηt

)
(12)

πH,t = max
(
φσ − ηt(aE − aH)

φσ
, 0
)
. (13)

The aggregate capital distribution xt := KE,t/(KE,t +KH,t) is given by

xt = min
(
ηt

[
1 +

(1− ηt)(aE − aH)

φ2σ2

]
, 1
)
. (14)
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The location-specific capital distribution ωi,t := ki,t/Kt is given by

ωi,t =
1

φσ

[
ηtη

E
i,tπE,t + (1− ηt)ηHi,tπH,t

]
, ∀i ∈ [0, 1]. (15)

The following two lemmas characterize the evolutions of the state variables. To do this,
we must define the following aggregates of the Brownian cylinder, weighted against these
endogenous capital and wealth distributions:

dZ∗K,t :=

∫ 1

0

ωi,tdWi,tdi

dZ∗E,t :=

∫ 1

0

ηEi,tdWi,tdi

dZ∗H,t :=

∫ 1

0

ηHi,tdWi,tdi.

These “shocks” arise endogenously and are non-zero due to the unequal capital and wealth
shares, as we will see shortly.

Lemma 3.2. Aggregate capital evolves as

dKt = Kt

[
xtaE + (1− xt)aH − ηtρE − (1− ηt)ρH

]
dt+KtσdZ

∗
K,t. (16)

Note that dZ∗K,t = dZ∗R,t. Thus, the aggregate risk premium is given by

γt = (1− φ)σ2z2t , (17)

where z2t dt := Vart(dZ∗K,t).

Lemma 3.3. The aggregate wealth share ηt evolves as

dηt = ηt(1− ηt)
[
ρH − ρE + π2

E,t − π2
H,t + ηtΨ̄E,t − (1− ηt)Ψ̄H,t + (1− 2ηt)Ψ̄E,H,t

]
dt

+ ηt(1− ηt)
[
πE,tdZ

∗
E,t − πH,tdZ∗H,t

]
. (18)

where

Ψ̄E,tdt := Vart(d logNE,t)

Ψ̄H,tdt := Vart(d logNH,t)

Ψ̄E,H,tdt := Covt(d logNE,t, d logNH,t)
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are quadratic variations of aggregated wealths. The location-specific wealth shares (ηEi,t, η
H
i,t)

evolve as

dηEi,t = δ(ηEi,t)
−1(1− ηEi,t)dt+ ηEi,tπE,t

[
Φ̄E,t − ΦE,i,t

]
dt+ ηEi,tπE,t

[
dWi,t − dZ∗E,t

]
(19)

dηHi,t = δ(ηHi,t)
−1(1− ηHi,t)dt+ ηHi,tπH,t

[
Φ̄H,t − ΦH,i,t

]
dt+ ηHi,tπH,t

[
dWi,t − dZ∗H,t

]
, (20)

where

ΦE,i,tdt := Covt(dWi,t, d logNE,t)

ΦH,i,tdt := Covt(dWi,t, d logNH,t)

are quadratic covariations between wealth and the idiosyncratic shocks, and

Φ̄E,t :=

∫ 1

0

ΦE,i,tdi and Φ̄H,t :=

∫ 1

0

ΦH,i,tdi

aggregate these quadratic covariations.

Theorem 3.4. Let φ > 0, and let Assumptions 1 and 2 hold. There exists a unique equilibrium.

Since the evolutions of ηt and {ηEi,t, ηHi,t : i ∈ [0, 1]} are solved in terms of only their own
levels, we have obtained a closed-form solution to the equilibrium. Using this solution, we
can obtain a clean analysis of the endogenous aggregate fluctuations arising in equilibrium.

4 Analysis

This equilibrium generates several new results: (1) when diversification is imperfect, the
economy features endogenous aggregate volatility, even without aggregate shocks; (2) ag-
gregate volatility does not disappear even if agents have symmetric risk preferences and
perfect markets arise to hedge the endogenous risk; (3) when diversification is perfect, the
endogenous volatility disappears.

Proposition 4.1. Suppose φ > 0. Then, Vart(d logKt) > 0 and Vart(dηt) > 0.

In particular, even though there is no exogenous aggregate risk in the economy, ag-
gregate capital and the wealth distribution will feature volatility. This is because of the
endogenous risk arising from dZ∗K,t =

∫ 1

0
ωi,tdWi,tdi, dZ∗E,t =

∫ 1

0
ηEi,tdWi,tdi, and dZ∗H,t =∫ 1

0
ηHi,tdWi,tdi. The positive variance of these endogenous “shocks” relies on Lemma 2.3.
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The volatilities of these endogenous shocks are analogous to what Gabaix (2011) and
Carvalho and Gabaix (2013) have deemed “fundamental volatility,” which empirically ag-
gregates the idiosyncratic volatilities of individual firms against their sizes. In this model,
correlations between the idiosyncratic shocks of the individual entities (firms, individual
wealths) tend to amplify fundamental volatility beyond what iid shocks coupled with gran-
ularity would predict. Importantly, empirical methodologies to extract idiosyncratic shocks
as regression residuals have nothing to say about the cross-correlations between these resid-
uals. In particular, one cannot rule out arbitrary correlation structures such as the one
presented in this paper.

The result of Proposition 4.1 stems from the fact that unit weights ωi,t, ηEi,t, ηHi,t = 1 is not
possible for every i under Assumption 2, when agents are not freely mobile across locations.
Indeed, evolution equations (19)-(20) show that ηEi,t and ηHi,t are subject to idiosyncratic risk,
which stems from the fact that moral hazard requires holding non-trivial amounts of skin in
the game. The presence of idiosyncratic risk makes net worths fan out over time. Without
free mobility to equalize net worths across locations, the net worth distribution remains
non-degenerate. Similarly, equation (15) shows that ωi,t depends on ηEi,t and ηHi,t and thus
cannot be constant over time either By Lemma 2.3, this implies that weighed sums of the
idiosyncratic shocks {dWi,t : i ∈ [0, 1]} do not “wash out” in the aggregate.

This non-aggregation is a very sharp failure of the law of large numbers. It is more
dramatic than the “granularity” hypothesis of Gabaix (2011), in which the distribution of
weights needs to be sufficiently fat-tailed to induce aggregate volatility. My results are more
similar to Acemoglu et al. (2012), which argues that an input-output network structure may
generate aggregate risk through correlated outcomes. In this sense, the correlation struc-
ture assumed in {dWi,t : i ∈ [0, 1]} may be an outcome of an underlying network between
locations i. The difference here is that {dWi,t : i ∈ [0, 1]} is still an idiosyncratic shock, even
after accounting for the correlation structure, since

∫ 1

0
dWi,tdi = 0 almost-surely. Aggrega-

tion failure occurs dynamically, because immobility of agents across locations prevents an
equalization of location sizes after idiosyncratic shocks hit.

One possible criticism of Proposition 4.1 is that agents in the economy are not allowed to
hedge their exposures to the endogenously arising “shocks” dZ∗E,t and dZ∗H,t (recall: agents
can effectively trade on dZ∗K,t through the market portfolio of outside equity). Agents have
symmetric risk preferences (which include no hedging demands) and the model has no
exogenous aggregate fluctuations. Given the reasoning of Di Tella (2017), the presence
of frictionless markets for hedging all aggregate risks, including these endogenous risks,
should eliminate volatility in the wealth share ηt. In this economy, that logic fails, however.
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Corollary 4.2. Suppose the economy now includes frictionless markets for hedging dZ∗K,t,
dZ∗E,t, and dZ∗H,t. These hedging assets are in zero net supply. The statement of Proposition 4.1
still holds.

The basic intuition for Corollary 4.2 comes from the basic economy outlined above. In
particular, notice that the aggregate risk premium γt shows up symmetrically in (28)-(29)
and will cancel out in the evolution of ηt. Markets for trading claims on dZ∗E,t and dZ∗H,t,
which will have aggregate risk prices π∗E,t and π∗H,t, will be irrelevant to the drift of ηt.
Likewise, the non-zero diffusion of ηt, which comes from imperfect aggregation rather than
imperfect hedging, cannot be eliminated. The key is that agents cannot trade away their
idiosyncratic risks, and it is these risks which do not aggregate.

Recall the assumption that φ > 0 in Proposition 4.1. It turns out that if observability and
contractibility are perfect (φ = 0), then endogenous risk disappears. The following propo-
sition states the result, which implies the converse of Proposition 4.1 also holds. Hence,
aggregate volatility emerges if and only if risk-sharing is imperfect.

Proposition 4.3. Suppose φ = 0. Then, Vart(dηt) = 0. Furthermore, there exists an equilib-
rium in which Vart(d logKt) = 0 as well. Finally, if δ > 0, then all variables are asymptotically
constant as t→ 0.

In this sense, technologies that improve contracting (e.g., monitoring, legal frameworks)
are a substitute for mobility in reducing economic fluctuations. It is not necessary to have
agents move toward areas of low wealth if their portfolios can extend to those locations
from a distance.

Given Proposition 4.3, a natural conjecture is that aggregate volatility falls as risk-
sharing improves (i.e., φ falls). Is this conjecture correct? The crucial thing is πE,t = φσxt

ηt
is

increasing in φ. With lower risk compensation, the aggregate expert wealth share ηt drifts
downwards, see (18). This can actually increase aggregate volatility along the transition
path, especially if ρE > ρH . In that case, the negative drift ρH − ρE becomes a relatively
stronger force. This makes it more likely that capital will be misallocated (i.e., xt < 1) at
some point, even though experts’ need to hold less risk in capital as φ decreases.

Proposition 4.4. Suppose the economy is such that xt = 1. Suppose φ unexpectedly de-
creases. Then, there exists wealth distributions {ηEi,t, ηHi,t : i ∈ [0, 1]} such that Vart(d logKt)

and Vart(dηt) increase in the future.

15



Aggregate Fluctuations Paymon Khorrami

5 Conclusion

In this paper, I have shown that aggregate fluctuations can arise purely from a combination
of financial frictions and non-iid idiosyncratic shocks. The spatially-correlated shocks are
interpreted as the outcome of some unmodeled interactions between locations (e.g., geog-
raphy or industry). Without financial frictions, the shocks aggregate, highlighting a direct
role for financial development in reducing aggregate volatility. However, it is possible to
find situations where financial development can actually exacerbate aggregate volatility
before ultimately reducing it.
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A Proofs

Proof of Lemma 2.1. See Appendix B of Khorrami (2018).

Proof of Lemma 2.2. See Appendix B of Khorrami (2018).

Proof of Lemma 2.3. Suppose ωi,t = 1 for almost every i. Then, standard Itô integration results
imply

∫ 1
0 ωi,tdWi,tdi =

∫ 1
0 dWi,tdi = 0 almost-surely by Lemma 2.2. This proves necessity.

Now, suppose there is a positive measure subset of [0, 1] such that ωi,t 6= 1. Because ωi,t is
measurable and jointly continuous in (i, t), at least one subset of this subset is connected. Consider
this connected sub-subset and denote it by [a, b]. I claim that Vart[

∫ b
a ωi,tdWi,tdi] > 0. Indeed, the

variance-minimizing choice of {ωi,t : i ∈ [a, b]}, subject to
∫ b
a ωi,tdi = ω̄ > 0, is ωi,t = ω̄ for all

i ∈ [a, b]; see Gârleanu, Panageas and Yu (2015) for the solution to this problem allowing for point
masses also at the endpoints. But using the correlation function v(i, j) := 1−6 min(|i−j|, 1−|i−j|),
we have Vart[

∫ b
a ω̄dWi,tdi] = (1− |b− a|)2ω̄2 > 0.

Next, consider any strict subset S of [0, 1]\[a, b]. I claim Vart[
∫
S∪[a,b] ωi,tdWi,tdi] > 0. This

follows from the fact that, as S is a strict subset of [0, 1]\[a, b], and as ωi,t ≥ 0, we must have
corrt[

∫
S ωi,tdWi,tdi,

∫ b
a ωj,tdWj,tdj] > −1. But no two random variables with imperfect correla-

tion can be combined to yield a zero-variance portfolio, as the following calculation reveals. Let
m,n > 0, let Var(X) = σX and Var(Y ) = σY , and let corr(X,Y ) > −1. Then, Var(mX,nY ) >

(mσX − nσY )2 ≥ 0. This proves sufficiency of ωi,t = 1 for almost every i.

Proof of Lemma 3.1. First, when holding capital, agents earn the cash flow

kgi,t[(ag − rt − (1− φ)γt)dt+ φσdWi,t], g ∈ {E,H}.

Given log risk preferences, optimal capital choices are then given by the Merton formulas

kEi,t

nEi,t
=
πE,t
φσ

and
kHi,t

nHi,t
=
πH,t
φσ

, (21)

where πE,t and πH,t are defined in (11). The optimality of these portfolios in (21) follows from
standard log utility portfolio choice, with shorting constraints, as in Cvitanić and Karatzas (1992).

To obtain xt, aggregate the optimality conditions of experts:

xt = ηt
aE − rt − (1− φ)γt

φ2σ2
. (22)

By doing the same for households’ optimality condition, we obtain

1− xt = (1− ηt)
[aH − rt − (1− φ)γt]

+

φ2σ2
.

17



Aggregate Fluctuations Paymon Khorrami

By summing these conditions, we obtain an equation for rt. To write this equation explicitly, note
that xt < 1 if and only if rt < aH − (1− φ)γt, which by using the equation for rt, occurs if and only
if

ηt < η∗ :=
φ2σ2

aE − aH
. (23)

Thus,

rt = 1{ηt<η∗}

[
ηtaE + (1− ηt)aH − φ2σ2

]
+ 1{ηt≥η∗}

[
aE − η−1t φ2σ2

]
− (1− φ)γt. (24)

Substituting equation (24) back into (22), we solve completely for xt. The result is (14).
Finally, to determine the distribution of capital shares {ωi,t : i ∈ [0, 1]}, use (21) and the defini-

tions of (ηEi,t, η
H
i,t) to obtain (15).

Proof of Lemma 3.2. First, note that clearing the goods market (under Definition 1), we obtain

[xtaE + (1− xt)aH ]Kt − It = [ηtρE + (1− ηt)ρH ]Kt, (25)

where It :=
∫ 1
0 [kEi,tι

E
i,t + kHi,tι

H
i,t]di is aggregate investment. Indeed, given logarithmic utility, con-

sumptions are given by cgi,t = ρgn
g
i,t for g ∈ {E,H}. Since NE,t +NH,t = Kt, we obtain (25).

Next, aggregate capital evolves as follows:

dKt =

∫ 1

0
dki,tdi

= Itdt+ σKt

∫ 1

0
ωi,tdWi,tdi

= Kt[xtaE + (1− xt)aH − ηtρE − (1− ηt)ρH ]dt+KtσdZ
∗
K,t,

where the second line uses the definition of It, and the last line uses (25) and the definition dZ∗K,t :=∫ 1
0 ωi,tdWi,tdi.

Then, using equity market clearing (under Definition 1), the market portfolio of outside equity
consists of the following weights on location i:

λi,t = ωi,t,

Thus, the outside equity return (4) aggregates to (5), where dZ∗R,t :=
∫ 1
0 λi,tdWi,tdi = dZ∗K,t.

Finally, we obtain the risk premium γt. For agents’ holdings of the market portfolio of equity, we
have the optimal Merton portfolio formula

θgi,t =
γt
σ2z2t

.

When zt = 0, the equity portfolio is riskless and γt = 0 (in that case, we must set θgi,t to satisfy
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equity market clearing). To determine γt, we clear the equity market (under Definition 1) using this
optimal portfolio and obtain (17).

Proof of Lemma 3.3. First, we obtain the evolutions of nEi,t and nHi,t, the net worths at location i.
These are the same as individual net worths, after substituting the optimality conditions of experts
and households, plus the exogenous mobility from Assumption 2:

dnEi,t = nEi,t

[
rt − ρE − δ + (1− φ)γt + π2E,t

]
dt+ δNE,tdt

+ nEi,t

[
(1− φ)σdZ∗K,t + πE,tdZ

∗
E,t + πE,tdWi,t

]
(26)

dnHi,t = nHi,t

[
rt − ρH − δ + (1− φ)γt + π2H,t

]
dt+ δNH,tdt

+ nHi,t

[
(1− φ)σdZ∗K,t + πH,tdZ

∗
H,t + πH,tdWi,t

]
. (27)

Because πE,t and πH,t are location-invariant, these aggregate to

dNE,t = NE,t

[
rt − ρE + (1− φ)γt + π2E,t

]
dt+NE,t

[
(1− φ)σdZ∗K,t + πE,tdZ

∗
E,t

]
(28)

dNH,t = NH,t

[
rt − ρH + (1− φ)γt + π2H,t

]
dt+NH,t

[
(1− φ)σdZ∗K,t + πH,tdZ

∗
H,t

]
, (29)

Next, apply Itô’s formula to the definition ηt := NE,t/(NE,t +NH,t). The result is (18), where

Ψ̄E,t :=

∫ 1

0

∫ 1

0

(
ηEi,tπE,t + ωi,t(1− φ)σ

)(
ηEj,tπE,t + ωj,t(1− φ)σ

)
v(i, j)djdi

= Vart(d logNE,t)/dt

Ψ̄H,t :=

∫ 1

0

∫ 1

0

(
ηHi,tπH,t + ωi,t(1− φ)σ

)(
ηHj,tπH,t + ωj,t(1− φ)σ

)
v(i, j)djdi

= Vart(d logNH,t)/dt

Ψ̄E,H,t :=

∫ 1

0

∫ 1

0

(
ηEi,tπE,t + ωi,t(1− φ)σ

)(
ηHj,tπH,t + ωj,t(1− φ)σ

)
v(i, j)djdi

= Covt(d logNE,t, d logNH,t)/dt

represent the quadratic variations between d logNE,t and d logNH,t, as claimed. The function
v(i, j) := 1 − 6|i − j|(1 − |i − j|) is the shock correlation from Assumption 1. Importantly, notice
that these objects can be computed using only knowledge of (ηt, {ηEi,t, ηHi,t : i ∈ [0, 1]}).

Similarly, using Itô’s formula on the definitions ηEi,t := nEi,t/NE,t and ηHi,t := nHi,t/NH,t, we obtain
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(19) and (20), where

ΦE,i,t :=

∫ 1

0

(
ηEj,tπE,t + ωj,t(1− φ)σ

)
v(i, j)dj = Covt(dWi,t, d logNE,t)/dt

Φ̄E,t :=

∫ 1

0
ηEi,tΦE,i,tdi = Covt(dZ∗E,t, d logNE,t)/dt

ΦH,i,t :=

∫ 1

0

(
ηHj,tπH,t + ωj,t(1− φ)σ

)
v(i, j)dj = Covt(dWi,t, d logNH,t)/dt

Φ̄H,t :=

∫ 1

0
ηHi,tΦH,i,tdi = Covt(dZ∗H,t, d logNH,t)/dt

are quadratic variations arising from the endogenous shocks. As with dηt, notice that these objects
can be computed using only knowledge of (ηt, {ηEi,t, ηHi,t : i ∈ [0, 1]}). Consequently, the joint process
(ηt, {ηEi,t, ηHi,t : i ∈ [0, 1]})t≥0 is an infinite-dimensional diffusion process.

Proof of Theorem 3.4. The result follows from the facts that (i) with logarithmic utility, all agents’
portfolio and consumption choices are uniquely determined as described in the previous lemmas;
and (ii) all state variable evolutions are uniquely determined in terms of their own values and those
of the other states, i.e., (ηt, {ηEi,t, ηHi,t : i ∈ [0, 1]})t≥0 is an infinite-dimensional diffusion process.

Proof of Proposition 4.1. First note that Property (iii) of Assumption 1 implies the fields {ωi,t : t ≥
0, i ∈ [0, 1]}, {ηEi,t : t ≥ 0, i ∈ [0, 1]}, and {ηHi,t : t ≥ 0, i ∈ [0, 1]} are all continuous in (i, t) almost-
surely.

Then, it suffices to show that φ > 0 implies ηEi,t 6= 1 and ηHi,t 6= 1 on a positive-measure set, for
almost any t. Indeed, dZ∗K,t, dZ

∗
E,t, and dZ

∗
H,t depend on the distributions {ωi,t : i ∈ [0, 1]}, {ηEi,t :

i ∈ [0, 1]}, and {ηHi,t : i ∈ [0, 1]}, respectively. Furthermore formula (15) links these distributions
directly, at each location i. Thus, if {ηEi,t : i ∈ [0, 1]} and {ηHi,t : i ∈ [0, 1]} both are different from 1 on
a positive-measure set, all three distributions are. Using Lemma 2.3, we have that the variances of
dZ∗K,t, dZ

∗
E,t, and dZ

∗
H,t are all positive. Consequently, using (16) and (18), the variances of d logKt

and d log ηt are positive.
To find the positive-measure subset, consider that each i has a corresponding unique location

z(i) such that Cov[dWi,t, dWz(i),t] = 0. Consequently, Bi,t := (Wi,t − Wz(i),t)/
√

2 is a standard
Brownian motion. Thus, the Itô process d log ηEi,t− d log ηEz(i),t = πE,t[(ΦE,z(i),t−ΦE,i,t)dt+

√
2dBi,t]

has non-zero quadratic variation, hence infinite first-order variation. As a result, the set of times
t ∈ [0, T ] on which both of the pair (ηEi,t, η

E
z(i),t) can be equal to 1 has Lebesgue-measure zero. By

extension, this property holds for all rational location indexes i ∈ Q ∩ [0, 1]. In other words,

meas{t ∈ [0, T ] : ηEi,t = ηEz(i),t = 1 for any i ∈ Q ∩ [0, 1]} = 0, almost-surely.

Consider the complementary set of times, of measure T . Continuity of {ηEi,t : i ∈ [0, 1]} implies there
exists random functions m(i) and n(i), with m(i) < n(i) almost-surely, such that ηEj,t 6= 1 for all
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j ∈ (m(i), n(i)) and all i ∈ Q ∩ [0, 1]. The union

E :=
⋃

i∈Q∩[0,1]

(m(i), n(i))

is thus a positive-measure set on almost all times t. An identical argument holds for ηHi,t.

Proof of Corollary 4.2. One may re-derive the equilibrium assuming markets exist for trading claims
on dZ∗K , dZ

∗
E , and dZ

∗
H . Importantly, d log ηEi,t− d log ηEj,t and d log ηHi,t− d log ηHj,t have the same non-

zero exposure to dWi,t−dWj,t as in the no-hedging equilibrium. Examining the proof of Proposition
4.1, all the arguments go through as before.

Proof of Proposition 4.3. Using formula (23), we have η∗ = 0 when φ = 0. Hence, as long as ηt > 0,
one can verify that πE,t = πH,t = 0 and xt = 0 for all t. Using formula (18), we have that dηt is
locally deterministic. This proves Vart[dηt] = 0. Furthermore, Ψ̄E,t = Ψ̄H,t = Ψ̄E,H,t = σ2z2t . Since
ρE > ρH , we have dηt = ηt(1− ηt)(ρH − ρE)dt < 0. Thus, ηt → 0 as t→ 0.

It remains to show that, by Lemma 2.3, there exists an equilibrium in which the capital distri-
bution is equal to unity, i.e., ωi,t = 1 for almost all i. But this holds because (i) the aggregate risk in
capital can be hedged by experts and households, and (ii) the idiosyncratic risk held as inside equity
is zero by φ = 0. Hence, experts are indifferent between holding capital and investing in riskless
bonds. It is weakly optimal for all experts to hold the same capital-net-worth ratio.

Finally, using the fact that when πE,t = πH,t = 0, equations (19) and (20) become

dηEi,t = δ(ηEi,t)
−1(1− ηEi,t)dt

dηHi,t = δ(ηHi,t)
−1(1− ηHi,t)dt.

Hence, if δ > 0 as stated in Assumption 2, then ηEi,t → 1 and ηHi,t → 1 for all i. This shows that all
variables are asymptotically constant, as claimed.

Proof of Proposition 4.4. Under construction.
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