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Abstract

We show that when arbitrage opportunities arise in segmented markets, asset prices
suddenly become susceptible to self-fulfilling volatility. For this volatility to come
about, a key assumption, in addition to segmented markets, is that some stabi-
lizing force keeps price-dividend ratios stationary, which is a natural property of
many macrofinance models. For example, if high valuations lead to higher dividend
growth rates, even slightly, self-fulfilling dynamics are possible. The dynamics we
uncover predict that one asset boom-bust cycle often begets another cycle in a differ-
ent asset class or geographic location. Finally, the size of arbitrage profits and degree
of limits-to-arbitrage are tightly related to the magnitude of self-fulfilling volatility.
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Many empirical studies have documented that capital markets are, at least somewhat,
segmented. Not all capital market participants broadly diversify in all markets. And the
marginal investor in some markets trades exclusively in them. For example, there is
the well known “home bias” among international holdings (French and Poterba, 1991).
Investors mainly hold domestic rather than foreign assets. In mortgage-backed securi-
ties markets, Gabaix et al. (2007) find that a stochastic discount factor that is based on
MBS-specific risk better explains the price of prepayment risk rather than one based on
aggregate wealth. Describing the market for catastrophe insurance, Froot and O’Connell
(1999) find that most corporations and households self-retain exposures to catastrophic
risk. The implication is that the vast majority of catastrophe risk in the US economy
is not adequately shared. Evidence of segmentation has also been found in Treasury
markets (Hu et al., 2013) and convertible bond markets (Mitchell et al., 2007).

Meanwhile, market segmentation has been routinely cited, both theoretically and
empirically, as a crucial reason why arbitrage opportunities develop. Investors with dif-
ferent preferences or beliefs who trade in separate markets are likely to set different
prices for the same asset. Without arbitrageurs who can frictionlessly trade between
markets, these price discrepancies persist. Chen and Knez (1995) go so far as to theo-
retically define market segmentation as the presence of arbitrage between markets. In
their model, Gromb and Vayanos (2002) rely on segmented markets to form an arbi-
trage when investors in separate markets are hit with different demand shocks to hold
identical assets. Empirically, Ofek et al. (2004) find violations of put-call parity in US
stock options that are consistent with segmentation between equity and options mar-
kets. Makarov and Schoar (2020) argue that segmentation of cryptocurrency markets
explains recurrent arbitrage opportunities between coins from different countries.

In this paper, we uncover a novel aspect of capital market segmentation. We show
that when arbitrage opportunities do arise in segmented markets, asset prices suddenly
become vulnerable to self-fulfilling volatility. Our model thus helps explain excess
volatility in environments where specialists, rather than broadly diversified investors,
set prices or where arbitrage capital is slow moving.

In our model, investors are rational and infinitely-lived inside an endowment econ-
omy. There are N locations with distinct local asset markets that are segmented. To
make our results transparent, we assume that the endowments are locally deterministic,
but all our findings continue to hold with aggregate uncertainty. Relative to existing
frameworks, our model adds one twist that connects each asset’s cash flow growth rate
to its valuation. Specifically, the growth rate of an asset’s cash flows is assumed to be
positively related to its endogenous valuation (price-dividend ratio). We first explain the
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purpose of this assumption and then discuss its reasonableness.
Without a growth-valuation link, asset prices are uniquely determined by their fun-

damental values because any other price is associated with a violation of transversality.
An asset with a price above its fundamental value features a high price-dividend ratio.
Prices must continuously rise without bound to satisfy investors and justify the high
price. Long-lived investors understand this instability, which is why a unique funda-
mental value prevails, and self-fulfilling volatility is not possible.

With a growth-valuation link, asset prices still obey fundamental values (our model is
bubble-free), but many fundamental values can be sustained in equilibrium. Intuitively, if
cash flows grow faster when prices rise, investors who trade a richly priced asset today
will tolerate future price declines because high future cash flow growth is enough to
satisfy their required returns. This growth-valuation link is a stabilizing force that keeps
price-dividend ratios stationary. Transversality is generically satisfied, which opens the
door to a multiplicity of fundamental valuations and self-fulfilling price volatility.

While unusual on its surface, a link between cash flow growth rates and valuations is
actually a natural property of many macrofinance models. One microfoundation comes
from the expansive literature on feedback effects between asset prices and corporate de-
cisions (see the survey in Bond et al., 2012). When managers can learn information from
stock or bond prices, they incorporate this data into their capital expenditure decisions.
The feedback between prices and investment creates a link between publicly available
prices and the cash flows underlying those prices. Another microfoundation stems from
the literature on “debt overhang” (e.g., Hennessy, 2004). High prices reduce the debt
overhang problem and boost investment, which raises growth rates. Yet another mi-
crofoundation is from the endogenous growth literature on “creative destruction” (e.g.,
Aghion and Howitt, 1992). High prices of incumbent firms discourage new firm entry
and shrink the obsolescence rate of current products, which raises the growth rate of
existing firms’ cash flows. We explicitly analyze these latter two microfoundations in
our Internet Appendix.

Beyond these several microfoundations, we also emphasize that the relation between
cash flows and prices may be mild. For self-fulfilling volatility to occur in our core
analysis, growth rates need only be δx% above average when asset prices are x% above
average, where δ represents investors’ subjective discount rate. For instance, with δ =

0.01, growth rates need to be 0.1% above average when prices are 10% above average.
Given the discussion so far, readers may think that a growth-valuation link alone

permits self-fulfilling volatility that has nothing to do with market segmentation or ar-
bitrage. In fact, the presence of many segmented markets and cross-market arbitrage
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opportunities are essential for self-fulfilling volatility, a point we now address.
First, consider a single-location economy with cash flow yt. The price-dividend ratio

qt in this economy cannot feature self-fulfilling volatility, even with an assumed link
between qt and the growth rate of yt. Why? Suppose qt were to decline for reasons
unrelated to fundamental cash flows or discount rates. Having less wealth after the
shock, investors will want to cut their consumption ct. But in a closed economy, ct = yt.
In other words, there is no mechanism to absorb the desired savings by investors, which
must be zero in aggregate.

Similarly, in a multiple-location economy evolving under autarky, each location be-
haves like its own closed economy. Building off the logic from a single-location economy,
self-fulfilling volatility cannot exist if all markets are completely segmented.

But if there exists an integrated bond market, then self-fulfilling volatility is possible
in segmented asset markets. To understand the mechanism, imagine a simplified version
of our model with just two markets. One group of investors (A-types) only trades in
market A, whereas the second group (B-types) only trades in market B. Suppose the
price of asset A declines for reasons unrelated to cash flows or discount rates. Having
less wealth after the shock, A-types will want to cut consumption and save a portion of
asset A’s cash flows in the bond market. By bond market clearing, B-types must borrow
this amount and consume more than asset B’s cash flows. This consumption plan is only
optimal, however, if B-types’ wealth has increased, which requires markets A and B to
experience equal and opposite changes in value. Thus, the self-fulfilling volatility in our
setting is characterized by redistribution of wealth between markets—see Figure 1 below.

There are three novel predictions emerging out of this discussion surrounding wealth
redistribution. First, asset booms are less likely to be synchronized global phenomena
and more likely to be found in individual sectors and geographic locations.

Second, in the two-location example of Figure 1, a self-fulfilling crash in one asset
market necessarily precedes a boom in another. More broadly, an asset boom-bust cycle
often foreshadows another cycle in a different asset class or different geographic location.

Third, wealth redistribution suggests a deep connection between self-fulfilling volatil-
ity and arbitrage. If shocks to assets A and B are offsetting, an investor can construct
a riskless portfolio containing both. This portfolio must generate arbitrage profits. The
reason why is that A-types demand a risk premium on the self-fulfilling volatility of
asset A, and B-types similarly demand a premium on asset B. And so, a portfolio that
purchases both assets A and B will earn more than the riskless rate, with the magnitude
of the arbitrage tightly related to the magnitude of self-fulfilling volatility. We explore
this particular prediction at length in the paper.
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Figure 1: Wealth Redistribution Mechanism

Market B
<latexit sha1_base64="KkTD64uc+fJk3CZWg/f0vIPNcOc=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsspCTa2JhgIkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0fXMf3ji2ohY3eM44X5EB0qEglG00uMt1SOOpHxV7hVLbsWdg6wSLyMlyNDoFb+6/ZilEVfIJDWm47kJ+hOqUTDJp4VuanhC2YgOeMdSRSNu/Mn84ik5s0qfhLG2pZDM1d8TExoZM44C2xlRHJplbyb+53VSDGv+RKgkRa7YYlGYSoIxmb1P+kJzhnJsCWVa2FsJG1JNGdqQCjYEb/nlVdKqVryLSvWuWqrXsjjycAKncA4eXEIdbqABTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAr84/k</latexit>Market A

<latexit sha1_base64="lKgIfEgoe7+ADRdACp2Otf49asQ=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsspMTY2JhgIkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0fXMf3ji2ohY3eM44X5EB0qEglG00uMt1SOOpHxV7hVLbsWdg6wSLyMlyNDoFb+6/ZilEVfIJDWm47kJ+hOqUTDJp4VuanhC2YgOeMdSRSNu/Mn84ik5s0qfhLG2pZDM1d8TExoZM44C2xlRHJplbyb+53VSDGv+RKgkRa7YYlGYSoIxmb1P+kJzhnJsCWVa2FsJG1JNGdqQCjYEb/nlVdKqVryLSvWuWqrXsjjycAKncA4eXEIdbqABTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAqbo/j</latexit>

Bond Market
<latexit sha1_base64="yzzcW2heyDLxxEgEscdr6TTbjQk=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0nqwR6LXrwIFewHpKFsNpt26WY37E6EEvozvHhQxKu/xpv/xm2bg7Y+GHi8N8PMvDAV3IDrfjuljc2t7Z3ybmVv/+DwqHp80jUq05R1qBJK90NimOCSdYCDYP1UM5KEgvXCye3c7z0xbbiSjzBNWZCQkeQxpwSs5N8oGeF7oicMhtWaW3cXwOvEK0gNFWgPq1+DSNEsYRKoIMb4nptCkBMNnAo2qwwyw1JCJ2TEfEslSZgJ8sXJM3xhlQjHStuSgBfq74mcJMZMk9B2JgTGZtWbi/95fgZxM8i5TDNgki4XxZnAoPD8fxxxzSiIqSWEam5vxXRMNKFgU6rYELzVl9dJt1H3ruqNh0at1SziKKMzdI4ukYeuUQvdoTbqIIoUekav6M0B58V5dz6WrSWnmDlFf+B8/gDNSZDn</latexit>

wealthA,t
<latexit sha1_base64="lKtA3SyBSu9YtgRgmqDZ65QIi1c=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4kJJUwR4rXjxWsB/QlrDZTtulm03Ynagh1L/ixYMiXv0h3vw3bj8O2vpg4PHeDDPzglhwja77ba2srq1vbOa28ts7u3v79sFhQ0eJYlBnkYhUK6AaBJdQR44CWrECGgYCmsHoeuI370FpHsk7TGPohnQgeZ8zikby7UIH4RGzB6ACh2M/uzrDsW8X3ZI7hbNMvDkpkjlqvv3V6UUsCUEiE1TrtufG2M2oQs4EjPOdRENM2YgOoG2opCHobjY9fuycGKXn9CNlSqIzVX9PZDTUOg0D0xlSHOpFbyL+57UT7Fe6GZdxgiDZbFE/EQ5GziQJp8cVMBSpIZQpbm512JAqytDklTcheIsvL5NGueSdl8q3F8VqZR5HjhyRY3JKPHJJquSG1EidMJKSZ/JK3qwn68V6tz5mrSvWfKZA/sD6/AFpoZU5</latexit>

wealthB,t
<latexit sha1_base64="7bVJ3AVhVn4xj2tXuGnI9YuwE8s=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4kJJUwR6LXjxWsB/QlrDZTtulm03Ynagh1L/ixYMiXv0h3vw3bj8O2vpg4PHeDDPzglhwja77ba2srq1vbOa28ts7u3v79sFhQ0eJYlBnkYhUK6AaBJdQR44CWrECGgYCmsHoeuI370FpHsk7TGPohnQgeZ8zikby7UIH4RGzB6ACh2M/uzrDsW8X3ZI7hbNMvDkpkjlqvv3V6UUsCUEiE1TrtufG2M2oQs4EjPOdRENM2YgOoG2opCHobjY9fuycGKXn9CNlSqIzVX9PZDTUOg0D0xlSHOpFbyL+57UT7Fe6GZdxgiDZbFE/EQ5GziQJp8cVMBSpIZQpbm512JAqytDklTcheIsvL5NGueSdl8q3F8VqZR5HjhyRY3JKPHJJquSG1EidMJKSZ/JK3qwn68V6tz5mrSvWfKZA/sD6/AFrKJU6</latexit>

rt<latexit sha1_base64="5Bff8eb+dzyIMnL3zVo5lwagSAg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3qAg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxanzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxrPuZUEmKXLHlojCVBGMy/5sMheYM5dQSyrSwtxI2ppoytOmUbAje6svrpF2relfV2v11pVHP4yjCGZzDJXhwAw24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD2Zkjdc=</latexit>

price qA,t
<latexit sha1_base64="AEMLNXA0/TdseMhrR2S4Qwr0DAo=">AAAB/nicbVDLSgNBEJz1GeNrVTx5GQyCBwm7UTDHiBePEcwDkiXMTjrJkNmHM71iWAL+ihcPinj1O7z5N06SPWhiQUNR1U13lx9LodFxvq2l5ZXVtfXcRn5za3tn197br+soURxqPJKRavpMgxQh1FCghGasgAW+hIY/vJ74jQdQWkThHY5i8ALWD0VPcIZG6tiHbYRHTGMlONAxve+kV2c47tgFp+hMQReJm5ECyVDt2F/tbsSTAELkkmndcp0YvZQpFFzCON9ONMSMD1kfWoaGLADtpdPzx/TEKF3ai5SpEOlU/T2RskDrUeCbzoDhQM97E/E/r5Vgr+ylIowThJDPFvUSSTGikyxoVyjgKEeGMK6EuZXyAVOMo0ksb0Jw519eJPVS0T0vlm4vCpVyFkeOHJFjckpcckkq5IZUSY1wkpJn8krerCfrxXq3PmatS1Y2c0D+wPr8AR9klYw=</latexit>

price qB,t
<latexit sha1_base64="FIH6IAjpWMXHHNGTESR8RPE8kfw=">AAAB/nicbVDLSgNBEJz1GeNrVTx5GQyCBwm7UTDHoBePEcwDkiXMTjrJkNmHM71iWAL+ihcPinj1O7z5N06SPWhiQUNR1U13lx9LodFxvq2l5ZXVtfXcRn5za3tn197br+soURxqPJKRavpMgxQh1FCghGasgAW+hIY/vJ74jQdQWkThHY5i8ALWD0VPcIZG6tiHbYRHTGMlONAxve+kV2c47tgFp+hMQReJm5ECyVDt2F/tbsSTAELkkmndcp0YvZQpFFzCON9ONMSMD1kfWoaGLADtpdPzx/TEKF3ai5SpEOlU/T2RskDrUeCbzoDhQM97E/E/r5Vgr+ylIowThJDPFvUSSTGikyxoVyjgKEeGMK6EuZXyAVOMo0ksb0Jw519eJPVS0T0vlm4vCpVyFkeOHJFjckpcckkq5IZUSY1wkpJn8krerCfrxXq3PmatS1Y2c0D+wPr8ASDrlY0=</latexit>

cash flow yB,t
<latexit sha1_base64="Z2x3WKFxrlNg2RedwC7S9oJSPx4=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEF1KSKthl0Y3LCvYBbQiT6aQdOnkwc6OWENz4K25cKOLWr3Dn3zhts9DWAxcO59zLvfd4seAKLOvbKCwtr6yuFddLG5tb2zvm7l5LRYmkrEkjEcmORxQTPGRN4CBYJ5aMBJ5gbW90NfHbd0wqHoW3MI6ZE5BByH1OCWjJNQ96wB4gpUQNsS+ie5zhsZtenkLmmmWrYk2BF4mdkzLK0XDNr14/oknAQqCCKNW1rRiclEjgVLCs1EsUiwkdkQHrahqSgCknnb6Q4WOt9LEfSV0h4Kn6eyIlgVLjwNOdAYGhmvcm4n9eNwG/5qQ8jBNgIZ0t8hOBIcKTPHCfS0ZBjDUhVHJ9K6ZDIgkFnVpJh2DPv7xIWtWKfVap3pyX67U8jiI6REfoBNnoAtXRNWqgJqLoET2jV/RmPBkvxrvxMWstGPnMPvoD4/MH/yCXIQ==</latexit>

cash flow yA,t
<latexit sha1_base64="NvxepjBF9Lx9LBfX5CmErC/yESo=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEF1KSKthlxY3LCvYBbQiT6aQdOnkwc6OWENz4K25cKOLWr3Dn3zhts9DWAxcO59zLvfd4seAKLOvbKCwtr6yuFddLG5tb2zvm7l5LRYmkrEkjEcmORxQTPGRN4CBYJ5aMBJ5gbW90NfHbd0wqHoW3MI6ZE5BByH1OCWjJNQ96wB4gpUQNsS+ie5zhsZtenkLmmmWrYk2BF4mdkzLK0XDNr14/oknAQqCCKNW1rRiclEjgVLCs1EsUiwkdkQHrahqSgCknnb6Q4WOt9LEfSV0h4Kn6eyIlgVLjwNOdAYGhmvcm4n9eNwG/5qQ8jBNgIZ0t8hOBIcKTPHCfS0ZBjDUhVHJ9K6ZDIgkFnVpJh2DPv7xIWtWKfVap3pyX67U8jiI6REfoBNnoAtXRNWqgJqLoET2jV/RmPBkvxrvxMWstGPnMPvoD4/MH/ZmXIA==</latexit>

cA,t < yA,t
<latexit sha1_base64="/23plAsqVjs6k0XT+cDUBzxfKls=">AAAB+nicbZDLSsNAFIYnXmu9pbp0M1gEF1KSKtiFi4oblxXsBdoQJtNpO3QyCTMnSoh9FDcuFHHrk7jzbZy2WWjrDwMf/zmHc+YPYsE1OM63tbK6tr6xWdgqbu/s7u3bpYOWjhJFWZNGIlKdgGgmuGRN4CBYJ1aMhIFg7WB8M623H5jSPJL3kMbMC8lQ8gGnBIzl2yXqZ9dnMMFXOJ2Tb5edijMTXgY3hzLK1fDtr14/oknIJFBBtO66TgxeRhRwKtik2Es0iwkdkyHrGpQkZNrLZqdP8Ilx+ngQKfMk4Jn7eyIjodZpGJjOkMBIL9am5n+1bgKDmpdxGSfAJJ0vGiQCQ4SnOeA+V4yCSA0Qqri5FdMRUYSCSatoQnAXv7wMrWrFPa9U7y7K9VoeRwEdoWN0ilx0ieroFjVQE1H0iJ7RK3qznqwX6936mLeuWPnMIfoj6/MH50+TFw==</latexit>

cB,t > yB,t
<latexit sha1_base64="65uaGeXHdLbO0U9PxiCamhf7E1s=">AAAB+nicbZDLSsNAFIYnXmu9pbp0M1gEF1KSKtiVFN24rGAv0IYwmU7boZNJmDlRQuyjuHGhiFufxJ1v47TNQlt/GPj4zzmcM38QC67Bcb6tldW19Y3NwlZxe2d3b98uHbR0lCjKmjQSkeoERDPBJWsCB8E6sWIkDARrB+Obab39wJTmkbyHNGZeSIaSDzglYCzfLlE/uz6DCb7C6Zx8u+xUnJnwMrg5lFGuhm9/9foRTUImgQqiddd1YvAyooBTwSbFXqJZTOiYDFnXoCQh0142O32CT4zTx4NImScBz9zfExkJtU7DwHSGBEZ6sTY1/6t1ExjUvIzLOAEm6XzRIBEYIjzNAfe5YhREaoBQxc2tmI6IIhRMWkUTgrv45WVoVSvueaV6d1Gu1/I4CugIHaNT5KJLVEe3qIGaiKJH9Ixe0Zv1ZL1Y79bHvHXFymcO0R9Znz/tf5Mb</latexit>

Normally, the presence of large arbitrage profits encourages relative-value traders to
enter. If an arbitrageur could trade freely across segmented markets, the arbitrage would
never appear and neither would self-fulfilling volatility. But if the arbitrageur encoun-
tered the kinds of frictions articulated in the literature on the limits of arbitrage (e.g.,
margin requirements, search frictions, myopic clients), some arbitrage profits would re-
main. As a result, self-fulfilling volatility will not be fully eliminated. Quantitatively,
we show that the magnitude of the frictions limiting arbitrage—as measured by the
cross-sectional dispersion in state-price densities—disciplines the magnitude of viable
self-fulfilling volatility.

Contribution to the literature. Our paper contributes to two groups of literature: (1) lim-
its to arbitrage in financial markets; and (2) theories of self-fulfilling dynamics. The start-
ing point of the limits-to-arbitrage literature is the plethora of observed arbitrage trades.
Examples of such trades include spinoffs (Lamont and Thaler, 2003); “on-the-run/off-
the-run” bonds (Krishnamurthy, 2002); put-call parity (Ofek et al., 2004); convertible
bonds (Mitchell, Pedersen and Pulvino, 2007); covered interest parity (Du, Tepper and
Verdelhan, 2018; Du, Hébert and Huber, 2019); Treasury spot and future-implied repo
rates (Fleckenstein and Longstaff, 2018); and cryptocurrencies (Makarov and Schoar,
2020). Many theoretical papers in this area have explored specific microfoundations—
such as margin requirements (Gromb and Vayanos, 2002; Gârleanu and Pedersen, 2011),
myopic performance-based clients (Shleifer and Vishny, 1997), search frictions (Vayanos
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and Weill, 2008; Duffie and Strulovici, 2012), or incentive constraints (Biais, Hombert and
Weill, 2021)—to explain why arbitrage opportunities persist. These studies also typically
pay detailed attention to the behavior of arbitrageurs.

Instead, we focus on fundamental traders, positioning the behavior of arbitrageurs
to the background. Dávila, Graves and Parlatore (2021) take a similar approach in re-
maining agnostic about the specific constraints limiting arbitrage. As a benefit of this
approach, we analytically develop all pricing implications more fully—including the
new insight of multiplicity. Because fundamental traders in the model are fully rational
and forward-looking, the excess volatility we showcase is conceptually distinct from that
arising from “noise traders” (e.g., De Long et al., 1990a,b, 1991; Vayanos and Vila, 2021).
Nevertheless, our mechanism can be thought of as providing a rational foundation for
the volatility from noise trading behavior.

International financial markets are a context in which market segmentation is partic-
ularly important. As our model studies multiple locations with their own fundamentals,
one can naturally take a global perspective. A recent international finance literature
assumes cross-sectional segmentation of local equity or sovereign debt markets (Lustig
and Verdelhan, 2019), possibly with some global intermediary participating in all of
them (Gabaix and Maggiori, 2015; Itskhoki and Mukhin, 2017). Our model points to the
possibility of self-fulfilling volatility in these settings.

Our construction of self-fulfilling equilibria shares a similar flavor to seminal studies
that build sunspot shocks around a stable steady state. Indeed, the stabilizing forces we
identify render our deterministic steady state locally stable. We differ from this literature
in some of the assumptions we adopt—we require neither overlapping generations (e.g.,
Azariadis, 1981, Cass and Shell, 1983, and Farmer and Woodford, 1997) nor aggregate
increasing returns (e.g., Farmer and Benhabib, 1994) to induce stability. Instead, we
present several new examples of stabilizing forces. Our equilibrium construction is also
more general in permitting an arbitrary numbers of markets and a broad class of self-
fulfilling shocks.

We re-emphasize it is impossible to engender self-fulfilling volatility in a one-location
(single-asset) version of our economy, even if dividend growth is linked to prices. This
distinguishes our mechanism from several other studies that build multiplicity through
collateral constraints or other financing frictions (e.g., Krishnamurthy, 2003; Benhabib
and Wang, 2013; Miao and Wang, 2018; Schmitt-Grohé and Uribe, 2021). We also demon-
strate the novel connection between the size of arbitrage profits—necessarily a multiple-
market concept—and the amount of self-fulfilling volatility in prices.

By focusing on asset prices, our paper engages with Gârleanu and Panageas (2020)
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and Zentefis (2021). As in those models, our multiplicity arises when there are multiple
traded assets and some segmentation between them. In the OLG economy of Gârleanu
and Panageas (2020), segmentation arises between physical and human capital because
unborn investors have a disproportionate claim to human capital but cannot trade be-
fore birth. Multiplicity can arise when physical capital shocks are offset by human capital
shocks. The authors interpret this relation as stock market volatility, whereas our equi-
librium is better interpreted as self-fulfilling volatility in arbitrage trades. In fact, their
economy features no arbitrage at all times, whereas one of our main contributions is
tightly connecting arbitrage profits and volatility.

In Zentefis (2021), illiquidity in markets with leverage constraints can generate self-
fulfilling price dynamics. Our goal here is to embark on a more general dynamic anal-
ysis in a canonical setting, so as to uncover the connection between arbitrage and self-
fulfilling fluctuations.

Outline. The remainder of the paper proceeds as follows. Section 1 describes the model
in a relatively general way, leaving the stochastic properties of cash flow growth rates
unspecified. Section 2 uncovers our results on self-fulfilling volatility, focusing on the
role of the growth-valuation link as a stabilizing force ensuring transversality and on the
redistributive nature of self-fulfilling shocks. Section 3 analyzes the connection between
self-fulfilling volatility and arbitrage. Section 4 discusses existing limits-to-arbitrage
models. All have difficulty in generating the precise relation between volatility and
arbitrage profits uncovered in our model.

1 Model

Setup. An endowment economy is set in continuous time that is indexed by t ≥ 0. In
our core analysis, endowments are locally deterministic. This assumption makes the
results more transparent, as the emergence of self-fulfilling volatility does not rely on
the presence of fundamental risk. Nevertheless, we show in Internet Appendix B.1 that
our results continue to hold in an economy with aggregate shocks.

In this deterministic economy, the aggregate endowment follows

dYt = Ytgtdt, (1)

with aggregate growth rate gt. There are N locations in the economy. Each location can
stand for a sector, an industry, a country, or a distinct financial market. The endowment
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of location n is given by yn,t, which follows

dyn,t = yn,tgn,tdt, (2)

with local growth rate gn,t. The aggregate endowment is the sum of all local endow-
ments: Yt = ∑N

n=1 yn,t. Local growth rates are linked to the aggregate growth rate
via the adding up condition: ∑N

n=1 yn,tgn,t = Ytgt. For now, we otherwise leave the
growth rates unspecified. To economize notation, denote a location’s endowment share
as αn,t := yn,t/Yt.

Regarding financial markets, each location offers a single asset in positive net supply
that is a claim to its local endowment yn,t. The equilibrium price of asset n is qn,tyn,t,
where qn,t is the asset’s price-dividend ratio. In addition to these N distinct assets, there
is a risk-free bond in zero net supply that offers equilibrium interest rate rt.

A different representative agent lives in each location. Each agent can invest only
in his or her local asset market and the short-term bond market that is open to every-
one. Hence, local financial markets are segmented, but the bond market is integrated.
The bond market allows consumption goods to be traded across locations. Importantly,
all agents have rational expectations. Therefore, if self-fulfilling fluctuations transpire,
they would be rationally anticipated. Agents have infinite lives, logarithmic utility, and
discount rate δ > 0. Mathematically, their preferences are

E0

[ ∫ ∞

0
e−δt log(cn,t)dt

]
. (3)

Clearing of the goods and bond markets is standard: ∑N
n=1 cn,t = Yt and ∑N

n=1 qn,tyn,t =

QtYt, where Qt is the aggregate price-dividend ratio. Because of market incomplete-
ness due to segmentation, the consumption distribution across locations will be a state
variable in equilibrium, so we denote xn,t := cn,t/Yt as the location-n consumption share.

Extrinsic Shocks. With market clearing established, we next describe asset prices. Be-
cause the economy is deterministic, if any price fluctuations are stochastic, they must
originate from agents’ self-fulfilling beliefs. To allow for this kind of volatility, we con-
jecture that the price-dividend ratio of each location’s asset follows a stochastic process

dqn,t = qn,t

[
µ

q
n,tdt + σ

q
n,tdZ̃n,t

]
, (4)

where Z̃n,t is a one-dimensional Brownian motion. The economy has no intrinsic uncer-
tainty. The shock Z̃n,t is therefore extrinsic, and it is the source of self-fulfilling asset price
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volatility, if any exists. Let Z̃t :=
(
Z̃n,t

)N
n=1 be a vector of all locations’ extrinsic shocks.

Economically, the extrinsic Z̃ shocks arise from sources that we do not explicitly
model. Investor sentiment or signals that coordinate beliefs might trigger the self-
fulfilling fluctuations, in a manner similar to Benhabib et al. (2015). Heterogeneity in
opinions between optimists and pessimists akin to Scheinkman and Xiong (2003) can be
another source. Correlated institutional demand shocks as described in Koijen and Yogo
(2019) can yet be another driver of the price changes. Our goal is to demonstrate when
these kinds of sources can move asset prices in a self-fulfilling manner, even when an
economy is deterministic and investors have rational expectations.

We allow the extrinsic shocks in the economy to obey an arbitrary correlation struc-
ture. A convenient way to represent this structure uses an N-dimensional basis of un-
correlated Brownian motions Zt := (Zn,t)

N
n=1 and an N × N matrix of constants M that

captures their relation. From these two components, we rewrite the vector of extrinsic
shocks as

Z̃t = MZt. (5)

The matrix M is normalized so that diag [MM′] = (1, . . . , 1)′, which preserves Z̃t as a
collection of Brownian motions. Substituting Eq. (5) into Eq. (4) shows that the self-
fulfilling shock to asset n at time t is σ

q
n,tMndZt, where Mn is the n-th row of M.1

The matrix M is a crucial object in the model. To illustrate its structure, we consider
the following examples, which we use repeatedly throughout the text.

Example 1 (Uncorrelated shocks). Suppose M is the identity matrix. This structure
implies Z̃t = Zt, which renders all extrinsic shocks uncorrelated.

Example 2 (Two-by-two redistribution). Suppose N = 2 and let

M =

[
1 0
−1 0

]
. (6)

This example has two locations and one source of extrinsic uncertainty. The matrix M
puts Z̃1,t = −Z̃2,t, which implies that the self-fulfilling price changes redistribute wealth
between the two assets. As one price falls, the other rises.

1Although markets are incomplete in the model, they are dynamically complete. The vector Z̃n,t =
MnZt is generated by N distinct shocks, but it suffices for agent n to only trade Z̃n,t, which is the shock
that her local asset loads on. Indeed, if we introduce in each market zero-net-supply Arrow securities
spanning Z that are traded only in market n, the equilibrium remains unchanged.
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Example 3 (General redistribution). This example is the N-dimensional counterpart to
Example 2. Let M̃ be an N × N non-singular matrix. Suppose

M = M̃− 1
N

1′M̃⊗ 1. (7)

In this structure, each element of the matrix M̃ is reduced by the simple average of its
columns. This operation makes the column sums of M equal zero. The key consequence
of this design is that 1′dZ̃t = 1′MdZt = 0 almost-surely. Any other linear combination
of dZ̃t does not equal 0. As a result, rank(M) = N − 1. In this example, self-fulfilling
price changes redistribute wealth across the N markets.

2 Self-fulfilling volatility

At first glance, readers might be divided on whether non-fundamental volatility is pos-
sible in the model we have just laid out. On the one hand, no “arbitrageur” exists to
connect market dynamics across locations, so what disciplines local market prices? On
the other hand, identical fundamental investors inhabit each location, so shouldn’t prices
share a common fundamental value? Here, we shed light on this issue, clarifying when
non-fundamental price dynamics exist and when they do not.

To develop some understanding of the conditions required for self-fulfilling volatility
to arise, let us first consider the market clearing conditions. Investors with log utility con-
sume a fraction δ of their wealth, so the aggregate wealth-consumption (price-dividend)
ratio is Qt = δ−1. Bond market clearing can then be written as

N

∑
n=1

αn,tqn,t = δ−1. (8)

Because the aggregate wealth-consumption ratio is constant, if any extrinsic shocks
affect qn,t, they must be offset by extrinsic shocks to other assets. Hence, if extrinsic
shocks influence prices, these shocks must redistribute wealth across markets. From a
general equilibrium perspective, such dynamics are sensible, as many market move-
ments are redistributive in the short-run when total capital is held constant.

Wealth redistribution is tied directly to rank(M). By time-differentiating Eq. (8), we
see that the loadings on each of the basis extrinsic shocks dZt must be zero:

N

∑
n=1

αn,tqn,tσ
q
n,tMn = 0. (9)
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Writing Eq. (9) as a matrix equation gives

M′vt = 0, (10)

where vt = (α1,tq1,tσ
q
1,t, . . . , αN,tqN,tσ

q
N,t)
′ is the column vector of volatilities. If the matrix

M were full rank, the unique solution to Eq. (10) would be vt ≡ 0 and there would be
no self-fulfilling volatility. However, if M is singular, such that rank(M) < N, a non-
zero and time-invariant solution vt ≡ v∗ 6= 0 exists. In this case, ψtv∗ also solves Eq.
(10) for any scalar process ψt. Therefore, a continuum of candidate volatile equilibria
exist, all requiring M to be singular—as in Examples 2 and 3, but not Example 1. The
following lemma characterizes the precise notion that shocks must redistribute wealth
across asset markets. We discuss the implications of this redistributive characterization
in more detail at the end of this section.

Lemma 1. Suppose the economy features volatility, i.e., (σq
1,t, . . . , σ

q
N,t) 6= 0. Then, self-fulfilling

shocks must be redistributive, in the sense that rank(M) < N.

Proof. See the discussion directly preceding the lemma.

Remark 1. As a corollary to Lemma 1, a representative-agent economy (N = 1) can never
experience self-fulfilling volatility (no non-degenerate matrix M can have rank(M) < 1).
Multiple segmented markets are critical.2

So far, we have characterized the redistributive nature of self-fulfilling volatility, if
it exists. But when does such volatility exist? It turns out that only two conditions
are necessary: (i) asset prices are positive and bounded and (ii) all consumers survive
in the long run. These two requirements together ensure that there is free disposal of
assets (i.e., no negative asset prices) as well as no Ponzi schemes (i.e., transversality
holds). Below, we will show how these two requirements translate into constraints on
growth rates and asset prices. For now, we summarize this discussion with the following
theorem, which provides the sufficient conditions for self-fulfilling volatility.

Theorem 1. Self-fulfilling volatility is possible as long as the resulting price-dividend ratios
{(qn,t)N

n=1}t≥0 are bounded, positive processes, and limT→∞ Et[e−δTx−1
n,T] = 0, for each n. In

this case, let the vector v∗ be in the null-space of M′. Given an arbitrary scalar process {ψt}t≥0,
an equilibrium exists with self-fulfilling volatility αn,tqn,tσ

q
n,t = v∗nψt for all n. Finally, all

equilibria of the economy are bubble-free.
2This result echoes Loewenstein and Willard (2006), who show that the volatility from noise-traders in

De Long et al. (1990a) cannot survive bond market clearing. In our model, each location’s agent may hold
non-zero positions in bonds, as long as the bond market clears in aggregate.
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Proof. See Appendix A.1.

It is important to emphasize that even with self-fulfilling volatility, there are no bub-
bles, as prices still equal present values of future dividends. Self-fulfilling volatility in
the model is thus consistent with classical no-bubble theorems (e.g., Santos and Wood-
ford, 1997; Loewenstein and Willard, 2000) that give conditions under which bubbles
are not possible. The remainder of this section sheds light on which model mechanisms
preserve the asset price stationarity required by Theorem 1 and which do not.

Determinacy and instability. The following is a benchmark case in which the equilib-
rium is unique and non-stochastic.

Proposition 1. Assume constant local growth rates gn,t = g. No equilibrium can have self-
fulfilling volatility. Indeed, (σq

1,t, . . . , σ
q
N,t) ≡ 0 for all t. All assets have identical, constant

price-dividend ratios qn,t = δ−1.

Proof. See Appendix A.2.

Even though no arbitrageur connects locations, Proposition 1 shows that the presence
of rational fundamental traders in each location is enough to pin down asset prices
uniquely. In the model, an equilibrium with qn,t = δ−1 always exists, but here, it is also
the only one. The reason for this strong determinacy is the instability of price-dividend
dynamics when local dividend growth rates are identical and constant. To see this,
consider the deterministic model with (σ

q
1,t, . . . , σ

q
N,t) ≡ 0. In this case, there is no risk

compensation, and all assets must earn the riskless rate. Specifically,

q̇n,t/qn,t + g︸ ︷︷ ︸
capital gain

+ 1/qn,t︸ ︷︷ ︸
dividend

price

= rt. (11)

Furthermore, since individual consumption paths are deterministic, the interest rate is
solely determined by time-discounting and economic growth: rt = δ + g. Substituting
this expression into Eq. (11) gives for each location

q̇n,t = −1 + δqn,t. (12)

This equation represents a dynamical system featuring a single steady state that is un-
stable. The instability implies that if the price-dividend ratio is below (above) δ−1, it
drifts downwards (upwards) at a pace that accelerates over time. This accelerating drift
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towards positive or negative infinity violates the boundedness of price-dividend ratios
in Theorem 1 that is required for self-fulfilling volatility to emerge. Adding shocks (i.e.,
supposing σ

q
n,t 6= 0) does nothing to remedy the core non-stationarity of the system.

Multiplicity and stability. For any self-fulfilling volatility to exist, Theorem 1 implies
that a stabilizing force must be present to keep asset prices stationary. We provide a core
example of such a force, and discuss alternatives in the appendix. The multitude of
examples is meant to demonstrate that the required stability is a natural property of
macrofinance models.

In our core example, we assume local growth rates are endogenous and increase with
local asset prices. In particular, local growth rates satisfy

gn,t = g + λ(qn,t − δ−1), with λ > δ2. (13)

The exact mathematical connection between growth rates and prices in Eq. (13) is mod-
est. For a standard discount rate of δ = 0.01, local growth rates must be at least 0.1%
above average when local valuations are 10% above average.

Eq. (13) is a reduced-form representation of a microfounded, positive link between
dividend growth and asset prices. One microfoundation of this link is that prices carry
information that affects corporate investment decisions. Examples of this mechanism
are in Chen et al. (2007); Bakke and Whited (2010); Goldstein and Yang (2017), where
managers learn information from stock market prices and incorporate this information
into their investment choices. See also the review in Bond et al. (2012).

Internet Appendix B provides two additional microfoundations of growth-valuation
links that work as stabilizing forces. In Internet Appendix B.2, we show that under-
investment, of the type induced by “debt overhang” (e.g., Hennessy, 2004; DeMarzo et
al., 2012), creates the needed stability. The main idea is that potential gains from in-
vestment are high relative to actual investment, which leaves some surplus on the table.
As prices rise and boost investment, debt overhang problems shrink, and some of this
surplus is captured by local investors. The extra returns gained this way compensate
investors for lower dividend yields and ensure stable price-dividend ratios. An intrigu-
ing implication is that under-investment can be a self-fulfilling phenomenon for reasons
other than those previously identified (e.g., non-convex technologies or borrowing con-
straints).

In Internet Appendix B.3, we show that an overlapping generations economy with
“creative destruction” (e.g., Gârleanu and Panageas, 2020) also produces the required
stability. Creative destruction here is represented as new firms entering and displacing
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incumbents. If the amount of creative destruction is itself a function of asset prices, high
asset prices can be self-fulfilled by a small amount of new firm entry, and vice versa.
High valuations reduce dividend yields to investors, but living cohorts are compensated
with the preservation of their firms, which removes the need for valuations to continue
growing and thus creates stability.

Economically, Eq. (13) and the examples in Internet Appendix B share a common
property: when prices are high and dividend yields are low, investors are compensated
somehow. This compensation can take the form of higher dividend (and, hence, con-
sumption) growth rates, a drop in under-investment wedges, or less creative destruction.
It is likely that many other examples of stabilizing forces also exist. By studying sev-
eral, we stress that a wide range of plausible environments all generate a similar type of
stability that can support self-fulfilling volatility when financial markets are segmented.

With this in mind, the next proposition demonstrates the existence of self-fulfilling
volatility when local growth rates obey the process in Eq. (13).

Proposition 2. Assume local growth rates satisfy Eq. (13). Then, self-fulfilling volatility is
possible. Specifically, there exists a non-zero process {ψt}t≥0 such that an equilibrium exists
with αn,tqn,tσ

q
n,t = v∗nψt for all n, where v∗ is in the null-space of M′.

Furthermore, denote the cross-sectional minimums
¯
αt := minn αn,t, ¯

xt := minn xn,t, and

¯
qt := minn qn,t. The process ψt can be any bounded process that satisfies the two following
conditions:

(P1) ψt/¯
αt and ψt/¯

xt are bounded;

(P2) ψt vanishes as
¯
qt approaches δ(ε + λ−1) from above, for some 0 < ε < δ−2 − λ−1.

Proof. See Appendix A.3.

The dependence of dividend growth on asset prices allows for self-fulfilling expec-
tations of future price changes to take hold. For instance, if investors anticipate high
prices, their expectations for dividend growth rates rise, which support a stable price-
dividend ratio and confirms the initial expectations. Conversely, if investors anticipate
low prices, expected growth rates drop as well, stabilizing the price-dividend ratio and
fulfilling the starting beliefs.

Mathematically, the endogeneity of dividend growth rates acts as the required sta-
bilizing force. To see this clearly, substitute gn,t = g + λ(qn,t − δ−1) in place of g in the
pricing condition in Eq. (11) and use the fact that rt = δ + g. The linear price-dividend
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differential equation of Eq. (12) is then replaced by the quadratic Riccatti equation:

q̇n,t = −1 + δ(1 + λ/δ2)qn,t − λq2
n,t. (14)

From Eq. (14), the dynamical system of the economy now has two steady states. As
long as λ > δ2, the larger of the two steady states is the relevant one (i.e., the one
with qn = δ−1). This larger steady state is locally stable, in the sense that ∂q̇n

∂qn

∣∣
qn=δ−1 =

δ(1 − λ/δ2) < 0. When the economy has such a stabilizing force, some amount of
self-fulfilling volatility driven by ψt becomes possible. The amount of volatility is only
restricted by the requirement that it vanishes when the economy is “far from the steady
state” so that the stabilizing force enters unabated. This vanishing property of ψt is the
essence of properties (P1) and (P2) in Proposition 2.

The role of the bond market. Any self-fulfilling equilibrium of the economy crucially
requires an integrated bond market. Indeed, the bond market is the mechanism through
which the wealth redistribution of Lemma 1 takes place. Without the bond market (i.e,
in autarky), agent n only consumes the cash flows from his or her local endowment yn,t.
As we will show, since this consumption is locally deterministic, no asset price volatility
can be justified. In contrast, if the bond market is open to everyone, agent n can send
and receive consumption amounts across locations, with the promise of inter-temporal
payback. This availability of trade opens the door for stochastic individual consumption
profiles (dcn,t loads on dZ̃n,t), which then creates a stochastic local pricing kernel and
justifies price volatility (dqn,t loads on dZ̃n,t).

To see the link between price volatility and the pricing kernel, note that any self-
fulfilling volatility must be compensated. Agent n holds exposure to the extrinsic shock
Z̃n,t through her exposure to asset price qn,t. Define π̃n,t as the risk price (the Sharpe
ratio) associated with this shock, and recall the endowment and consumption shares
αn,t := yn,t/Yt and xn,t := cn,t/Yt. Then, equilibrium in the asset market implies

π̃n,t = δ
(αn,tqn,t

xn,t

)
σ

q
n,t. (15)

Intuitively, αn,tYtqn,tσ
q
n,t is agent n’s total exposure to the extrinsic Z̃n,t shocks, and

δ−1xn,tYt is the agent’s wealth. For agents with log utility, their required compensa-
tion for Brownian shocks is their exposure per unit of wealth. Dividing the exposure
by wealth gives the risk price π̃n,t. Eq. (15) shows how Sharpe ratios are linked to
self-fulfilling volatility: σ

q
n,t > 0 if and only if π̃n,t > 0 as well.
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Remark 2 (N = 1 economy, redux). Recall Remark 1, which stated that self-fulfilling
volatility is impossible in a one-location economy. The discussion above provides an-
other intuition for this result. Even if aggregate growth rates are endogenous to prices
as in Eq. (13)—e.g., aggregate growth is gt = G(Qt) for some increasing function G—
aggregate consumption growth is still deterministic over a small time-intervals dt. Thus,
the representative agent demands no risk premium, and from Eq. (15), there is zero
asset volatility. Our findings of multiple equilibria, which require several segmented
markets, are thus quite distinct from those derived in one-sector economies that feature
asset prices linked to the real economy. For example, collateral constraints induce a link
between asset prices and output, and these constraints have often been associated with
multiplicity even in a one-location economy (e.g., Kiyotaki and Moore, 1997 or Miao and
Wang, 2018). Our results should not be confused with those types of models.

Remark 3 (Autarky). If there were no trade in the riskless bond market, our N-location
economy would be in autarky. In that case, each location’s consumption dynamics would
be locally deterministic (i.e., cn,t = yn,t, which has no Brownian shocks). Consequently,
similar to Remark 2, agents would demand no risk premium on extrinsic shocks, and so
Eq. (15) implies zero asset volatility.

Remark 4 (Small open economy). Although the emergence of self-fulfilling volatility
requires an open and active bond market, it does not require bond market clearing.
Consider a “small open economy” in which the asset market for claims to the stream
{yn,t}t≥0 clears for each n, but the bond market does not. All results are unchanged.
Intuitively, since the equilibrium interest rate of the closed economy without extrinsic
shocks is constant at rt = δ + g, it plays no role in providing stability. Mathematically,
given any exogenous constant rate r and endogenous local growth rates gn,t = g +

λ(qn,t − δ−1), the counterpart to the price-dividend ODE of Eq. (14) is

q̇n,t = −1 + (r− g + λδ−1)qn,t − λq2
n,t, (16)

which has a stable steady state (the larger of the two) if and only if λ > δ2(1+
√

δ+g−r
δ ).

Implications of redistribution. Self-fulfilling volatility operates only with redistributive
shocks across multiple locations (Lemma 1). We can use this result to develop several im-
plications, particularly concerning observed boom-bust patterns in asset markets. First,
the model explains that self-fulfilling booms often occur less widely and more in isola-
tion. In the model, self-fulfilling asset booms cannot be aggregate global phenomena,
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as aggregate wealth is fixed at δ−1Yt. Instead, asset booms must occur in a subset of
countries or asset markets, which may be why “bubbles” are often found in a specific
region or asset class (Brunnermeier and Schnabel, 2015).

Second, redistributive shocks imply that a self-fulfilling market crash in one country
or asset class could beget a boom in an alternative country or asset class. There is some
evidence for this type of relation. For example, the 1997 Asian financial crisis coincided
with the start of a large boom in the US stock market, primarily in technology stocks.
Also, the 2000-02 timing of the US stock market crash matched the run up of the US
housing market boom. And finally, the 2006-07 housing market downturn coincided
with a boom in commodities markets, mainly in oil, as discussed more formally in
Caballero et al. (2008). The authors interpret these facts as a migration of a bubble due
to “global imbalances.” But the model here demonstrates that such a migration could
also take place even without bubbles.

3 Arbitrage profits

Having provided the conditions that permit self-fulfilling volatility, we next connect
this volatility to arbitrage profits. Section 3.1 shows that the presence of self-fulfilling
volatility and arbitrage opportunities are two sides of the same coin. If one is observed,
so too is the other. Section 3.2 demonstrates that arbitrage limits discipline the amount
of self-fulfilling price fluctuations that are possible.

3.1 Volatility implies arbitrage and vice versa

The self-fulfilling volatility of Theorem 1 is characterized by wealth redistribution, math-
ematically captured by the condition rank(M) < N. To further understand what this
rank condition implies, consider what would happen if a single trader were allowed to
participate in all markets. When rank(M) < N, there is some asset that this trader can
replicate using the other N − 1 assets. But with self-fulfilling volatility, the price of this
asset and its replicating portfolio need not move together. In short, this trader would be
faced with an arbitrage opportunity.

The next theorem reveals that self-fulfilling volatility emerges if and only if an ar-
bitrage opportunity exists. This equivalence result provides a more intuitive charac-
terization of multiplicity than the rank condition on M. The link between self-fulfilling
volatility and arbitrage goes beyond the example stabilizing forces provided in Section 2.
It applies to any conceivable example where self-fulfilling volatility exists in economies
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with segemented financial markets. (In other words, the proof of the following theorem
does not use anywhere the condition that {(qn,t)N

n=1}t≥0 be bounded positive processes.)

Theorem 2. Self-fulfilling volatility implies an arbitrage. Conversely, if an arbitrage exists, the
equilibrium must feature self-fulfilling volatility.

Proof. See Appendix A.4.

First, consider the converse statement of Theorem 2: arbitrage implies self-fulfilling
volatility. From the contrapositive, if there were no volatility, then all assets earn the risk-
free rate rt, and so, there is no way to combine them into a portfolio that outperforms the
riskless rate. This no-arbitrage, no-volatility equilibrium is the only one that can emerge.

Next, consider the first statement of Theorem 2: self-fulfilling volatility implies the
existence of an arbitrage. In the proof of the theorem, we examine a portfolio that puts
the amount δαn,tqn,t in each asset n = 1, . . . , N. By Eq. (9), the volatility of this portfolio
is identically zero. The portfolio represents, in effect, a synthetic risk-free bond. In this
case, the condition that rank(M) < N is critical. Even though all assets have positive self-
fulfilling volatility, an investor can manufacture a riskless asset from them. The proof
shows mathematically why this synthetic bond earns more than the riskless rate, but the
basic intuition comes from the fact that each location’s investor demands a risk premium
on her local asset. A portfolio that is built as a convex combination of components with
risk premia must bear a risk premium itself. In fact, the synthetic bond’s excess return
over the riskless rate rt is

At :=
N

∑
n=1

xn,tπ̃
2
n,t > 0, (17)

where xn,t is agent n’s consumption share and π̃n is the Sharpe ratio of a local asset.
The amount At can be thought of as a measure of arbitrage profit in the model. It is the
difference between the return on the synthetic bond created from the arbitrage trade
and the return on the actual riskless bond. In addition, the amount of arbitrage profit
At is exactly the difference between the risk-free rate that prevails without self-fulfilling
volatility (rt = δ + g) and the one with self-fulfilling volatility (rt = δ + g − At). One
usually reads this negative term in the interest rate as arising from precautionary sav-
ings, but here, the term surfaces from the existence of arbitrage and it equals the amount
of arbitrage profits.

The interpretation of the arbitrage trade between the actual risk-free bond and the
synthetic bond in practice depends on the context. Some common examples that fit
are on-the-run versus off-the-run Treasury bonds; collateralized versus uncollateralized
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lending (with the arbitrage profit at times captured by the TED spread); and deviations
from covered interest parity (CIP). Measures of the last two quantities tend to be mini-
mal for much of the time, but can expand to around 3% during financial crisis periods
(Fleckenstein and Longstaff, 2018; Du et al., 2018).

The link between self-fulfilling volatility and the existence of arbitrage opportunities
extends to a quantitative relation. The next proposition explains that the magnitude of
the arbitrage profit At is connected to the amount of self-fulfilling volatility. Indeed, Eq.
(15) relates volatility to location-specific risk prices, which constitute At in Eq. (17).

Proposition 3. Let rank(M) < N. There exists a non-zero vector v∗ in the null-space of M′

such that the self-fulfilling volatility ψt of Theorem 1 satisfies

ψt =
δ−1√At√

∑N
n=1 xn,t(

v∗n
xn,t

)2
≤ δ−1√At

1′v∗
, (18)

where At is the arbitrage profit given in Eq. (17). Consequently, the cross-sectional average
return volatility across locations σ∗t := ∑N

n=1
αn,tqn,t

∑N
i=1 αi,tqi,t

σ
q
n,t satisfies

σ∗t = δψt1′v∗ ≤
√

At. (19)

Proof. See Appendix A.5.

The average return volatility σ∗t across locations, defined in Proposition 3, is a scale-
free summary statistic for the amount of self-fulfilling volatility in the model. The tight
link to arbitrage profit, σ∗t ≤

√
At, is a bonus. To get a sense of the magnitude of

self-fulfilling volatility, consider arbitrage profit that range from At ∈ [0, 0.03], which
is consistent with the Treasury evidence of Fleckenstein and Longstaff (2018) and the
CIP deviations documented in Du et al. (2018). Then, average return volatilities due
purely from self-fulfilling beliefs can range from σ∗t ∈ [0, 17.3%], which is a quantitatively
significant estimate.

3.2 Cross-market trading limits volatility

Proposition 3 provided a link between the amount of self-fulfilling volatility and the size
of arbitrage profits. Given this connection, asset volatility should be curbed by cross-
market trading that seeks to capture arbitrage profits. In this section, we make this
argument precise by developing a notion of limits to arbitrage, and we show how these
limits bound the degree of volatility.
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Motivated by models such as Gromb and Vayanos (2002) and Gârleanu and Pedersen
(2011), we assume that cross-sectional risk prices are linked by some amount of relative-
value trading by arbitrageurs. To formalize this notion, it is necessary to examine the
location-specific risk prices induced by the basis shocks Zt. Recall Eq. (5), which pre-
sented Z̃t = MZt. If π̃n,t is the risk price of asset n (i.e., the location-n marginal utility
response to dZ̃n,t), then

πn,t := π̃n,tMn (20)

is the marginal utility response to dZt, where Mn again is the nth row of the matrix M.
Note that π̃n,t is a scalar, whereas πn,t is a vector.

We make the following reduced-form assumption about these basis risk prices πn,t:

‖πj,t − πi,t‖ ≤ Πt ∀i 6= j. (21)

When Πt > 0, there are limits to arbitrage. This terminology is justified by the well-known
equivalence between absence of arbitrage and the existence of a stochastic discount factor
that prices all assets. In particular, the case of a perfectly integrated market (Πt = 0) will
correspond to zero arbitrage profits (At = 0) and, hence, zero self-fulfilling volatility
(σ∗t = 0).

In microfounded models, the process for Πt would be linked to fundamental objects,
such as arbitrageur wealth, preferences, constraints, and trading costs. For example,
one can think of Πt as arising from margin constraints and the limited wealth that ar-
bitrageurs can deploy to eliminate risk-price differentials. Faced with these frictions, an
arbitrageur would find it worth trading only if risk-price differentials became sufficiently
large. Bounds like Ineq. (21) pervade most models of limits to arbitrage. For instance,
Proposition 2’ in Appendix B of Gârleanu and Pedersen (2011) explicitly shows how
margin constraints lead to a range of viable risk premia. Here, we take Πt as given and
do not model the behavior of these arbitrageurs, choosing instead to describe equilibria
based on Ineq. (21), which characterizes the extent of available arbitrage opportunities.3

Thus far, we have implicitly assumed Πt = +∞, which is tantamount to assuming
that infinite frictions restrict any arbitrage trades between local markets. What happens
when there is only partial, but not full, market segmentation? The next proposition de-
tails the link between the extent of market segmentation and the amount of self-fulfilling
volatility.

3We also do not modify the market clearing conditions to account for arbitrageur consumption, which
can be justified by the idea that infinite trading would occur if ‖πj,t − πi,t‖ > Πt held, but zero arbitrage
trading would take place otherwise.
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Proposition 4. Let 0 < Πt < +∞ and rank(M) < N, There exists a non-zero vector v∗ in the
null-space of M′ such that the self-fulfilling volatility ψt of Theorem 1 is bounded by

ψt ≤ δ−1L−1
t Πt, (22)

where Lt := max(i,j):i 6=j
∥∥x−1

i,t v∗i Mi − x−1
j,t v∗j Mj

∥∥. The cross-sectional average return volatility
across locations σ∗t = δψt1′v∗ is bounded by

σ∗t ≤ 1′v∗L−1
t Πt. (23)

Proof. See Appendix A.6.

Intuitively, with significant limits to arbitrage, large amounts of self-fulfilling volatil-
ity can emerge because capital is too slow to correct any such price movements. As limits
to arbitrage are relaxed, the amount of self-fulfilling volatility gradually vanish. Propo-
sitions 3 and 4 are thus similar in that they connect volatility to a quantitative measure
of arbitrage efficacy (arbitrage profits and limits to arbitrage, respectively).

Because of the link between self-fulfilling volatility ψt and arbitrage profit At, the
limits to arbitrage implied by Ineq. (21) puts clear and intuitive bounds on At. The link
also places bounds on equilibrium risk prices, akin to Hansen and Jagannathan (1991),
even though our limits to arbitrage assumption in Ineq. (21) is about relative risk prices.
The following corollary explains.

Corollary 5. Under the conditions of Proposition 4, risk prices and arbitrage profit are bounded:

‖πn,t‖ ≤
v∗n
xn,t

L−1
t Πt,

√
At ≤

( N

∑
n=1

xn,t(
v∗n
xn,t

)2
)1/2

L−1
t Πt,

where Lt := max(i,j):i 6=j
∥∥x−1

i,t v∗i Mi − x−1
j,t v∗j Mj

∥∥.

Proof. See Appendix A.7.

To get a quantitative sense of the volatility bounds, we simulate our model under the
endogenous dividend growth rates of Proposition 2; i.e.,

gn,t = g + λ(qn,t − δ−1). (24)
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To satisfy the stability requirement that λ > δ2, we set λ = δ2 + 0.01. We study N = 10
locations and set the extrinsic shocks in a similar way as Example 3, where the shocks
redistribute wealth across locations:

M =
N√

N(N − 1)

[
IN −

1
N

1⊗ 1′
]

(25)

=
1√

N(N − 1)



N − 1 −1 −1 · · · −1 −1
−1 N − 1 −1 · · · −1 −1

... . . . ...

... . . . ...
−1 −1 −1 · · · N − 1 −1
−1 −1 −1 · · · −1 N − 1


.

Note that the columns of M sum to zero and have unit norm. It can easily be verified
that v∗ = 1 is the unique element, up to scale, in the null-space of M. For simplicity, we
assume locations start equally sized (αn,0 = 1/N), and we initialize the simulation with
equally-wealthy locations (xn,0 = 1/N for all n). We also set δ = g = 0.02.

For the exogenous arbitrage bounds, we set Πt to a time-invariant value of 0.25.
The interpretation is that arbitrageurs are only willing to enter and correct Sharpe ratio
differentials greater than 0.25. As will be clear shortly, these limits to arbitrage are
quantitatively reasonable.

To simulate {xn,t : t ≥ 0}, first note that the dynamics are given by

dxn,t = xn,t(1− xn,t)
[
π̃2

n,t − ∑
i 6=n

xi,t

1− xn,t
π̃2

i,t

]
dt + xn,tπ̃n,tdZ̃n,t. (26)

These dynamics are derived by applying Itô’s formula to the definition xn,t := cn,t/Yt,
where the dynamics of cn,t are given in Eq. (30) in the Appendix. Because π̃n,t depends
on the self-fulfilling volatility, we assume in the simulation that ψt is always at its upper
bound, subject to vanishing when needed.4

Figure 2 presents the average self-fulfilling return volatility σ∗t across locations and
the associated arbitrage profits At from the simulation. The average volatility σ∗t fluc-

4In particular, Proposition 2 shows that ψt needs to vanish when
¯
αt, ¯

xt, or
¯
qt− δλ−1 become low enough.

We ensure these conditions by capping the ratio of ψt to each of these quantities by 100 in the simulation.
In our simulation of T = 20 years, none of these vanishing conditions are ever binding, but they would
bind in a long-enough simulation. In particular, since dαn,t = αn,t[gn,t − g]dt, some locations’ endowments
can eventually shrink relative to the aggregate (i.e., lim infT→∞ αn,T = 0 with positive probability). In this
case, self-fulfilling volatility must vanish asymptotically. However, this type of long-run degeneracy is not
present if the stabilizing force is creative destruction from Internet Appendix B.3.
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tuates around 16%. (The volatility could be much lower if we assume the economy is
not at the upper bound of the self-fulfilling volatility bound.) Our earlier claim that Π
is reasonable is supported by examining the associated simulated arbitrage profits At,
which are around 2.5%. That value is the upper range of measured arbitrage profits in
Fleckenstein and Longstaff (2018). This value can be theoretically verified for the matrix
M in Eq. (25) by considering the approximation xn,t = 1/N for all n. Then, the bound
simplifies to

σ∗t =
√

At ≤
√

N − 1
2N

Πt.

Substituting N = 10 gives σ∗t ≤ 16.8% and At ≤ 2.8%, which are very close to the ranges
displayed in Figure 2.

Figure 2: Simulated Average Return Volatility and Arbitrage Profits
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Notes. The figure illustrates simulated values of the average self-fulfilling return volatility σ∗t across lo-
cation and the amount of arbitrage profits At. Plotted in solid blue against the left axis is the volatility
upper bound of Proposition 4 from a simulated economy with N = 10 equally-sized locations (αn = 1/N),
starting with equal initial wealth (xn,0 = 1/N), with extrinsic shock matrix M given in Eq. (25) and with
endogenous growth rates gn,t from Eq. (24). Plotted in dashed red against the right axis are arbitrage
profits At from the simulation. The simulation assumes ψt is always at the upper bound, except when
it needs to vanish, i.e., when minn αn,t, min xn,t, or minn qn,t − δλ−1 become close enough to zero (see
Proposition 2). We ensure this takes place by capping the ratio of ψt to each of these quantities by 100 in
the simulation. Other parameters are described in the text.

4 Discussion of existing models

The model demonstrates a tight link between return volatility and arbitrage profits via
self-fulfilling beliefs. But a volatility-arbitrage link might seem consistent with limits
to arbitrage in a very general way, going beyond our specific mechanism. To address
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this possibility, here we discuss some conventional limits-to-arbitrage models and ex-
plain why the volatility-arbitrage prediction is not a straightforward implication of those
models.

Value-at-risk (VaR) constraints immediately spring to mind as a direct volatility-
arbitrage mechanism (e.g., Adrian and Shin, 2010). Higher volatility environments can
tighten arbitrageurs’ constraints, which limits the amount of trading they can do and
makes arbitrage profits higher in equilibrium. Given the relatively high-frequency vari-
ation in arbitrage profits seen in the literature (e.g., Du et al., 2018), a VaR-based ex-
planation requires constraints to respond quickly to changes in volatility, which is not
necessarily true in practice. For example, whereas the Chicago Mercantile Exchange ap-
plies variation margin to profits and losses daily, it adjusts its initial margin requirements
relatively infrequently. Given the backward-looking methodologies often used in VaR-
based constraints, high-frequency spikes in volatility are unlikely to be fully accounted
for in initial margins.5

Using fixed margin requirements, Liu and Longstaff (2004) show a positive correla-
tion between the volatility of a relative-value trade—which is modeled as a Brownian
bridge that is known to start and end at zero—and the terminal price of a logarithmic
agent’s optimal portfolio in the trade. Intuitively, high volatility causes large mispricings
(i.e., the Brownian bridge is likely to deviate further from zero), which can be exploited
by an arbitrageur. And yet, following this sequence of logic carefully, one deduces that
high volatility leads to high future arbitrage profits, which differs from the contempo-
raneous relation we prove. Another important omission from their partial equilibrium
model is that volatility is not simply an exogenous variable and must come from some-
where in general equilibrium.6

A general equilibrium economy that allows arbitrage is the margin-based model of
Gârleanu and Pedersen (2011). In their model, holding cash flows fixed, a low-margin
claim is more valuable than a high-margin claim. The price discrepancy widens when
arbitrageur wealth shrinks, which occurs after negative shocks to the market portfo-
lio (see their Figure 4). However, their model has no noticeable relationship between
asset volatilities and arbitrageur wealth.7 Overall, margin-based asset pricing models

5A related alternative, which we cannot rule out, is that arbitrageurs self-impose VaR constraints at
either a daily or intra-daily frequency.

6See also Kondor (2009), which relates endogenous price gaps to arbitrageur capital.
7To see this absence in Gârleanu and Pedersen (2011), one must visually compare their Figures 2 and

3, which plot expected returns and Sharpe ratios as a function of the risk-tolerant agent’s consumption
share x. Their Figure 2 shows the expected return differential µ0.4 − µ0.1 between an asset with a 0.4
margin requirement and a derivative with a 0.1 margin requirement, with both assets being claims to
the same cash flow. Their Figure 3 shows the Sharpe ratio differential SR0.4 − SR0.1 of these assets. As
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do not generally make robust predictions about the relation between arbitrage profits
and underlying asset volatilities, primarily because the market-wide shock that shrinks
arbitrageur wealth has an ambiguous effect on volatilities.8

On the other hand, by allowing a shock directly to non-arbitrageur demands, Gromb
and Vayanos (2002) present a general equilibrium margin-based model in which the
volatility-arbitrage link could hold, under some assumptions. To understand their mech-
anism, consider a two-island economy, where the islands’ assets share identical cash
flows. Local hedgers trade only in their respective islands, whereas an arbitrageur trades
in both markets. If one island’s local hedgers have a sudden increase in liquidity de-
mands, they sell aggressively in their local market, causing a large discrepancy between
their island’s asset price and the other island’s asset price. The arbitrageur does not fully
correct the discrepancy due to a combination of constraints and limited wealth. If the
liquidity demand shock is accompanied by an increase in the volatility of future demand
shocks, local price volatility would rise as well. A similar equilibrium would emerge if
“local hedgers” are replaced in this scenario by “noise traders” (Kyle and Xiong, 2001).
This example shows that existing liquidity-based models can, in principle, match the
volatility-arbitrage relation we identify, but the explanation requires higher liquidity de-
mand volatility at times of large arbitrage profits. In other words, non-arbitrageurs’ asset
positions must be volatile at these times. We are not aware of any formal empirical
evidence for this demand volatility mechanism.

In summary, the existing literature provides some possible mechanisms connecting
volatility and arbitrage profits, but the connections are not general, and each comes with
caveats. In our view, it is plausible that some piece of the volatility-arbitrage relation
that we document is due to self-fulfilling price fluctuations.

an identity, our model has µ0.4 − µ0.1 = σ0.4SR0.4 − σ0.1SR0.1 = σ0.4(SR0.4 − SR0.1) + (σ0.4 − σ0.1)SR0.1.
Because µ0.4 − µ0.1 and SR0.4 − SR0.1 share a similar pattern as a function of x, one can conclude that
volatilities σ0.4 and σ0.1 do not exhibit extreme variation in x. If anything, it appears that µ0.4−µ0.1

SR0.4−SR0.1
is

an inverted U-shaped function of x, consistent with well-known findings of general equilibrium models
featuring heterogeneous risk aversions (e.g., Gârleanu and Panageas, 2015).

8Gârleanu and Pedersen (2011) do argue (see their footnote 9) that high-margin assets would have
higher volatility in equilibrium. So, if the “shock” is to an asset’s margin requirement, one would expect
an increase in both its volatility and expected excess return (a proxy for arbitrage profits). This link is very
similar to VaR constraints, as we discussed earlier. Since margin requirements are somewhat sticky in
practice, we are more interested here in the shocks that can lead to higher arbitrage profits, while holding
fixed the level of margins.
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5 Conclusion

This paper proves in a general setting that self-fulfilling asset price volatility can emerge
when financial markets are segmented. The main additional assumption, beyond seg-
mented asset markets, is that a stabilizing force keeps price-dividend ratios stationary.
We consider several different examples of such stabilizing forces, and we argue that
these forces are common to macrofinance models. These examples are the asset pric-
ing counterparts to the stability conditions provided in seminal papers on sunspots in
macroeconomics.

Importantly, the paper demonstrates a strong connection between the availability of
arbitrage profits and the possibility of self-fulfilling volatility. Often, the presence of
multiple equilibria and self-fulfilling dynamics are viewed as a nuisance for models,
but our theoretical result connecting arbitrage and volatility provides foundations for a
formal test.

Relatedly, one can test our result that self-fulfilling dynamics redistribute wealth
across asset markets. In particular, redistributive dynamics imply that a boom-bust cycle
in one asset market will often be followed by another cycle in a different geographic
region or asset class, which already has some empirical support.

Given that levels of asset price volatility often far exceed predictions of many the-
oretical models, the paper’s mechanism can help bridge a gap in financial economics.
For example, consider corporate equity and bond markets. Although equities and bonds
are different claims on the same underlying cash flows, one cannot construct a riskless
portfolio between them in a simple way, unlike for covered interest parity, for example.
(Under the strong assumption that the underlying shocks affecting both securities and
their sensitivities to those shocks are known, one could obtain a no-arbitrage relation
between equities and bonds.)

Still, it is entirely possible, and anecdotally true, that equity investors differ from
bond investors and that capital is slow moving, whether due to market segmentation or
investor habitats. Ma (2019) provides evidence in this direction, suggesting that corpo-
rate issuances and buybacks act as a mechanism to profit from price differences. With
this in mind, our model suggests that some amount of self-fulfilling volatility is possible
in corporate equity and bond markets. In this sense, our focus on risk-free arbitrage is
just for clarity, as we can measure the amount of arbitrage profit without having to know
investors’ pricing kernels. We believe that future research could, through a self-fulfilling
mechanism, connect market segmentation to volatility puzzles in other asset markets
beyond those featuring risk-free arbitrage.
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Appendix

A Proofs
This appendix contains proofs for the paper and is meant to accompany the text.

A.1 Proof of Theorem 1
To prove the claim, we need to fill in any details that go beyond the discussion following the
statement of Theorem 1. There are four brief steps needed to fill in the details.

Step 1: State prices. Each location has its own risk price π̃n,t, which is the marginal utility sensitivity
to the dZ̃n,t shock. The state price density for location n is then given by

dξn,t = −ξn,t

[
rtdt + π̃n,tdZ̃n,t

]
. (27)

In these terms, we have the no-arbitrage pricing relation:

µ
q
n,t + gn,t +

1
qn,t
− rt = σ

q
n,tπ̃n,t, (28)

which suffices assuming qn,t > 0. We can also write these equations in terms of the basis shocks.
Let πn,t be the risk price vector pertaining to dZt, which is potentially location-specific because of
market segmentation. The link between these two, by substituting Eq. (5) into Eq. (27), is given in
Eq. (20).

Step 2: Optimality. Log utility agents optimally consume δ fraction of their wealth. Investor n’s
wealth is given by yn,tqn,t + βn,t, where βn,t is her risk-free bond market position. Let θn,t := yn,tqn,t

yn,tqn,t+βn,t

be the fraction of wealth this investor puts in the local risky asset. Note that market clearing is
imposed automatically in this formula, as the local investor n holds the entirety of the local asset.
Given the dynamic conjecture for asset prices and the consumption-wealth ratio δ, each investor
then has consumption dynamics:

dcn,t

cn,t
=
[
rt − δ + θn,tσ

q
n,tπ̃n,t

]
dt + θn,tσ

q
n,tdZ̃n,t. (29)

Under these assumptions, optimal portfolio choices are given by the standard mean-variance for-
mula θn,tσ

q
n,t = π̃n,t. Substituting this portfolio choice into Eq. (29), equilibrium consumption

dynamics are
dcn,t

cn,t
=
[
rt − δ + π̃2

n,t

]
dt + π̃n,tdZ̃n,t. (30)

From Eq. (27) and Eq. (30), we obtain ξn,tcn,t = ξn,0cn,0 exp(−δt), so that the static budget constraint
(with wealth defined as wn,t := yn,tqn,t + βn,t)

Et

[ ∫ ∞

0

ξn,t+s

ξn,t
cn,t+sds

]
= wn,t (31)
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holds automatically with cn,t = δwn,t. Note that in deriving (31) we have used the individual
transversality condition

lim
T→∞

Et[ξn,Twn,T] = 0, (32)

as usual.

Step 3: Aggregation. Recall the consumption shares xn,t := cn,t/Yt and the endowment shares
αn,t := yn,t/Yt. Notice that θn,t = δαn,tqn,t/xn,t, which, combined with the optimal portfolio choice,
yields equation (15). Time-differentiating the goods market clearing condition ∑N

n=1 cn,t = Yt and
using (30), we have

rt = δ + gt −
N

∑
n=1

xn,tπ̃
2
n,t (33)

and

0 =
N

∑
n=1

xn,tπ̃n,t Mn. (34)

Substituting (15) into (34) delivers equation (9). Also, combining the asset-pricing equation (28),
which is an equation for µ

q
n, with the risk-free rate equation (33), one can show that (8) holds if

and only if ∑N
n=1 αnqn,0 = δ−1, i.e., if an initial restriction holds for prices. In addition, note that

consumption share dynamics are obtained by Itô’s formula, with the result in equation (26).

Step 4: Free-Disposal, No-Ponzi, Transversality. The fact that qn,t is always positive ensures free-
disposal holds. We also require the No-Ponzi condition9

lim
T→∞

ξn,T βn,T = 0, a.s. (35)

To prove (35), we will proceed in two steps. First, we first prove a slightly different condition which
is a transversality condition on prices (no-bubble condition):

lim
T→∞

Et
[
ξn,Tyn,Tqn,T

]
= 0. (36)

Note that by always working within a class of equilibria that satisfy (36), we are proving that any
equilibrium we study must be bubble-free (last statement of the Theorem). Second, we will prove
that the transversality condition (36) implies the No-Ponzi condition (35).

[Proof that (36) holds]: Recall from the discussion above that ξn,T = ξn,0cn,0e−δt/cn,T, so

ξn,Tyn,Tqn,T = ξn,0cn,0e−δT αn,T

xn,T
qn,T.

Note that αn,T is bounded above by 1. Consequently, under the theorem’s assumptions—(qn,t)t≥0 is
positive and bounded and limT→∞ Et[e−δTx−1

n,T] = 0—condition (36) holds.
[Proof that (36) implies (35)]: Since wn,t and qn,t are both positive (wn,t ≥ 0 by the solvency

constraint, and qn,t ≥ 0 by assumption), and since ξn,t is the local state-price density, we know
(ξn,twn,t)t≥0 and (ξn,tyn,tqn,t)t≥0 are both continuous, positive super-martingales. So by Doob’s

9Technically, condition (35) should be an inequality “≥” but optimality will impose “=” so we immediately
write it that way.
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super-martingale convergence theorem, we know that limT→∞ ξn,Twn,T and limT→∞ ξn,Tyn,Tqn,T both
exist and are finite. Second, conditions (32) and (36) imply there exists a sub-sequence of times
{Tj}∞

j=1 along which limj→∞ ξn,Tj wn,Tj = 0 and limj→∞ ξn,Tj yn,Tj qn,Tj = 0. But these limits must
be the same along any subsequence, by the first step (i.e., that the limits exist), which shows
limT→∞ ξn,Twn,T = limT→∞ ξn,Tyn,Tqn,T = 0. Finally, using the identity wn,T = yn,Tqn,T + βn,T with
these results, we obtain (35).

A.2 Proof of Proposition 1
Given the transversality condition in Eq. (36), we have

qn,t = Et

[ ∫ ∞

t

ξn,s

ξn,t

yn,s

yn,t
ds
]
.

Using gn,t = g for all (n, t) and rt = δ + g− At ≤ δ + g, where At := ∑N
n=1 xn,tπ̃

2
n,t ≥ 0, we have

qn,t =
∫ ∞

t
e−δ(s−t)Ẽn

t

[
exp(

∫ s

t
Audu)

]
ds ≥

∫ ∞

t
e−δ(s−t)ds = δ−1,

where Ẽn
t is the location-n risk-neutral expectation, which is mutually absolutely-continuous with

respect to E. Using the bond-market clearing condition (8), we must have qn,t = δ−1 for all (n, t).

A.3 Proof of Proposition 2
Consider gn,t = g + λ(qn,t − δ−1) with λ > δ2 and fixed ε that satisfies 0 < ε < δ−2 − λ−1.
Supposing rank(M) < N, conjecture a stochastic equilibrium exists with αn,tqn,tσ

q
n,t = v∗nψt and

π̃n,t = δv∗nψt/xn,t for some process ψt. Substituting these and all other equilibrium objects into the
asset-pricing equation (28), we have

dqn,t =
[
− 1 +

(
δ + λδ−1 − δ2ψ2

t

N

∑
i=1

(v∗i )
2

xi,t

)
qn,t − λq2

n,t + δ
(v∗nψt)2

αn,txn,t

]
dt +

v∗n
αn,t

ψt MndZt. (37)

We show that if properties (P1) and (P2) are satisfied, then qn,t remains bounded for all n. As a
preliminary, define

D(q) := −1 + (δ + λδ−1)q− λq2. (38)

When ψt = 0, all local price-dividend ratios follow dqn,t = D(qn,t)dt. Note that D(q) = 0 is a
quadratic equation that has two roots: δ−1 and δλ−1. Moreover, D(q) > 0 if and only if q ∈
(δλ−1, δ−1).

Under property (P2), if
¯
qt = δ(ε + λ−1), we have ψt = 0 and so

d
¯
qt = D

(
δ(ε + λ−1)

)
dt > 0.

Note that, under property (P1), the drift and diffusion coefficients of qn,t are bounded, so qn,t is
almost-surely path-continuous. This proves that the entire path is bounded below: if qn,0 > δ(ε +
λ−1) for all n, then {qn,t}t≥0 > δ(ε + λ−1) for each n almost-surely.

On the other hand, bond market clearing (8), plus this lower bound on valuations, implies an
upper bound on the maximal valuation:

q̄t := max
n

qn,t < α−1
n̄t,t
[
δ−1 − (1− αn̄t,t)δ(ε + λ−1)

]︸ ︷︷ ︸
:=bt

, where n̄t := arg max
n

qn,t.
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It suffices to show that P[supt bt < +∞] = 1. As long as
¯
αt > 0, we always have bt < +∞. As

a result, we need only consider the case
¯
αt = αn̄t,t (i.e., the location with maximal valuation is the

location with minimal endowment share) and suppose
¯
αt ↘ 0. However, since q̄t > δ−1, we have

dαn̄t,t = αn̄t,tλ[q̄t − δ−1]dt > 0,

which contradicts
¯
αt ↘ 0.

In summary, {(qn,t)N
n=1 : t ≥ 0} is positive and bounded almost-surely, so to verify the conditions

of Theorem 1, it remains to show that limT→∞ Et[e−δTx−1
n,T] = 0. Substituting equilibrium objects into

(26), we have

dxn,t = ψ2
t δ2
[
(1− xn,t)

(v∗n)2

xn,t
− xn,t ∑

i 6=n

(v∗i )
2

xi,t

]
dt + ψtδv∗n MndZt. (39)

Define
¯
xt := minn xn,t and

¯
nt := arg minn xn,t. Ignoring local times,

¯
xt follows

d
¯
xt = ψ2

t δ2
[ (v∗

¯
nt
)2

¯
xt
−O(

¯
xt)
]
dt + ψtδv∗

¯
nt

M
¯
nt dZt.

On the set of events {ψt > 0}, we have specified in requirement (P1) that ψt/¯
xt be bounded;

hence, limT→∞ Et[e−δT1{ψT>0}ψT ¯
x−1

T ] = 0, which implies limT→∞ Et[e−δT1{ψT>0} ¯
x−1

T ] = 0. On
the complementary event {ψt = 0}, it is clear from the evolution equation that d

¯
xt = 0. Thus,

limT→∞ Et[e−δT1{ψT=0} ¯
x−1

T ] = 0. Putting these pieces together, we verify limT→∞ Et[e−δT
¯
x−1

T ] = 0.

A.4 Proof of Theorem 2
First, assuming the existence of self-fulfilling volatility, let us find a portfolio that has no risk but
pays a positive premium over the riskless rate. Consider a portfolio that goes long δαn,tqn,t of each
asset n = 1, . . . , N, which costs 1 by equation (8). As stated in equation (28), each asset n has
expected excess returns that are given by the product of the location-n risk quantity times the risk
price: σ

q
n,tπ̃n,t. Using equation (15) to substitute π̃n,t, the portfolio excess return is

N

∑
n=1

xn,tδ
2
(αn,tqn,t

xn,t

)2
(σ

q
n,t)

2 ≥ 0,

which is strictly positive as long as any self-fulfilling volatility obtains. Using the expression for
π̃n,t, one can easily verify this expression is equivalent to At in (17). At the same time, by equation
(9), the portfolio volatility is identically zero. This shows that an arbitrage always emerges if there
is self-fulfilling volatility.

Next, the claim that absence of self-fulfilling volatility implies no arbitrage follows from (28),
whereby all assets return rt when σ

q
n,t = 0.

A.5 Proof of Proposition 3
Substituting αn,tqn,tσ

q
n,t = ψtv∗n from Theorem 1 into location-specific risk prices of (15), and substi-

tuting the result into (17), we have

At = δ2ψ2
t

N

∑
n=1

xn,t

( v∗n
xn,t

)2
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By inverting this relationship, the amount of self-fulfilling volatility ψt can be inferred from At,
which gives the equality in (18). The upper bound can be obtained by substituting

N

∑
n=1

xn,t

( v∗n
xn,t

)2
≥
( N

∑
n=1

xn,t
v∗n
xn,t

)2
= (1′v∗)2,

which holds by Jensen’s inequality. To obtain the equality in (19), substitute (8) into the definition
of σ∗t and use the result from Theorem 1 that αn,tqn,tσ

q
n,t = ψtv∗n. To obtain the inequality, use (18).

A.6 Proof of Proposition 4
Substitute equation (20) into equation (15) to get

πn,t = δ
(αn,tqn,t

xn,t

)
σ

q
n,t Mn.

Now, use the result of Theorem 1 that αn,tqn,tσ
q
n,t = v∗nψt. Combining these equations, we have

πn,t = δv∗nψt
Mn

xn,t
. (40)

Assumption (21) is equivalent to

δψt max
(i,j):i 6=j

∥∥∥v∗i Mi

xi,t
−

v∗j Mj

xj,t

∥∥∥ ≤ Πt.

Solving for ψt, we obtain inequality (22). The bounds for σ∗t are a direct consequence of (22).

A.7 Proof of Corollary 5
To get the both bounds, begin with the volatility bound (22) of Proposition 4 and use

‖πn,t‖ = δψt
v∗n
xn,t

,

√
At = δψt

√√√√ N

∑
n=1

xn,t(
v∗n
xn,t

)2.

The expression for ‖πn,t‖ comes from taking the norm of equation (40) and using the fact that MM′

has ones on its diagonal (this was a normalization). The expression for
√

At comes from expression
(18) in Proposition 3.
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B Model extensions
This appendix provides extensions of the main model and is online supplemental material.

B.1 Aggregate shocks
Here, we allow for aggregate shocks hitting the endowments. Location-specific endowments now
follow

dyn,t = yn,t[gn,tdt + νdBt],

where Bt is an aggregate Brownian shock, independent of the extrinsic shocks Zt (and by extension
Z̃t). We maintain the restriction ∑N

n=1 yn,tgn,t = Ytgt. Thus, the aggregate endowment follows

dYt = Yt[gtdt + νdBt].

Conjecture that local price-dividend ratios follow

dqn,t = qn,t

[
µ

q
n,tdt + σ

q
n,tdZ̃n,t + ς

q
n,tdBt

]
,

where (µ
q
n,t, σ

q
n,t, ς

q
n,t) are determined in equilibrium. We will proceed by making one of two possible

assumptions on the tradability of this aggregate shock.

Assumption 1. One of the following holds:

(a) there are no additional markets open beyond those assumed so far;

(b) there is an integrated market in which agents frictionlessly trade a zero-net-supply Arrow security that
has a unit loading on dBt.

In both cases of Assumption 1, all previous results on self-fulfilling volatility go through. How-
ever, we uncover a surprising nuance: equilibrium is consistent with local assets having nearly
arbitrary sensitivities to the aggregate shock.

Proposition 6. With aggregate shocks, the conclusions of Theorem 1 on (σ
q
n,t)

N
n=1 continue to hold without

modification. Regarding (ς
q
n,t)

N
n=1, we have the following. Let (φn,t)

N−1
n=1 be a collection of arbitrary stochastic

processes and set φN,t := −∑N−1
n=1 φn,t. Then, there exists an equilibrium with αn,tqn,tς

q
n,t = φn,t as long as

the resulting {(qn,t)N
n=1}t≥0 is a bounded, positive process and limT→∞ Et[e−δTx−1

n,T] = 0, for each n. All
such equilibria of this economy are bubble-free.

1



Before giving a formal proof, we provide the basic sketch of the argument. Because our log
agents will still consume δ fraction of their wealth in this environment, equilibrium still satisfies
equation (8) such that ∑N

n=1 αn,tqn,t = δ−1. If we time-differentiate this condition as before, matching
diffusion terms leads us to

(match dZt terms) 0 =
N

∑
n=1

αn,tqn,tσ
q
n,t Mn, (41)

(match dBt terms) 0 =
N

∑
n=1

αn,tqn,tς
q
n,t. (42)

Equation (41) is identical to equation (9), which is why the results of Theorem 1 continue to hold.
For equation (42), of course it is possible to have ς

q
n,t = 0 for all n. But we may also set (ςq

n,t)
N−1
n=1

arbitrarily, so long as ς
q
N,t offsets these sensitivities. Thus, the volatilities have a similar redistributive

flavor as before.
This is indeed an equilibrium, as long as the induced dynamics of price-dividend ratios are

stationary. To this end, we can easily extend Propositions 1 and 2 to this setting with aggregate
shocks. With common growth rates gn,t = g, there will be no multiplicity (σq

n,t = ς
q
n,t = 0), as

the only prices consistent with the transversality condition are qn,t = δ−1. With growth rates that
increase sufficiently quickly in local valuations, we can generate stochastic multiplicity, because all
that is required is to have both σ

q
n,t and ς

q
n,t vanish whenever minn qn,t or minn αn,t become “too

small”. We omit the details of these results.10

The intuition for self-fulfilling fundamental sensitivities differs depending on whether the shock
is hedgable or not. When agents cannot hedge the dBt shock, the logic is similar to the baseline
model: agents adjust their consumption, through the bond market, to their conjecture about how
the local asset co-moves with the fundamental shock. When agents trade Arrow securities on dBt
in an integrated market, they do not care whether or not their local asset responds to this shock.
Enough hedging and risk-sharing will occur in equilibrium such that individual consumptions all
have sensitivity ν to dBt. Under a particular conjecture about ς

q
n,t, location-n agents will form a

hedging plan to undo this exposure. This is self-fulfilling: as long as asset prices move according to
the conjecture, the hedging plan was correct.

Proof of Proposition 6. We will nest cases (a) and (b) of Assumption 1 in the following setting.
Introduce an Arrow security that pays off ηn,tdt + dBt per unit of time, where (ηn,t)N

n=1 will be
determined endogenously. Thus, agent n faces the state-price density process, modified from (27):

dξn,t = −ξn,t

[
rtdt + π̃n,tdZ̃n,t + ηn,tdBt

]
. (43)

Let θ
agg
n,t be the fraction of wealth a location-n agent invests in the Arrow security, and let θn,t be the

fraction of wealth invested in the location-specific capital asset as before. The wealth of agent n has
the following dynamics (i.e., the dynamic budget constraint):

dwn,t

wn,t
=
[
rt −

cn,t

wn,t
+ θn,tσ

q
n,tπ̃n,t +

(
θn,t(ν + ς

q
n,t) + θ

agg
n,t

)
ηn,t

]
dt

+ θn,tσ
q
n,tdZ̃n,t +

(
θn,t(ν + ς

q
n,t) + θ

agg
n,t

)
dBt. (44)

10To prove an analogous result to Proposition 2 formally, it is convenient that all locations have equal
exposures ν to the aggregate shock, so that αn,t evolves locally deterministically for all n.
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To implement (a), where agents are not allowed to trade the Arrow security, we impose a fictitious
market clearing condition θ

agg
n,t = 0 for all n, which will pin down ηn,t such that no trading in

the Arrow security occurs. From the results of Cvitanić and Karatzas (1992), this implements the
same equilibrium as if we never introduced this fictitious market. To implement (b), in which the
Arrow market exists and is integrated, we impose ηn,t = ηt for all n and clear the market via
∑N

n=1 xn,tθ
agg
n,t = 0. In both cases, we have the capital market clearing condition θn,t = yn,tqn,t/wn,t as

before.
Thus, we may nest cases (a) and (b) by solving unconstrained optimization problems for our

investors, augmented with the general state-price density process (43) as long as ηn,t is chosen
appropriately. Given the state-price density, the pricing condition (28) is replaced by

µ
q
n,t + gn,t +

1
qn,t

+ νς
q
n,t − rt = σ

q
n,tπ̃n,t + (ν + ς

q
n,t)ηn,t, (45)

along with the requirement qn,t > 0. Because all agents have log utility and effectively solve uncon-
strained portfolio problems with homogeneous wealth dynamics (44), they all consume δ fraction of
their wealth; i.e., cn,t = δwn,t. Then, as Bt and Z̃n,t are independent, optimal consumption dynamics
(30) are modified to read

dcn,t

cn,t
=
[
rt − δ + π̃2

n,t + η2
n,t

]
dt + π̃n,tdZ̃n,t + ηn,tdBt.

Because dwn,t/wn,t = dcn,t/cn,t, we therefore have

π̃n,t = θn,tσ
q
n,t =

δαn,tqn,t

xn,t
σ

q
n,t,

ηn,t = θn,t(ν + ς
q
n,t) + θ

agg
n,t =

δαn,tqn,t

xn,t
(ν + ς

q
n,t) + θ

agg
n,t .

The first equation is identical to (15).
Now, we aggregate. First, equation (8) still holds, since agents consume δ fraction of wealth, and

since both the bond market and the Arrow markets are in zero net supply. Next, time-differentiate
the goods market clearing condition ∑N

n=1 cn,t = Yt and match drift and diffusion terms to obtain

rt = δ + gt −
N

∑
n=1

xn,tπ̃
2
n,t −

N

∑
n=1

xn,tη
2
n,t

0 =
N

∑
n=1

xn,tπ̃n,t Mn

ν =
N

∑
n=1

xn,tηn,t.

Using the expressions for π̃n,t and ηn,t above, along with the condition ∑N
n=1 xn,tθ

agg
n,t = 0 (which

holds in cases (a) and (b) both), we obtain equations (41)-(42). Thus, σ
q
n,t and π̃n,t are solved exactly

as in Theorem 1. Letting (φn,t)
N−1
n=1 be arbitrary processes, and putting φN,t = −∑N−1

n=1 φn,t, we
may satisfy (42) by setting ς

q
n,t by φn,t = αn,tqn,tς

q
n,t. As before, this is an equilibrium as long as

the transversality condition (36) is satisfied, for which it suffices to show that qn,t is almost-surely
bounded and limT→∞ Et[e−δTx−1

n,T] = 0 almost-surely. Also as before, transversality (36) holding
implies all such equilibria are bubble-free.

It remains to solve for (ηn,t)N
n=1. In case (a), we use θ

agg
n,t = 0 in conjunction with the expression

for ηn,t above to get ηn,t = δαn,tqn,t(ν + ς
q
n,t)/xn,t. In case (b), we impose ηn,t = ηt for all n, which,

after substituting into ν = ∑N
n=1 xn,tηn,t, yields ηt = ν.
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B.2 Debt overhang as a “stabilizing force”
In this section, we sketch an economy where firms face an investment problem, subject to neo-
classical adjustment costs and debt-overhang. The result is a version of Q-theory, but with under-
investment. Because the predictions of this theory are so well-established, at some points we make
reduced-form assumptions to simplify the analysis and illustrate our main points on stability.

Firms. There are a continuum of firms in each location n, each employing a linear technology with
productivity a and capital as the sole input. The evolution of firm-level capital is

dk(j)
n,t = k(j)

n,t[ι
(j)
n,t − κ]dt + k(j)

n,tσ̂dB̂(j)
n,t ,

where ι is the endogenous investment rate, κ is the exogenous depreciation rate, and B(j) is an
idiosyncratic Brownian shock. The cost of making investment ιk is given by Φ(ι)k, where Φ(·)
is a convex adjustment cost function. Thus, the investment-production block has the standard
homogeneity property in capital.

For this section only, we denote by q(j)
n,t the location-n average value of capital to equity, i.e.

“average Q” (this will not be the same as the price-dividend ratio that is called “q” in the main text,
because the dividend is output minus investment). Thus, the value of firm j is given by q(j)

n,tk
(j)
n,t.

We also assume that all firms have long-term debt outstanding, in fact a perpetuity with a
fixed and continuously-paid coupon as in Leland (1994) and its descendent papers, without micro-
founding the reasons for why (e.g., debt tax shield), as this is unimportant. Furthermore, to keep
things simple, we assume existing firms can never issue new debt. Finally, firms default optimally,
subject to some default costs that are proportional to the firm’s capital (these can be redistributed
to households to create no deadweight loss). Under these conditions, a typical finding is (see for
example Hennessy, 2004, Proposition 2)

q̃(j)
n,t := marginal value of capital to equity < average value of capital to equity = q(j)

n,t.

Moreover, essentially by definition of q̃, the optimal investment satisfies q̃(j)
n,t = Φ′(ι(j)

n,t) (see for

example Hennessy, 2004, equation 11). Thus, we see that q(j)
n,t > Φ′(ι(j)

n,t). The lack of equality here
measures the deviation from neoclassical Q-theory.

Despite this deviation, we have the following property. Since q(j)
n,t increases with q̃(j)

n,t = Φ′(ι(j)
n,t),

and since Φ is a convex function, we have ι
(j)
n,t increasing in q(j)

n,t. We will furthermore make the

reduced-form assumption that ι
(j)
n,t = ι(q(j)

n,t) for some univariate increasing function ι(·). This as-

sumption is quite benign as it is typically satisfied in applications, because q̃(j)
n,t, hence q(j)

n,t, will
typically be monotonic functions of the underlying firm-level state (e.g., leverage ratio).

In summary, we have the following two firm-level properties under debt overhang:

q(j)
n,t > Φ′(ι(j)

n,t) (46)

ι′(q(j)
n,t) > 0. (47)

Condition (46) captures the specific debt-overhang mechanism, whereas condition (47) is much more
general and applies in almost any investment model. With a more general contractual structure,
DeMarzo et al. (2012) also obtains these two results.

Aggregation. We will now make two assumptions that are mainly for tractability in aggregation.
First, when a firm defaults and exits, it is replaced by another firm with the same identity j that
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inherits the defaulting capital stock. We assume this new entrant issues new debt is such that the
aggregate location-n value of debt outstanding is always a constant fraction of total location-n capi-
tal; i.e., total location-n value of debt is always βkn,t. Alternatively, this proportionality of aggregate
debt to capital could be ensured by augmenting the model with a time-varying exogenous exit rate,
but allowing new entrants to issue debt in an optimal way. Either way, this set of assumptions
implies it suffices to study equity.

Second, we make assumptions to avoid studying the full cross-sectional distribution of firms
within a location. We assume that properties (46)-(47) also hold in the aggregate at each location,
and we will presume a certain approximate aggregation on investment and investment costs. In
particular, let us define the appropriate aggregates, for capital, average Q, and investment:

kn,t :=
∫

k(j)
n,tdj

qn,t :=
1

kn,t

∫
q(j)

n,tk
(j)
n,tdj

ιn,t :=
1

kn,t

∫
ι(q(j)

n,t)k
(j)
n,tdj.

As an approximation, we assume the existence of functions (ῑ, Φ̄) such that the following hold:

ῑ(qn,t) ≈
∫

k(j)
n,tι(q

(j)
n,t)dj (48)

kn,tΦ̄(ῑ(qn,t)) ≈
∫

k(j)
n,tΦ̄(ῑ(q(j)

n,t))dj. (49)

The nature of these approximations is to say that aggregate location-n investment is solely a function
of aggregate average Q, rather than the full cross-sectional distribution of average Q’s. Furthermore,
we assume the following aggregate versions of properties (46)-(47), i.e.,

qn,t > Φ̄′(ῑn,t) (50)
ῑ′(qn,t) > 0. (51)

We conjecture these properties would go through in a full analysis of equilibrium using the cross-
sectional distribution of firm size and Q, but this is beyond the scope of this paper. As we make
these aggregation approximations, note that we also assume the functions (ῑ, Φ̄) are independent of
location n.

Stability. Now, we can proceed to study stability. The aggregate portfolio of location-n firms’
liabilities (debt plus equity) has value (β+ qn,t)kn,t, which is a claim to the profits

∫
(a−Φ(ι

(j)
n,t))k

(j)
n,tdj.

Based on approximation (49), this aggregate profit can be approximately written (a− Φ̄(ῑ(qn,t)))kn,t.
Furthermore, the return on this portfolio is deterministic, given that all fundamental shocks are
idiosyncratic (hence defaults will be idiosyncratic), and thus the return must equal the riskless
bond return rt in equilibrium. Thus, qn,t evolves deterministically, and the (approximate) valuation
equation states

a− Φ̄(ῑ(qn,t))

qn,t
+ ῑ(qn,t)− κ +

q̇n,t

qn,t
= rt. (52)

Lemma 2. Suppose the number of locations N is large enough, that approximations (48)-(49) hold, and that
properties (50)-(51) hold with sufficient gaps between the left- and right-hand-sides (i.e., under-investment is
large enough). Then, the equilibrium of the model with debt overhang is locally-stable.
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Proof of Lemma 2. We start with approximate valuation equation (52). Time-differentiate q̇n,t with
respect to qn,t and q−n,t to obtain

dq̇n,t

dqn,t
= rt + κ − ῑ(qn,t) + Φ̄′(ῑ(qn,t))ῑ

′(qn,t)− qn,t ῑ
′(qn,t) + qn,t

drt

dqn,t

dq̇n,t

dq−n,t
= qn,t

drt

dq−n,t
.

We will study these equations in the limit N → ∞, which suffices, because the lemma allows us to
later make N large enough.

As N → ∞, one can show that

rt → δ− κ + lim
N→∞

N

∑
n=1

kn,t

∑N
i=1 ki,t

ῑ(qn,t),

which has zero derivative with respect to qi,t for any i. Substituting this result for rt, we obtain
dq̇n,t/dq−n,t = 0 and

dq̇n,t

dqn,t
= δ + lim

N→∞

N

∑
m=1

km,t

∑N
i=1 ki,t

ῑ(qm,t)− ῑ(qn,t)︸ ︷︷ ︸
=0 in steady state

−
[
qn,t − Φ̄′(ῑ(qn,t))

]
ῑ′(qn,t).

The fact that the middle terms net out to zero in steady state is a consequence of the fact that
dkn,t = kn,t[ῑ(qn,t)− κ]dt, and all locations must experience the same growth rate ῑ(qn,t)− κ in steady
state. Thus, we will have dq̇n,t/dqn,t < 0, hence local stability by dq̇n,t/dq−n,t = 0, if and only if[

qn,t − Φ̄′(ῑ(qn,t))
]
ῑ′(qn,t) > δ.

This will be true if properties (50)-(51) hold with sufficient gaps, as assumed.

B.3 Creative destruction as a “stabilizing force”
In this section, we consider another model that allows multiplicity. We show how an overlapping
generations (OLG) “perpetual youth” economy – built upon Blanchard (1985) – augmented with
a particular type of creative destruction – similar to Gârleanu and Panageas (2020) – creates a
stabilizing force upon which extrinsic shocks can be layered. In particular, if new firm creation
is more intense when asset valuations are low, the economy possesses a natural stabilizing force.
A possible rationale for this feature is that when capital asset valuations are low, they make labor
look relatively attractive, which offers a robust outside option for those new entrepreneurs willing to
enter. The contribution relative to Gârleanu and Panageas (2020) is to show how this is possible with
an arbitrary number of assets (corresponding to the N locations) whose markets are, in addition,
not integrated.

Cohorts, Endowments, Markets. In this model, all agents face a constant hazard rate of death
β > 0, with all dying agents replaced by newborns (in the same location), so that population size
is constant at 1. To keep matters simple, assume all locations have identical constant endowment
growth rates and no shocks. That said, the endowment growth of an individual agent differs from
the aggregate growth rate; this is the crucial ingredient in this model.

In particular, we assume some amount of creative destruction. The endowments of living agents
decay at rate κn,t (obsolescence rate), while newborn agents arrive to the economy with new trees of
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total size κn,t + g (or, in per capita units, their individual trees are (κn,t + g)/β in size). Specifically,
the time-t endowment accruing to location-n agents born at time s ≤ t is

y(s)n,t = yn,t(κn,s + g) exp
[
−
∫ t

s
(κn,u + g)du

]
.

Note that the aggregate endowment follows

dyn,t = d
( ∫ t

−∞
y(s)n,t ds

)
= y(t)n,tdt +

∫ t

−∞
dy(s)n,t ds = yn,t(κn,t + g)dt︸ ︷︷ ︸

newborn entry

− yn,tκn,tdt︸ ︷︷ ︸
obsolescence

= yn,tgdt.

For now, we leave κn,t unspecified, but note that its formulation will be the determinant of whether
multiplicity is possible or not.

Agents can only trade in financial markets while alive. In addition to the tradability of claims
to local endowments, agents can access a market for annuities that insures their death hazard and
provides a stream of βw(s)

n,t of income per unit of time, where w(s)
n,t is the wealth of a location-n agent

born at time s ≤ t. This assumption is standard in perpetual youth models.

Solution. Under these assumptions, one can show that agents consume δ + β fraction of their
wealth, so that the bond market clearing condition (8) is replaced by

N

∑
n=1

αnqn,t = (δ + β)−1,

where qn,t is the (aggregated across cohorts) location-n valuation ratio. Let ξn,t denote the location-n
state-price density, which follows

dξn,t = −ξn,t

[
rtdt + π̃n,tdZ̃n,t

]
.

We will continue to examine a bubble-free equilibrium, so that

qn,t = Et

[ ∫ ∞

t

ξn,τ

ξn,t

y(s)n,τ

y(s)n,t

dτ
]

(for any birth-date s ≤ t, this yields the same answer).

Critically, this valuation does not incorporate wealth gains due to entry of future newborns (i.e.,
this is the value of alive firms). The dynamic counterpart of this valuation equation is, for some
diffusion coefficient σ

q
n,t,

dqn,t

qn,t
=
[
rt + κn,t −

1
qn,t

+ σ
q
n,tπ̃n,t

]
dt + σ

q
n,tdZ̃n,t. (53)

The equilibrium riskless rate is obtained as follows. The goods market is integrated across
locations, so the market clearing condition is given by

Yt =
N

∑
n=1

yn,t =
N

∑
n=1

∫ t

−∞
βe−β(t−s)c(s)n,t ds.

Optimal consumption dynamics for alive agents are

dc(s)n,t

c(s)n,t

=
[
rt − δ + π̃2

n,t

]
dt + π̃n,tdZ̃n,t,

7



whereas newborn agents consume

βc(t)n,t = (δ + β)︸ ︷︷ ︸
cons-wealth

ratio

× (κn,t + g)yn,tqn,t︸ ︷︷ ︸
newborn wealth

.

Time-differentiating goods market clearing, and using these results, we obtain

rt = δ + β−
N

∑
n=1

xn,tπ̃
2
n,t − (δ + β)

N

∑
n=1

αnqn,tκn,t. (54)

Stability. To see how the stabilizing force works, it is instructive to once again study the determinis-
tic equilibrium in which extrinsic shocks have no volatility. Substituting (54) into (53) with σ

q
n,t = 0,

we obtain

q̇n,t = −1 + (δ + β)qn,t︸ ︷︷ ︸
unstable component

−
[
(δ + β)

N

∑
i=1

αiqi,tκi,t − κn,t

]
qn,t︸ ︷︷ ︸

stabilizing force

when σ
q
i,t = 0 ∀i. (55)

The first piece is the unstable component, propelling valuations further and further away from
the “steady state” value (δ + β)−1. The second piece—capturing the relative amount of creative
destruction in location n—is the stabilizing force.

Based on equation (55), we claim that if κn,t decreases sufficiently rapidly as qn,t increases,
then valuation dynamics are stable. Let κn,t = κ(qn,t) for a decreasing function κ(·). Denote the
steady-state mean and sensitivity of this function by κ̄ := κ((δ + β)−1) and λ := −κ′((δ + β)−1),
respectively. Then, compute

∂q̇n

∂qm

∣∣∣
qi=(δ+β)−1 ∀ i

=

{
δ + β− λ(δ + β)−1(1− αn)− αnκ̄, if m = n;
λ(δ + β)−1αm − αmκ̄, if m 6= n.

Construct the steady-state Jacobian matrix as

J :=
[ ∂q̇n

∂qm

∣∣∣
qi=(δ+β)−1 ∀ i

]
1≤n,m≤N

. (56)

Local stability of the steady-state can be determined by the eigenvalues of J. By the Gershgorin
circle theorem, all of these eigenvalues will have strictly negative real parts if J has negative diagonal
elements and is diagonally dominant. This is easily guaranteed by making κ̄ and λ large enough,
meaning the amount of creative destruction and its sensitivity to prices are both large enough. The
result is summarized in the following lemma, with the proof omitted.

Lemma 3. Assume κ̄ > δ + β and λ > (δ + β)κ̄. Then, all eigenvalues of J have strictly negative real parts.
Consequently, the equilibrium of the creative destruction model is locally stable.
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