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As a result of various financial frictions, aggregate risk may be concentrated on the

balance sheets of a few specialized market participants. A large literature, growing rapidly

after the 2008 financial crisis, has argued that such risk concentration can help explain crisis

dynamics in macro and asset pricing. The risk concentration channel is well-captured by a

standard limited participation economy: exogenously designated “participants” hold risky

assets, while “non-participants” do not. In equilibrium, risky assets are held by a subset of

the population, so participants demand a large risk premium for their holdings. Moreover, as

negative cash flow shocks accumulate and participants’ risk exposures rise, risk premia must

also rise to induce additional leverage in participants’ portfolios. This channel is potentially

powerful—it amplifies both the level and variability of risk premia—but is it realistic?

This paper offers a critique of the risk concentration mechanism, central to intermediary

asset pricing and other literatures, by arguing the mechanism relies on implausibly costly

financial frictions. To understand how I arrive at this conclusion, consider the fact that the

decision to participate and hold risky assets is endogenous. If non-participants become in-

creasingly willing to participate as risk becomes more concentrated and risk premia become

more attractive, entry endogenously limits risk concentration and subdues risk price dynam-

ics. The size of entry barriers thus determines the size of the risk concentration mechanism.

Inverting this logic, the behavior of equilibrium asset prices reveals the size of entry barriers.

I study a limited participation model to uncover this mapping between asset prices and

entry barriers. The key assumption: non-participants may pay a one-time cost to begin

trading in risky asset markets forever after. In allowing this, I relax the notion of rigid

investor “types” (e.g., “participants” or “experts” or “banks”) that pervades the literature.

Agents in my model are ex-ante identical, and ex-post heterogeneity arises through entry.

The main results of the paper are as follows. In the baseline results, I argue that expected

return levels and dynamics are inconsistent with small entry costs and are likely associated

with large barriers. Next, this class of models embeds a fundamental trade-off between risk

premia levels and dynamics, such that augmenting the baseline model often improves asset

pricing results in one dimension but worsens them in another. Finally, I argue extrapolative

beliefs sidestep this critique, because potential entrants are endogenously pessimistic when

risk premia are high.

The claim that asset prices are inconsistent with small entry costs comes from the follow-

ing two results. First, I prove that if entry is not too costly, the risk concentration channel

is completely severed as markets become fully integrated and agents share aggregate risk

equally. Second, through various exercises, I find that entry costs need to be on the order of

90% of wealth to induce enough segmentation and hence empirically realistic asset prices.

The basic intuition for these findings comes from the fact that participation in risky
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asset markets cannot be too profitable if agents are allowed to choose to enter these markets.

Participation provides an extra average return on wealth, which translates into a large present

discounted utility gain that outweighs small entry costs. For example, a standard log utility

Merton investor attains a portfolio expected excess return equal to the squared market

Sharpe ratio. If she has a ρ = 2% discount rate and faces a Sharpe ratio of η = 0.1, her

risk-adjusted lifetime gains from holding risky assets are equal to 1
2
η2
∫∞

0
e−ρtdt = 25% of her

wealth (the 1
2

does a risk-adjustment). Small participation costs cannot dissuade investors

from taking these benefits.

Instead, if limited participation is the mechanism generating large and volatile risk pre-

mia, implied participation costs must be enormous. It is revealing to consider a simple

back-of-the-envelope calculation using the Gordon growth formula. With a 2% growth rate

and 2% riskless rate, switching from a 0.5% risk premium (frictionless economy) to a 5% risk

premium (economy with frictions) suggests a 1 − 1/(2%+5%−2%)
1/(2%+0.5%−2%)

= 90% drop in aggregate

wealth, consistent with the enormous implied entry costs from my model. One can think of

my baseline results as formalizing these back-of-the-envelope calculations in a fully nonlinear

general equilibrium environment.

Can certain auxiliary features raise both the level and variability of risk premia, such

that large entry barriers are no longer needed? For many standard extensions, no. Through

a series of robustness exercises, I illustrate a trade-off in endogenous participation models

between the level and variability of risk premia, a trade-off which uniquely arises when entry

is endogenous. Intuitively, auxiliary features that raise unconditional risk premia tend to

raise participation incentives, which mitigates risk concentration. For example, a calibra-

tion with higher risk aversion increases unconditional risk premia and thereby accelerates

entry and attenuates risk premia dynamics. I find a similar level-variability tension when

introducing partial equity-issuance (by participants) and idiosyncratic risk (in returns). The

level-variability tension is problematic for limited participation models, which are conven-

tionally thought to raise both levels and variability of risk premia.

I conclude by showing that a limited participation economy augmented with extrapolative

beliefs is immune to this level-variability tension. Investors who extrapolate recent past

returns believe risk premia are high when they are actually low, and vice versa. As a result,

in bad times, non-participants will have become endogenously pessimistic and will not want

to enter risky asset markets, even with moderate entry costs. The absence of entry in

bad times is precisely what allows for more extreme risk price dynamics. I show a type of

“additive property” in this setting: entry frictions mainly affect risk price levels, whereas

extrapolative beliefs mainly affect risk price dynamics, with no offsetting impact on each

other. The other extensions explored in this paper are “sub-additive”: boosting risk price
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levels dampens risk price dynamics, due to entry.

Quantitatively, with moderate entry costs and reasonable extrapolation parameters, the

model delivers realistic magnitudes in levels and time-series variation of risk prices (as well as

low and stable interest rates, and amplified return volatility). This section contributes to the

literature methodologically by fully solving a model with recursive preferences, extrapolative

beliefs, and limited participation with endogenous entry, which is a challenging problem.

The framework analyzed in this paper is most similar to the restricted participation model

of Basak and Cuoco (1998) but with an endogenous entry margin. One key assumption I

make, to sharpen the theoretical analysis, is that entry costs are homogeneous in wealth. As

a result, the relative consumption of participants versus non-participants fully characterizes

equilibrium dynamics, and solving the model only requires solving a single free boundary

problem. In the case of logarithmic utility, I establish existence/uniqueness results and

analyze the model and several extensions analytically. Even in the case of general recursive

utility, one can obtain many sharp theoretical results. That said, the quantitative results

are shown to be robust to alternative entry cost formulations (in particular, I also study

a fixed cost formulation, in which the entire distribution of wealth becomes an aggregate

state variable). The results are also robust to including non-tradable labor income, which

similarly introduces a non-homogeneity in equilibrium.

Related Literature. Recently, the limited participation mechanism has been applied to

a variety of contexts, for instance asset markets that rely on arbitrageurs (e.g., futures,

commodity, and options markets) or function primarily through intermediaries (e.g., credit

markets and asset-backed securities).1 The common thread is that arbitrageur or intermedi-

ary wealth matters for equilibrium dynamics, in a way that is very similar to the canonical

limited participation model (Basak and Cuoco, 1998). The same mechanisms are central to

modern macroeconomics.2 My paper provides a transparent way to understand how large

financial frictions must be in these markets to generate significant risk concentration.

In these literatures, a risk concentration channel emerges through assumed heterogene-

ity in investment opportunity sets or ex-ante differences in investor’s types. On the other

end of the spectrum, Haddad (2014) features ex-ante identical investors and focuses on an

1For models, see Basak and Croitoru (2000), Basak and Shapiro (2001), Kyle and Xiong (2001), Gromb
and Vayanos (2002), Kondor (2009), Gârleanu and Pedersen (2011), He and Krishnamurthy (2012, 2013).
For empirical evidence, see Adrian and Shin (2010), Adrian and Shin (2013), Adrian, Etula, and Muir (2014),
He, Kelly, and Manela (2017), Muir (2017), Siriwardane (2019).

2Beginning from the seminal “financial accelerator” papers of Kiyotaki and Moore (1997) and Bernanke,
Gertler, and Gilchrist (1999), there has been explosive growth in the literature on macro dynamics with
financial frictions. See Gertler and Karadi (2011), Gertler and Kiyotaki (2010), Brunnermeier and Sannikov
(2014), Mendoza (2010), Bianchi (2011), Gertler and Kiyotaki (2015), Christiano, Motto, and Rostagno
(2014), Adrian and Boyarchenko (2012), Di Tella (2017), He and Krishnamurthy (2019).
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equilibrium with free entry. But neither absence of entry nor free entry are realistic; the

costly entry device introduced in this paper provides a natural way to span these extremes

and infer costs of financial frictions from asset markets.

My paper is also related to the literature on stock market non-participation.3 How-

ever, applying the limited participation model to households and stock markets is somewhat

problematic, as risk concentration appears modest in that context.4 For this reason, recent

literature has more often applied the mechanisms discussed in this paper to intermediated

markets, a setting in which higher barriers to entry are not unreasonable.5

In the critical extension with extrapolative beliefs, I build on Barberis, Greenwood, Jin,

and Shleifer (2015), who present a model in which some investors extrapolate past price

movements rather than rationally computing expected price changes.6 Agents tend to believe

expected returns are high in “good times,” which have resulted from a run-up in prices, and

low in “bad times,” in accordance with survey evidence, but at odds with reality.7

More recently, Krishnamurthy and Li (2020) and Maxted (2020) have embedded diagnos-

tic beliefs (one microfoundation for extrapolation) into a similar intermediary-based model.

Extrapolative intermediaries help align the models with empirical evidence that credit booms

predict financial crises. My paper uses extrapolation to tackle the different but related ques-

tion of how significant risk price dynamics can arise without extreme financial frictions.

The paper is organized as follows. Section 1 describes a limited participation model

with entry. Section 2 argues the baseline risk concentration channel implies very large entry

costs. Section 3 illustrates, through several model extensions, a tension between the level and

variability of risk premia with endogenous entry. Section 4 proposes extrapolative beliefs as

a remedy to this critique. Section 5 concludes. Proofs and extensions are in the appendices.

3Beginning with Mankiw and Zeldes (1991), the literature noticed only a subset of households hold
stocks, and these investors’ consumption is more volatile, and covaries more with stock returns, than non-
stockholders’ (Parker and Vissing-Jørgensen, 2009). Guvenen (2009) builds a quantitative model incorpo-
rating limited stock market participation (without entry), and Malloy, Moskowitz, and Vissing-Jørgensen
(2009) provide direct tests of stockholders’ Euler equations under recursive preferences.

4In 2007, approximately 50% of U.S. households by number and over 80% by wealth participate in stock
markets, as documented in the Survey of Consumer Finances by Ackerman, Fries, and Windle (2012).
Consequently, Gomes and Michaelides (2008) find that small fixed entry costs help match stock market
non-participation, but have an insignificant effect on asset prices.

5For example, intermediaries and arbitrageurs are often highly leveraged and risk is thus highly con-
centrated. Separately, it is well-understood that both moral hazard and adverse selection issues contribute
to high costs of intermediary equity issuances; these costly issuances play the same role as costly entry, in
the sense that they affect risk-sharing. These ideas suggest higher entry costs should be entertained in the
intermediary context than the household context.

6De Long et al. (1990) and Cutler, Poterba, and Summers (1991) are early models of price extrapolation.
Section 4 for many more references to models with extrapolation.

7See Greenwood and Shleifer (2014); Vissing-Jorgensen (2003); Bacchetta, Mertens, and Van Wincoop
(2009); Amromin and Sharpe (2014); Bordalo et al. (2020) for survey evidence.
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1 Model

In this economy, time is continuous and spans the infinite past and future, t ∈ R. The

aggregate endowment is given by the geometric Brownian motion

dYt
Yt

= µY dt+ σY dZt, (1)

where {Zt}t∈R is a standard Brownian motion. Financial markets consist of a risky asset

in unit supply and a locally riskless bond in zero net supply. The risky asset is a claim on

{Yt}t∈R and can be thought of as productive capital, stocks, corporate debt, mortgage-backed

securities, or indeed any positive-supply asset in which market segmentation might play a

role. It has return dynamics

dRt = µR,tdt+ σR,tdZt.

The bond pays instantaneous return rtdt. The model will always have a positive measure

of agents trading in dynamically complete markets, so we may define a state-price density

process

ξt := exp
{
−
∫ t

−∞

(
rs +

1

2
η2
s

)
ds−

∫ t

−∞
ηsdZs

}
, (2)

where ηt is the risk price. To ensure absence of arbitrage, it must be that8

ηt =
µR,t − rt
σR,t

.

Agents and preferences. Births and deaths occur at rate π. Let b designate the birthdate

of a cohort, within which there is a mass πe−π(t−b) of agents at time t. Agents have identical

logarithmic preferences over consumption:

Vt,b := E
[ ∫ ∞

t

e−(ρ+π)(s−t) log(cs,b)ds | Ft
]
. (3)

Later, I extend (3) to recursive utility of Duffie and Epstein (1992). Note that the death

rate π simply augments the subjective discount rate. The only purpose of births and deaths

is to help make the model stationary, nothing more.

Participants and non-participants. Let Pt denote the set of participants, and let Nt =

8Existence of a state-price density process ξ is guaranteed under Novikov’s condition E[exp( 1
2

∫∞
−∞ η2t dt)] <

+∞ and if σR satisfies E[
∫∞
−∞ σ2

R,tdt] < +∞. See Duffie (2010a), Chapter 6. These are verified in equilibrium.
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Pc
t be the set of non-participants, who are barred from risky asset markets. Agents are

born as non-participants and may begin participating at any time after birth, by paying

a cost (see below). After that point, they remain participants until death. A participant

does not face an entry decision, because she would never want to pay a cost to become a

non-participant and consequently be constrained. As a result of this one-directional entry,

the inflow of agents into Nt comes entirely from birth, and the only inflow of agents into Pt
comes entirely from entry.

In the context of intermediary asset pricing, the participants are appropriately regarded

as the shareholders of the intermediaries. The risk preferences of these agents are what

determines intermediaries’ financial positions (He and Krishnamurthy, 2012, 2013). This is

why I have modeled participants just like any other agent, i.e., with a utility function over

consumption.

For notational simplicity, suppose all members of a cohort are either participants or

non-participants, so that there is no heterogeneity in decisions among members in the same

cohort. If b ∈ Pt, this means that members of cohort b are participating in risky asset

markets, and conversely for b ∈ Nt.9

Let τb ≥ b denote the time cohort b begins participating in risky asset markets:

τb := inf{t ≥ b : b ∈ Pt}.

Since newborn agents are non-participants, their wealth dynamics are given by

dWt,b = (rtWt,b + απWt,b − ct,b)dt, t < τb (4)

Wb,b > 0 given.

Upon participation, wealth dynamics are given by

dWt,b = (rtWt,b + θt,bWt,b(µR,t − rt) + απWt,b − ct,b)dt+ θt,bWt,bσR,tdZt, t ≥ τb, (5)

where θt,b is the fraction of wealth invested in the risky asset. Note that (4) resembles (5),

but with the non-participation constraint θt,b ≡ 0. Terms involving π represent annuity

contracts: agents insure an exogenous fraction α of their wealth to death shocks by pur-

chasing annuity contracts on competitive insurance markets, which results in flow income

of απWt,bdt. The insurance company takes the insured portion dying agents’ wealth, which

9In equilibrium, it will turn out that the exact identities of participants and non-participants are not
pinned down uniquely, although the wealth and consumption shares of participants will be determined.
Having all members of a cohort participate (or not) together is among the possible equilibria, and all other
quantities and prices are identical with and without this assumption, so this is without loss of generality.
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totals α
∫ t
−∞ πe

−π(t−b)Wt,bdb, since dying agents are a representative sample of the popu-

lation. Notice this equals total payouts by insurance companies, i.e., insurance is priced

fairly. The remaining fraction 1 − α of dying wealth is distributed to newborn generations

(“unintended bequests”). This is similar to the insurance in the perpetual youth model of

Blanchard (1985), although I assume α < 1 to ensure that newborns have some financial

wealth. Specifically, dying agents’ risky asset shares are liquidated, any loans repaid, and

the balance is converted into riskless bonds, which newborn non-participants inherit as their

endowment. This model only features financial wealth, but we show below that these unin-

tended bequests are equivalent to human wealth embodied in newborn generations, as long

as labor income is pledgeable and perfectly correlated with capital income. We revisit this

issue in Section 2.5.

Entry cost. To begin participating in risky asset markets, a non-participant must pay a

non-pecuniary (utility) entry cost of

Φ := −(ρ+ π)−1 log(1− φ), φ ∈ (0, 1). (6)

With log utility, a constant entry cost has the desired homogeneity properties. The parameter

φ represents the degree of entry costs: for an individual agent, (6) leads to equivalent entry

incentives as if she were required to pay a fixed fraction φ of her wealth. Letting the cost

be non-pecuniary has substantial benefits, however, because there is no need to account

for deadweight losses from entry. These assumptions are unlike papers on stock market

participation, e.g., Gomes and Michaelides (2008), which typically have non-homogeneous

entry costs to address the wealth-participation gradient. The homogeneous specification

adds tractability, but we revisit this issue in Section 2.5.

Basic properties due to homogeneity. The problem of participants is to maximize (3)

subject to (5). Define their continuation utility by V P
t,b, i.e.,

V P
t,b := sup

c,θ
E
[ ∫ ∞

t

e−(ρ+π)(s−t) log(cs,b)ds | Ft
]
, (7)

subject to (5). By analogy, let V N
t,b be the continuation value of non-participants born at b,

V N
t,b := sup

c,τ
E
[ ∫ τ

t

e−(ρ+π)(s−t) log(cs,b)ds+ e−(ρ+π)(τ−t)(V P
τ,b − Φ) | Ft

]
, (8)

subject to the wealth dynamics given in (4) and the entry cost in (6).

Several homogeneity assumptions simplify the analysis of the model. The preferences in
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(3) are homothetic, so coupled with the linearity of the wealth dynamics in (5), there exists

a process GP such that participants’ value in (7) is given by

V P
t,b = (ρ+ π)−1[log(Wt,b) +GP

t ].

Coupling this result with the formulation of entry costs in (6), the payoff to an entrant at

time t ≥ b is V P
t,b − Φ = (ρ+ π)−1[log((1− φ)Wt,b) +GP

t ], which confirms that the cost Φ is

perceived as a fraction φ of wealth.

Because of the convenient functional form of the entry payoff V P
t,b−Φ, the non-participants’

problem (8) is also homogeneous, and it is easy to show that

V N
t,b = (ρ+ π)−1[log(Wt,b) +GN

t ],

for some process GN . The endogenous objects GP and GN proxy for agents’ investment

opportunity sets, which are identical for all participants and non-participants, respectively.

Non-participants compare the current payoff, V N
t,b , against the best possible future entry

payoff, V P
t,b −Φ, to decide when to enter. Non-participants enter when the latter dominates,

or

τb = inf
{
t ≥ b : log(1− φ) +GP

t ≥ GN
t

}
, (9)

which is independent of wealth and cohort b. Thus, all agents have identical entry incentives.

2 Equilibrium

An equilibrium is a set of price and allocation processes such that agents maximize utility

and all markets clear. The entry decisions merit some discussion. Entry incentives are the

same for all non-participants regardless of their birthdates or their accumulated wealth, as

τb in (9) is independent of b and Wt,b. Instead, entry incentives only depend on GN
t and GP

t ,

which only depend on the history of aggregate shocks. Thus, the identity of entrants is not

uniquely determined in equilibrium, i.e., Pt is not uniquely determined. Instead, at any time

point of entry, t ∈ T ∗, all non-participants must be indifferent between inaction and entry.

As a result, entry incentives can be written:

at an entry time t : log(1− φ) +GP
t = GN

t ; (10)

at times t without entry : log(1− φ) +GP
t < GN

t . (11)

Besides entry, the equilibrium definition is standard in securities market models. The
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market clearing equations are as follows. Note that Pt is defined as the aggregate value of

the stock market.

[Goods market] Yt =

∫ t

−∞
πe−π(t−b)ct,bdb (12)

[Stock market] Pt =

∫ t

−∞
πe−π(t−b)θt,bWt,bdb (13)

[Bond market] 0 =

∫ t

−∞
πe−π(t−b)(1− θt,b)Wt,bdb (14)

[Newborn transfers] πWt,t = π(1− α)

∫ t

−∞
πe−π(t−b)Wt,bdb. (15)

We seek a stationary Markov equilibrium in the state variable

Xt := Y −1
t

∫
Pt
πe−π(t−b)ct,bdb, (16)

which represents the consumption share of the participants. This single endogenous variable

is sufficient to characterize the entire equilibrium. In Markov equilibrium, we may assume

entry occurs when Xt ≤ x∗ for some point x∗ ∈ [0, 1].10 In this case, the set of entry times

is

T ∗ = {t : Xt ≤ x∗}. (17)

Thus, conjecture the following dynamics for X,

dXt = µX(Xt)dt+ σX(Xt)dZt + dAx
∗

t , (18)

where Ax
∗

is the barrier process at x∗: a non-decreasing, continuous process keeping Xt ≥ x∗

almost-surely by increasing when Xt ≤ x∗. The reflecting boundary x∗ is a key equilibrium

object.

Definition 1. A stationary Markov equilibrium in Xt, defined in (16)-(18), consists of an

entry point x∗ and a set of functions characterizing agents’ optimal policies, agents’ value

processes, asset prices, and state dynamics such that individual agents solve (7) and (8), and

10This is without loss of generality in a stationary Markov equilibrium. The diffusive part of X—(µX , σX),
shown in Proposition 1 below—is “regular” in the following sense: without any entry, X would visit all states
in (0, 1) in finite time, a.s. Now assume there were an entire family of entry points x∗i , with minimum and
maximum points 0 < x∗ ≤ x∗ < 1. Since entry only increases Xt, it eventually exceeds x∗, so we may take
x∗ = x∗ as our entry point.
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such that markets clear as in (12)-(15). Value processes are characterized by the functions

V P (Wt,b, Xt) :=
log(Wt,b)

ρ+ π
+ gP (Xt) and V N(Wt,b, Xt) :=

log(Wt,b)

ρ+ π
+ gN(Xt). (19)

Asset prices are characterized by ηt = η(Xt), rt = r(Xt), σR,t = σR(Xt), and µR,t = µR(Xt).

2.1 Analysis of equilibrium

Assume that the equilibrium entry point x∗ is given. With log utility, consumption and

portfolio decisions are proportional to wealth and independent of the value functions gP and

gN . Consequently, all asset prices and state dynamics from Definition 1 can be determined

in closed form, given x∗. The basic steps in determining η, r, µX , and σX are to apply Itô’s

formula to the goods market clearing equation and the definition of the state variable, for

Xt ∈ [x∗, 1). The proof is in Appendix A.1.

Proposition 1. Suppose entry point x∗ ∈ (0, 1) is given. Then, the state-price density

process ξt exists uniquely, and is characterized by

η(x) =
σY
x

and r(x) = ρ+ π + µY −
σ2
Y

x
, x ∈ [x∗, 1).

The state variable X is the unique strong solution to dXt = µX(Xt)dt+ σX(Xt)dZt + dAx
∗
t ,

where

µX(x) = −π(1− α)x+ σ2
Y

(1− x)2

x
and σX(x) = (1− x)σY , x ∈ [x∗, 1).

Finally, the non-degenerate stationary density of Xt is given by

h(x) ∝
( x

1− x

)2

(1− x)
− 2π(1−α)

σ2
Y exp

(
− 2π(1− α)

σ2
Y (1− x)

)
, x ∈ [x∗, 1). (20)

Proposition 1 illustrates several key features of the model. First, we see the generic

properties of limited participation: Xt < 1 raises the market Sharpe ratio ηt and lowers the

market interest rate rt. With limited participation, risk-bearers are levered, so they require

lower borrowing costs and higher expected returns, compared to a similar economy without

leverage. This is the so-called risk concentration channel referenced in the introduction.

Second, as long as there is entry such that x∗ > 0, the economy is well-behaved in the

sense that an equivalent martingale measure exists. Without entry, the equilibrium tends

to explode in bad times, i.e., r(x∗) → −∞ and η(x∗) → +∞ as x∗ → 0. This can lead

limited participation equilibria to have bubbles and arbitrage opportunities, as shown by
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Hugonnier (2012). The same critique applies to intermediary asset pricing models such as

He and Krishnamurthy (2012, 2013). Conversely, with any amount of entry, this explosion

is prevented. Appendix A.2 shows that equilibrium with φ = 1 always has bubbles, while

φ < 1 never does, suggesting that bubbles are not a robust feature of this class of models.

Finally, unlike models such as Basak and Cuoco (1998), the OLG environment ensures

long-run stationarity. The ergodic density is given by (20).

Next, we discuss entry (in particular x∗) and how it relates to asset prices. I apply

dynamic programming to the participants’ and non-participants’ problems, leading to two

ODEs (the HJB equations) for gP and gN that hold on (x∗, 1):

0 = log(ρ+ π)− 1 + (ρ+ π)−1(απ + r +
1

2
η2)− (ρ+ π)gP + µXg

′
P +

1

2
σ2
Xg
′′
P (21)

0 = log(ρ+ π)− 1 + (ρ+ π)−1(απ + r)− (ρ+ π)gN + µXg
′
N +

1

2
σ2
Xg
′′
N , (22)

Boundary conditions for these ODEs are the following. First, equation (10) implies the

value-matching and smooth-pasting conditions:11

gP (x∗)− gN(x∗) = Φ (23)

g′P (x∗) = g′N(x∗) = 0. (24)

Finally, given σX → 0 as x → 1, the limits of (21)-(22) as x → 1 give two more boundary

conditions. These five boundary conditions suffice to solve ODEs (21)-(22) and the entry

point x∗.12

Some simplifications can be made by noticing that the coefficients on gP and gN are

identical in (21)-(24). Putting ∆g := gP − gN and taking differences between the HJB

equations yields one linear ODE

0 =
1

2
(ρ+ π)−1η2 − (ρ+ π)∆g + µX∆g′ +

1

2
σ2
X∆g′′, x ∈ (x∗, 1), (25)

11These smooth-pasting conditions (formally derived in the proof of Proposition 2 below) are actually
implications of both optimality and equilibrium. Optimal entry: the inequality (11), combined with the
fact that the solutions gP , gN will be at least continuously differentiable, implies that g′P (x∗)− g′N (x∗) = 0.
Equilibrium: the fact that all non-participants are willing to enter when x ≤ x∗ implies that gP (x) = gP (x∗)
and gN (x) = gN (x∗) for all x < x∗.

12Proposition B.2 in Appendix B.2 provides a verification theorem that (21)-(24) are sufficient for opti-
mality for the more general recursive utility model introduced later.
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with boundary conditions

0 = ∆g(x∗)− Φ (26)

0 = ∆g′(x∗). (27)

Proposition 2. There is exactly one pair (∆g, x∗) that satisfies the ODE (25) and boundary

conditions in (26)-(27). Consequently, the equilibrium of Definition 1 exists uniquely.

There are likely many ways to prove Proposition 2. Appendix A.1 demonstrates the

equivalence of the model to a relatively standard variational inequality, which is portable to

higher dimensions and potentially useful in other models. To economically understand entry

decisions, it is informative to examine the integral representation of the value function.

Proposition 3. The function ∆g can be represented as

∆g(x) = Ex
[1

2
(ρ+ π)−1

∫ ∞
0

e−(ρ+π)tη2(Xt)dt
]
. (28)

Given (28), we can now interpret ∆g as the foregone costs of non-participation. Indeed,

every instant, a participant expects to earn ηtσY dt in excess returns per unit of investment,

and optimally invests ηt/σY , resulting in η2
t in gains per unit of time. The scaling by 1

2
is

a Jensen risk-adjustment. These gains are discounted by e−(ρ+π)t and then cumulated to

produce lifetime gains. Finally, the scaling by (ρ+ π)−1 translates from monetary to utility

gains.

Because of value-matching (26), we can re-write (28) to “back out” the implied entry

cost φ:

φ = 1− exp
(
− 1

2
Ex∗
[ ∫ ∞

0

e−(ρ+π)tη2(Xt)dt
])
. (29)

We can read (29) as the fraction of wealth a typical investor is willing to pay to participate

in risky asset markets. The willingness-to-pay is related to the present discounted value of

squared Sharpe ratios, starting from the worst state of the world (i.e., x = x∗). Thus, in

computing implied entry costs, we need to account for extreme Sharpe ratios, but also their

speed of transition back to normal levels, which is embedded in the dynamics of Xt.

2.2 Small entry costs

When entry is free, i.e., φ = 0, all agents participate in risky asset markets, and the economy

features full market integration. This implies that x∗ = 1 so that continuous entry keeps

Xt ≡ 1. Asset prices behave as in Proposition 1 with x = 1. This economy is equivalent to

an unconstrained OLG economy, i.e., a homogeneous economy comprised of participants.
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For small enough entry costs, it turns out that the same full-integration equilibrium

prevails. This is formalized in the next proposition, which implies that the results of tradi-

tional limited participation models are, in some limiting sense, not robust to entry. Indeed,

the notion that agents have rigid types (“experts” versus “non-experts” or “investors” and

“households”) cannot be justified by small participation costs.

Proposition 4. Define φ∗ := sup{φ : x∗(φ) = 1}. Then, φ∗ > 0 and in particular,

φ∗ = 1− exp
(
− 1

2
(ρ+ π)−1(η∗)2

)
=

1

2
(ρ+ π)−1(η∗)2 +O(σ4

Y ), (30)

where η∗ := η(1) is the full-integration risk price.

The reason for the result of Proposition 4 lies in the fact that participation strictly dom-

inates non-participation as an investment technology. The risk in the economy is aggregate

risk, which does not dissipate even if shared maximally among agents, yielding positive risk

prices, η∗ > 0. Hence, a discrete gain in lifetime utility is possible from participation, which

justifies immediate entry (at birth) despite a fixed cost.

To get an estimate of the size of φ∗ in Proposition 4, we suppose Xt = 1 for all t and

substitute this into (29). This estimate is large: using a small Sharpe ratio of η∗ = 0.10,

and a discount plus birth/death rate of ρ + π = 0.02, we find that φ∗ ≈ 0.25. This is the

25% of wealth estimate quoted in the introduction. The risk concentration mechanism, if it

is behind large risk premia, must imply large entry costs.

2.3 Larger entry costs

If we allow entry costs φ to be larger, such that x∗ < 1, what values of φ are consistent with

realistic levels and dynamics of asset prices? Intuitively, the primary effect of entry is to

prevent the economy from reaching high return states, mitigating asset price dynamics. As

entry costs increase, the economy is more likely to access those states.

Parameter: ρ π α µY σY
Value: 0.01 0.02 0.50 0.02 0.04

Table 1: Baseline calibration of model parameters.

Figure 1 plots Sharpe ratios η and the stationary density h for four different entry costs

φ. For lower entry costs, the stationary distribution is truncated at the entry point x∗,

and high-η states are averted. For higher entry costs, the economy is more likely to visit

high-η states. It is worth noting that Figure 1 examines entry costs of 20%-35%, which are

14



already quite large, and finds little evidence for extreme risk concentration or extremely high

risk prices. That said, the pattern in Figure 1 suggests that choosing φ high enough could

theoretically lead to significant risk concentration and more realistic asset price behavior.
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Figure 1: Market price of risk η (blue line) and stationary density for X (gray area), for four
different entry costs φ. The horizontal axis is the participants’ consumption share x. Parameters
are in Table 1.

It turns out that this is not the case. Figure 2 depicts Sharpe ratios for nine higher entry

cost parameters. Although the entry point x∗ does fall as φ rises, most of the mass in the

stationary density is relatively stable in φ. While η(x) can technically be very high in low-x

states, there is essentially zero probability of Xt reaching those states.
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Figure 2: Market price of risk η (blue line) and stationary density for X (gray area), for nine
different entry costs φ. The horizontal axis is the participants’ consumption share x. Parameters
are in Table 1.

This story is confirmed by Table 2. As entry costs φ increase, all of the following increase:

average Sharpe ratios, Sharpe ratio volatility, and maximal Sharpe ratios. However, once
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entry costs reach 70%, E[η(Xt)] and std[η(Xt)] stabilize, even as max[η(Xt)] rises even more

dramatically.

φ 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80 0.90 0.95

E[η(Xt)] 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.15 0.15 0.15 0.15
std[η(Xt)] 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.09 0.09

max[η(Xt)] 0.14 0.18 0.21 0.25 0.30 0.42 0.61 0.93 1.66 5.00 57.97

Table 2: Entry cost φ and different measures of market Sharpe ratios (stationary average SR,
standard deviation of SR, and maximal SR). Parameters are in Table 1.

Intuitively, as expected future returns rise, participants’ wealth rebounds very quickly

from a series of poor returns, creating a “buoying effect” on participant wealth. This force,

that high risk premia create very fast recovery, is present in any limited participation econ-

omy. This buoying effect acts as a kind of natural entry, in that it helps the economy avoid

crisis states.13

2.4 Recursive preferences

In this section, I generalize utility to the recursive preferences of Duffie and Epstein (1992).

In principle, preferences that allow for hedging demands may potentially dissuade entry,

even with moderate participation costs. In addition, non-log utility allows time-varying

price-dividend ratios, which can amplify risk premium variation. More detailed discussion

of this recursive utility model and its equilibrium is in Appendix B.1.

Mathematically, the continuation value and associated felicity function now satisfy

Vt,b := E
[ ∫ ∞

t

f(cs,b, Vs,b)ds | Ft
]
, (31)

where f(c, V ) :=
1

1− ψ

(
c1−ψ[V (1− γ)]

ψ−γ
1−γ − (ρ+ π)V (1− γ)

)
. (32)

In (32), parameter γ is the coefficient of relative risk aversion (RRA), and ψ−1 is the elasticity

of intertemporal substitution (EIS). Assume γ, ψ 6= 1. Again, the death rate π simply

augments the subjective discount rate, as shown by Gârleanu and Panageas (2015) for these

preferences.

13For comparison, Appendix A.3 contrasts these results to an economy with “exogenous entry.” There, a
fraction ν of the newborns exogenously become designated participants, while 1 − ν fraction become non-
participants. No endogenous entry is possible. The main force at play is this “buoying” effect discussed
above.

16



To maintain tractability, I modify the participation cost. The cost Φt,b now has a time

and cohort dimension and is given by

Φt,b := [1− (1− φ)1−γ]V P
t,b, (33)

where V P
t,b is the participant value function. With this specification, parameter φ ∈ (0, 1) still

denotes the perceived fraction of wealth a non-participant must pay to begin participation.

Proposition B.1 in Appendix B.1 derives the equilibrium under these assumptions.14

I pick both γ, ψ−1 > 1, to help the model quantitatively. By increasing the RRA, the

model generates higher levels of risk prices. By choosing EIS larger than 1, the model

generates procyclical price-dividend ratios, thus potentially more volatile risk prices.

Figure 3 shows that the economy behaves qualitatively similar to the log utility economy

for modest entry costs, but more interesting risk price dynamics are attained under extreme

entry costs. The first 5 panels show that Sharpe ratios are almost always in the 0.15-0.3

range, for any entry cost between 40% and 80% of wealth. Large risk price variability is

ruled out, similar to the log utility model. But in panels 6-9, risk prices can attain crisis

dynamics.
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Figure 3: Market price of risk η (blue line) and stationary density for X (gray area), for nine
different entry costs φ. The horizontal axis is the participants’ consumption share x. I set γ = 3
and ψ = 3/4. All other parameters are as in Table 1.

14The equilibrium is significantly more complicated than the log utility model. We must solve for two
value functions, one each for participants and non-participants, as part of a free-boundary problem for x∗.
Furthermore, large nonlinearities emerge because asset prices are no longer independent of agents’ value
functions.
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These results arise because of the hedging motives brought about by γ 6= 1. As the third

row of charts show (φ ≥ 95%), risk prices can become non-monotonic and even negative!

Mechanically, participant profits are reduced by low risk prices, a force that reduces the drift

of participants’ consumption share and allows crisis states to materialize. To understand

these motives, suppose x0 is a crisis-type state with very high and volatile risk prices, i.e.,

η(x0) and |η′(x0)| very large. At x1 slightly above x0, a negative shock improves the invest-

ment opportunity set, generating a natural hedge for participants and encouraging intense

risk-taking ex-ante. The intuition is “heads, I win; tails, I will win soon.” Participant risk-

taking pushes down η(x1) in equilibrium, possibly below its values in nearby states and even

below zero.

On the one hand, this negative risk price result can partially provide a simple rational

explanation for the empirical finding that bank equity often has negative expected returns

on the eve of financial crisis (Baron and Xiong, 2017), allegedly proof of market irrationality

during credit cycles. In this model, it is precisely these low and negative risk prices that

allow participant net worth to attain the crisis portion of the state space (low x).

On the other hand, these features only emerge when entry costs are 90% or larger. Still,

entry costs do exist such that the recursive utility model, unlike log, can match the high level

and variability of risk prices. This begs the question of whether other utility parameters can

match empirical asset prices for moderate entry costs, a subject we turn to in Section 3.

2.5 Robustness to fixed costs, labor income, and preference het-

erogeneity

For tractability and theoretical sharpness, this paper employs several simplifying assump-

tions: (1) entry costs are proportional to wealth; (2) all income is capital income; and (3)

all agents share identical preferences. This section explores robustness to these assumptions.

Details of these extensions are contained in Appendix D.

Fixed entry costs. We briefly consider how more general cost functions would affect the

results. In particular, we assume a form of fixed entry costs that are completely independent

of individual wealth. While the purpose of this section is to show that our baseline results are

robust to deviating from proportional entry costs, such an extension with non-homogeneous

entry costs is analytically and computationally non-trivial.

Because non-participants’ decisions will depend on wealth in a nonlinear way, the entire

distribution of wealth becomes a state variable. Appendix D.1 develops a detailed solution

method, which is a “bounded rationality” procedure similar to Krusell and Smith (1998),

in which the single aggregate state variable perceived by non-participants is the participant
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consumption share Xt (i.e., they ignore the dependence of equilibrium on the full distribu-

tion of wealth). In this context, the main advantage of continuous time is that one can

still obtain quasi-analytical expressions for all equilibrium objects in terms of Xt and the

cross-sectional distribution of non-participant wealth ft; see equations (D.19)-(D.22) for so-

lutions to (r, η, µX , σX) and see Proposition E.1 in Appendix E for solutions to the drift

µf,t and diffusion σf,t of the cross-sectional distribution ft (note: with aggregate shocks, the

cross-sectional distribution has a diffusion term, meaning it satisfies a stochastic PDE that

generalizes the usual Kolmogorov Forward equation).

I consider an entry cost of the form

Φ̃t(w) := −(ρ+ π)−1 log
[(

1− φPt
w

)+]
, φ ∈ (0, 1), (34)

where w is the individual’s wealth and Pt is the aggregate wealth (stock market value). For

an individual of average wealth (w = Pt), note Φ̃t(Pt) = −(ρ + π)−1 log(1 − φ). This is

identical to the proportional cost specification Φ used in the baseline model—see equation

(6). For comparison purposes, I have intentionally specified this new fixed cost function so

that the individual of average wealth perceives the same cost as in the proportional cost

baseline.

φ 0.20 0.30 0.40 0.50

E[ηt] 0.096 0.105 0.115 0.113
std[ηt] 0.012 0.018 0.023 0.020

max[ηt] 0.168 0.184 0.215 0.273

Table 3: Entry parameter φ (from the fixed cost economy) and different measures of market Sharpe
ratios (stationary average SR, standard deviation of SR, and maximal SR). The measures are
computed with Monte Carlo simulations of length 5000 years—this matters because, technically,
given equilibrium entry dynamics, we have supt[ηt] = +∞. Parameters are in Table 1.

Table 3 shows some results for risk prices in this fixed cost model (solving for equilibrium

becomes unstable for very large entry costs, so the table stops at φ = 0.50). By and large,

the results are similar to the proportional cost Table 2, but with slightly lower and less

volatile risk prices. Thus, if anything, fixed costs seem to worsen the asset pricing results.

The reasoning for this is connected to the selection effect that emerges with fixed costs:

wealthy individuals, who have a larger impact on equilibrium dynamics, are more likely to

enter than poor individuals. For a given φ, wealthy non-participants will be willing to enter

even before risk prices reach crisis magnitudes, which tends to buoy Xt and prevent risk

concentration (this can be seen in the drift µX,t, which tends to be above the corresponding

proportional-cost version—see Figure D.3). As φ increases, the mass of individuals willing to
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enter decreases, but the marginal entrant becomes richer and richer, meaning there is only

a modest decline in the total quantity of entering wealth. This logic suggests that the fixed

cost economy will tend to have less risk concentration than the proportional cost economy,

and the gap should increase with φ.15

Labor income. In this paper, all income is capital income. And therefore, to ensure that

newborns have positive wealth, we were forced to assume some unintended bequests from

incomplete death insurance (α < 1). In reality, approximately two-thirds of income is labor

income. Here, we briefly discuss how introducing labor income affects the results.

Following Gârleanu and Panageas (2015), each newborn born at time b is endowed with

no financial income, but they receive a labor tree that pays the stream {(1 − α̃)Yt}t∈[b,T ],

where T is the agent’s random time of death. The total labor income in the economy is thus

a fraction 1− α̃ of aggregate output. The stock market is a claim to the residual {α̃Yt}. In

addition, we allow agents take full insurance against their death shocks (Blanchard, 1985;

Gârleanu and Panageas, 2015).

We consider two polar cases: (1) full pledgeability of labor income and (2) non-pledgeability.

In the case of full pledgeability, the non-participants would be able to effectively sell their

claims to their labor endowment. To model this situation, despite the fact that non-

participants typically cannot trade in the stock market, suppose all newborns have a one-time

opportunity (at birth) to sell their human capital tree at market prices. The non-pledgeable

case is substantially more complicated, so rather than solving the full-blown model, we pro-

vide some simple partial equilibrium calculations in this environment to get a sense of how

sensitive the baseline results are to excluding labor income. Obviously, reality is somewhere

in between these cases, as there exist markets to borrow against labor income, but these

markets are imperfect due to frictions and ethical issues.

It turns out that the fully-pledgeable case is approximately isomorphic to the baseline

model.

Lemma 1. The model with pledgeable labor income and frictionless annuity markets is ap-

proximately isomorphic to the baseline model, in the following sense. Given capital share α̃,

15More precisely, we expect this pattern to emerge if φ is not too small. Indeed, for small φ, the proportional
cost Φ induces full participation (Proposition 4), while the fixed cost Φ̃t prevents very poor agents from
participating. Thus, risk concentration is higher for the fixed cost when φ is small. On the other hand, as
φ ≈ 1, the proportional cost prevents any entry at all, while the fixed cost still admits entry to agents who
are significantly weather than the average. Thus, risk concentration is lower for the fixed cost when φ is
large. These two extremes suggest there is some threshold cost parameter φ† above which the fixed cost
economy generates lower and less volatile risk prices than the baseline economy. Comparing tables 2 and
3 suggests this threshold is around φ† ≈ 20%. Since larger φ bring the model closer to data, this simple
exercise seems to suggest that fixed costs are not a promising avenue forward.
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suppose α is set by

α =
1

2π

[√
ρ2 + 4α̃π(ρ+ π)− ρ

]
. (35)

Then, time-paths of {ηt} and {Xt} are identical between the two models. Additionally, the

time-path of {rt} is lower in the pledgeable labor income model by a constant level (1− α)π.

Remark 1. In view of Lemma 1, the only discussion becomes about the calibration of α. A

capital share α̃ = 1/3 is typical. Using ρ = 0.01 and π = 0.02 as in Table 1, condition (35)

suggests α = 25× [
√

0.012 + 0.03× 0.02× 4/3− 0.01] = 0.5. This is exactly the value used

in Table 1.

The non-pledgeable case is analyzed in Appendix D.2. My calculations suggest that

implied entry costs are similar under non-pledgeability; if anything, they are higher. To con-

clude this, I solve for asset prices from the full-participation equilibrium of this environment,

and then I compute the willingness-to-pay to participate for a hypothetical non-participant.

Figure D.5 shows that these willingnesses-to-pay are a bit higher with non-pledgeable income

than with pledgeable income, suggesting entry costs need to be larger to keep them out of

the market.

In these extensions, I have assumed that labor income only carries aggregate risk. This is

done for tractability, but simple logic suggests that allowing idiosyncratic labor income risk

should not dramatically alter these results. Indeed, because neither participants nor non-

participants would be able to hedge the idiosyncratic risk, the increase in indirect utility

from participation should depend only weakly on the amount of such risk.

Heterogeneous risk aversion. One may naturally think that participation is imperfect

because of heterogeneity in risk tolerance. The more risk tolerant prefer to hold risky assets,

whereas the highly risk averse stay out of the market, even for small entry costs. This is

formalized in Appendix D.3, which shows that risk tolerant agents have higher willingness-

to-pay to enter (Appendix D.3 also does the same exercise for heterogeneous EIS).

However, this calculation is incomplete. For concreteness, suppose two levels of risk

aversion, γL and γH > γL. In equilibrium, all participants will be γL-agents. Furthermore,

with a constant arrival of both types, there will always be a non-zero mass of γL-agents who

are not participating. This logic implies that after a series of negative shocks, risk prices

increase but only the γL-agents will enter. Putting these ideas together, both equilibrium

risk prices and the entry barrier will be solely determined by the γL-agents. We would expect

this economy to thus look very much like the baseline economy with only γL-agents. In that

case, the only question is what choice of common risk aversion best fits the data.
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3 Tension between conditional and unconditional risk

premia

Although in principle limited participation models bring the promise of matching both high

and variable risk premia, the previous section showed that this requires enormous entry

costs. A natural hope is that implied entry costs can be reduced by adding auxiliary features

which raise levels and/or variability of risk premia. The problem: when entry is endogenous,

features that raise average risk premia incentivize more participation, which mitigates risk

premia dynamics. This trade-off between the unconditional level and conditional dynamics

of risk premia suggests a challenge in matching both with moderate entry costs. In this

section, I demonstrate this trade-off for the following model extensions: increasing agents’

risk aversions, allowing equity-issuance, and introducing idiosyncratic risk.

3.1 Higher risk aversion

Consider again the recursive-utility model introduced at the end of the last section. By

comparing the equilibrium for different γ, we uncover a trade-off between unconditional

and conditional risk premia in limited participation models. Intuitively, higher risk aversion

works to increase the level of risk premia, which incentivizes entry, thus mitigating the time-

variability of risk premia. In partial equilibrium, we would expect more frequent entry when

agents are more risk-tolerant. In general equilibrium, this effect is surprisingly reversed.

This result is important because the asset pricing literature frequently chooses γ struc-

turally to match empirical asset prices. Having little direct evidence on investors’ risk aver-

sions, values of γ up to 10 are not considered unusual in this literature. Here, I show that

such calibrations of a limited participation model are not a panacea for asset pricing puzzles.

To start, we have the following generalization of Proposition 4, which shows how to

calculate the implied entry cost such that the economy is fully integrated. The proof is in

Appendix B.3.

Proposition 5. Define φ∗ := sup{φ : x∗(φ) = 1}. Then, φ∗ > 0 and in particular,

φ∗ ≥ 1−
(ρ+ π + (ψ − 1)(r∗ + απ + 1

2γ
(η∗)2)

ρ+ π + (ψ − 1)(r∗ + απ)

) ψ
1−ψ

=
1
2
σY η

∗

ρ+ π(1− α) + ψ(µY + πα)
+O(σ4

Y ),

(36)

where η∗ := γσY is the full-integration risk price.

The positive relationship between risk aversion and entry incentives is depicted in Figure

4. For instance, with γ = 3, the full participation equilibrium is attained for φ ≤ φ∗ ≈ 10%,
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while for γ = 10, the full participation equilibrium is attained for φ ≤ φ∗ ≈ 27% (left panel

of Figure 4). This occurs because higher γ raises equilibrium risk prices η∗ = γσY , which

appear directly in (36). Non-participants will want to enter to claim these benefits. Thus,

for moderate entry costs, risk price dynamics are completely eliminated with higher risk

aversion. More generally, we find numerically that increasing γ increases both the entry

point, x∗, and the stationary mean x := EXt (middle panel of Figure 4).
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Figure 4: Left panel: full-integration cost φ∗ := sup{φ : x∗(φ) = 1}, as a function of risk aversion
γ. Middle panel: entry boundary, x∗, and stationary mean, x := EXt, as a function of risk aversion
γ. Right panel: trade-off between E[η(Xt)] and std[η(Xt)] as a function of risk aversion γ. I set
ψ = 3/4 and φ = 0.4. All other parameters are as in Table 1.

The increase of the entry point x∗ is very informative about risk price variability. The

proof of the following result is in Appendix B.1.

Proposition 6. In the recursive utility model, η(x∗)/η(1) = 1/x∗.

Recall that higher γ tends to lead to increase x∗ (middle panel of Figure 4). If we consider

η(x∗) a proxy for the maximal risk price and η(1) a proxy for the minimal risk price,16 then

η(x∗)/η(1) proxies for risk price variability. Thus, Proposition 6 implies that higher risk

aversion tends to decrease risk price variability.

The same trade-off is visible if we measure “level” and “variability” by mean and standard

deviation of risk prices (right panel of Figure 4): as γ increases from 3 to 10, average risk

prices increase, but risk price volatility falls. Putting these results all together, it seems

that higher risk aversion increases the level of risk prices, which raises entry incentives, and

thereby attenuates risk price dynamics.17

16These proxies are exact under γ, ψ = 1 (log utility), but η(1) may not be the minimal risk price when
γ, ψ 6= 1, as the last three panels of Figure 3 show.

17Similarly, higher fundamental volatility σY will increase unconditional risk prices and simultaneously
lead to more entry. A simple way to see this is to re-examine formula (36) for φ∗, in which dφ∗

dσY
> 0. Since

σY η
∗ = γσ2

Y appears in the numerator, increasing either risk quantity or risk aversion will increase entry
incentives and reduce risk concentration. This will clearly reduce risk price variability, as discussed above.
In numerical calculations, I have found that increasing σY and increasing γ produce analogous results with
multiple calibrations. In particular, Figure 4 looks very similar if we were to vary σY , rather than γ.
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3.2 Equity issuance

In the baseline model, non-participants can only share risky asset returns through the bond

market. In reality, for example asset markets in which financial intermediaries play an out-

sized role, participants can partially share risk by issuing equity to non-participants. In

this extension, I allow partial equity issuance by participants, to facilitate a financial inter-

mediary interpretation.18 If non-participants can access asset returns through intermediary

equity, they have less incentive to pay a cost to participate directly. Delayed entry raises the

chances of extreme risk prices, bringing the model closer to data. However, as I show below,

this finding comes at the expense of typical risk premia levels, which are pushed down by

the improved risk-sharing achieved by equity issuance. Again, we see a trade-off between

risk premia levels and dynamics.

Participants must keep a fraction χt,b ≥ χ∗ of their equity risk on their books, and offload

the remaining 1 − χt,b of risk to financial markets. The parameter χ∗ ∈ (0, 1) measures

the tightness of the equity-issuance constraint (the baseline model coincides with χ∗ = 1).

Complete details and derivations for this extension are in Appendix A.4.

Participants are compensated for their equity-issuance constraints by additional returns,

which are captured mathematically by two different risk prices: one for inside equity (ηt),

which is at least as high as the one for outside equity (η̃t).
19 In equilibrium, these risk prices

are given by ηt = max(Xt,χ∗)
Xt

σY and η̃t = 1−max(Xt,χ∗)
1−Xt σY .

Equilibrium with equity issuance features a “safe” risk-sharing region (Xt ≥ χ∗) and

a “vulnerable” constrained region (Xt < χ∗). In the safe region, participants and non-

participants perfectly share aggregate risk, because they obtain the same risk compensation

and have the same risk preferences. Participants are wealthy enough that equity-issuance

constraints are not binding.

However, the safe region is transient. With equalized risk prices, the only dynamic force

affecting Xt is the OLG process, whereby newborn non-participants slowly replace existing

participants. Thus, the economy deterministically progresses toward the constrained region

(Xt < χ∗), at which point perfect risk-sharing is not possible. The economy never leaves the

constrained region.

Within the constrained region, dynamics are qualitatively similar for any χ∗. Risk is

concentrated on participants’ balance sheets, so negative fundamental shocks translate lead

18A similar model with equity issuance is that considered by He and Krishnamurthy (2012, 2013). In
those models, “specialists” manage intermediaries, and “households” can only invest in risky assets through
intermediaries. Intermediaries issue equity to households, and aggregate risk is shared. However, for incentive
reasons, specialists must keep sufficient “skin in the game,” so their equity issuance is only partial.

19We have µR,t − rt − (1− χt,b)σR,tη̃t of returns available to participants after equity issuance. Define ηt
as the risk price on these insider returns, i.e., χt,bσR,tηt := µR,t − rt − (1− χt,b)σR,tη̃t.
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to even more concentrated risk (x ↓), which leads to higher risk prices (η ↑). Despite this

qualitative similarity, χ∗ has opposing effects on the level of risk prices and their time-series

variation.

Proposition 7. Consider a set of alternative economies E parameterized by equity-issuance

constraints χ∗. Let ηχ
∗

t , η̃
χ∗

t be the equilibrium risk prices in the χ∗-economy. Let τχ
∗

x∗ :=

inf{t ≥ 0 : Xt ≤ x∗(χ∗)} be the first entry time in the χ∗-economy. Then, the following hold:

(i) For T ≤ infE(τ
χ∗

x∗ ), the path {ηχ
∗

t : t ≤ T} is uniformly increasing in χ∗, almost-surely.

(ii) Risk price variability supt(η
χ∗

t )/ inft(η
χ∗

t ) is decreasing in χ∗, almost-surely.

(iii) Entry occurs earlier in the sense that τχ
∗

x∗ is decreasing in χ∗, almost-surely.

Proposition 7 shows that more skin-in-the-game implies (i) higher typical risk prices

but (ii) less extreme risk price dynamics. This operates through the entry channel, as (iii)

suggests. In fact, the risk price variability ratio supt(η
χ∗

t )/ inft(η
χ∗

t ) = χ∗/x∗ would be

increasing in χ∗ if we held entry behavior fixed (i.e., held x∗ fixed), so the tension between

risk price levels and variability is fundamentally due to entry. Intuitively, higher risk price

levels in good times incentivize non-participants to enter earlier, and risk prices at entry will

be more moderate.

3.3 Idiosyncratic risk

One possible reason for slow-moving capital into complex risky asset markets is the presence

of idiosyncratic risk embedded in the assets.20 If such risk in non-diversifiable for participants,

entry may be dissuaded even with moderate entry costs.

To study this possibility, modify the economy as follows, with further details and deriva-

tions in Appendix A.4. Participants’ risky asset position is now a claim to {Ŷt}, which

follows

dŶt = Ŷt[µY dt+ σY dZt + σ̂Y dẐt],

where Ẑ is an idiosyncratic Brownian motion, independent of Z. Each participant draws an

independent copy of Ẑ, so that the total risky asset claims in the participant sector will be

equal to Yt, due to the Law of Large Numbers. With these cash flows, participants’ risky

asset return is

dRt = µR,tdt+ σR,tdZt + σ̂Y dẐt.

20See Eisfeldt, Lustig, and Zhang (2017) for example. Similarly, the “experts” in Di Tella (2017) are subject
to idiosyncratic risk, motivating my choice to include it in this section. The contexts where idiosyncratic risks
might be most prevalent include real investment projects by firms’ insiders and complex financial markets.
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Participants lever up this asset by the portfolio choice variable θt,b, giving them a total risk

exposure of θt,b(σR,tdZt + σ̂Y dẐt). Note that the independence of the idiosyncratic shocks,

plus the scale invariance (in wealth) of participants’ optimization problems, allows us to

continue to study a Markov equilibrium in the single state variable Xt.

In equilibrium, participants will be compensated for their idiosyncratic risk exposure by

additional returns. This is captured mathematically by a new idiosyncratic risk price η̂t,

which is a fictitious construct to capture the residual returns available to participants after

they are fairly compensated for aggregate risk. We define ηt and η̂t such that the sum of the

aggregate plus idiosyncratic risk premia equals the total risk premium:

σR,tηt + σ̂Y η̂t := µR,t − rt.

Idiosyncratic risk prices are given by the simple formula η̂t = σ̂Y /Xt (Appendix A.4).

Since participants earn η̂, which is increasing in σ̂Y , the presence of idiosyncratic risk

makes participants wealthier in the long-run, thus leading to lower aggregate risk prices.

Formally, we have the following analog of claim (i) of Proposition 7.

Proposition 8. Consider a set of alternative economies E parameterized by idiosyncratic

volatility σ̂Y . Let ησ̂Yt be the equilibrium aggregate risk price in the σ̂Y -economy. Let τ σ̂Yx∗ :=

inf{t ≥ 0 : Xt ≤ x∗(σ̂Y )} be the first entry time in the σ̂Y -economy. Then, for T ≤ infE(τ
σ̂Y
x∗ ),

the path {ησ̂Yt : t ≤ T} is uniformly decreasing in σ̂Y , almost-surely.

What happens to entry incentives? In this model, participants earn both aggregate and

idiosyncratic risk premia, and their entry incentives take both into account. Similar to

equation (29), we can write the implied entry costs of this economy as

φ = 1− exp
(
− 1

2
Ex∗
[ ∫ ∞

0

e−(ρ+π)t[η2(Xt) + η̂2(Xt)]dt
])
. (37)

With larger σ̂Y , idiosyncratic risk prices η̂t = σ̂Y /Xt tend to be larger, but aggregate risk

prices ηt tend to be smaller (Proposition 8). Thus, there could in principle be an ambiguous

effect on entry incentives. This ambiguity disappears if we study the full-integration cost φ∗,

analogously to Proposition 4.

Proposition 9. Define φ∗ := sup{φ : x∗(φ) = 1}. Then, φ∗ = 1−exp(−1
2
(ρ+π)−1[σ2

Y +σ̂2
Y ]).

From Proposition 9, we see that φ∗, a measure of participation incentives, is increasing

in σ̂Y . Since idiosyncratic risk is compensated, entry can become more attractive, not less.

Combining Propositions 8-9, we conclude that the presence of idiosyncratic risk, while intro-
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ducing idiosyncratic risk premia, can reduce both the level and variability of aggregate risk

premia.

3.4 Combining all the extensions

Consider the model with recursive preferences (risk aversion γ and EIS ψ−1), equity-issuance

(retention share χ∗), and idiosyncratic risk (idiosyncratic volatility σ̂Y ) all together. This

corresponds loosely to a model like Di Tella (2017).21 Using the same method as Propositions

5 and 9, it is straightforward to compute the maximum entry cost consistent with complete

integration, φ∗ := sup{φ : x∗(φ) = 1}, which is given by

φ∗ =
1
2
χ∗σ̂Y η̂

∗

ρ+ π(1− α) + ψ(µY + πα)
+O(σ4

Y ) +O(σ̂4
Y ), (38)

where η̂∗ = γσ̂Y is the full-integration idiosyncratic risk price. Under parameters of Table 1,

and also γ = 5, ψ = 0.5, χ∗ = 0.2, and σ̂Y = 0.25 (all exactly as in the calibration of Di Tella

(2017)), this approximation delivers φ∗ ≈ 89%. By extending the model in these directions,

the risk concentration channel seems even more reliant on enormous entry barriers.

4 Extrapolative beliefs

The results so far, that asset markets imply unreasonably high entry costs, can be rephrased

in the form of a question: why is capital slow-moving, especially in crises when high risk

premia prevail (Duffie, 2010b)? In this section, I introduce extrapolative beliefs a la Barberis

et al. (2015) into the model to help explain why high risk premia may not induce entry.

Define agents’ sentiment about financial markets by St, which is an exponentially-

weighted average of previous returns, exactly as in “constant-gain learning” (Evans and

Honkapohja, 2012):

St := β

∫ t

−∞
e−β(t−s)dRs. (39)

Or in changes, sentiment follows

dSt = β(dRt − Stdt). (40)

21Di Tella (2017) additionally considers time-variation in the idiosyncratic volatility and a full ability to
contract on aggregate shocks beyond the risk-sharing parameter χ∗, although these modifications are not
crucial for the point I make in this subsection (indeed, notice that the principal term in equation (38) is
unaffected by aggregate risk σY ). The driving force behind the results here is the large value of idiosyncratic
risk, which when combined with large risk aversion, presents a huge idiosyncratic risk premium that only
participants can access.
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Equations (39) and (40) capture the idea that a string of positive (negative) returns increases

(decreases) sentiment, while sentiment mean-reverts in absence of trends.22

Sentiment is the basis of extrapolative expectations: all agents have biased expectations

about returns, leaning in the direction of their sentiment. Mathematically, I assume, like

Barberis et al. (2015), that perceived expected returns are a weighted average of actual

expected returns and the level of sentiment:

µ̃R,t := µR,t + λ(St − µR,t). (41)

Equation (41) defines a distorted probability under which agents view the economy and is

the key assumption of this section. Note that λ ∈ [0, 1] controls the degree of bias in agents’

expectation-formation: λ = 1 is fully extrapolative, while λ = 0 is fully rational. Note

also that 1/β captures the average amount of past return data (number of years) used by

extrapolators.

The calibration in Barberis et al. (2015), based on survey data, delivers β = 0.5 and

λ = 1, which I will use as a benchmark. Like Jin and Sui (2021), I will find that these

high values of (β, λ) generate far too much risk premium variation, so I will perform some

sensitivity analysis on (β, λ). In a calibration based on output growth, Maxted (2020) obtains

β ≈ 0.12, which produces a more reasonable amount of variation. In addition, it is natural

to think that some agents in the economy are more rational, which can be captured in a

reduced-form way through lower λ.

This formulation of extrapolation is potentially complex, as sentiment dynamics depend

on returns, while returns depend endogenously on sentiment (by contrast, Maxted (2020) and

Krishnamurthy and Li (2020) analyze simpler settings with extrapolation on an exogenous

variable). With log utility, this two-way feedback will vanish; with recursive utility below,

the feedback amplifies volatility and risk premia. All derivations and proofs for this section

are in Appendix C.

22Barberis et al. (2015) model sentiment directly on past prices, rather than returns, because they have
a stationary model without growth. Jin and Sui (2021) studies return extrapolation, but with a two-state
regime shifting process for beliefs.

Why not build sentiment off of fundamentals? Fundamentals extrapolation appears similar on the surface
but ultimately would not deliver the appropriate dynamics, because prices adjust immediately to biased
beliefs about dividend growth. See Barberis, Shleifer, and Vishny (1998) for an early example with dividend
extrapolation, and Nagel and Xu (2019) more recently. A related literature studies learning from funda-
mentals based on lifetime experiences, which aggregates to a type of extrapolation, given the simultaneous
existence of both young and old generations; see Collin-Dufresne, Johannes, and Lochstoer (2017), Ehling,
Graniero, and Heyerdahl-Larsen (2018), Schraeder (2016), and Malmendier, Pouzo, and Vanasco (2020).
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4.1 Log utility

To obtain a clean comparison with our baseline model, I start with log utility.

Proposition 10. There exists a Markov equilibrium with sentiments, which is governed by

the state variables (Xt, St). Entry occurs whenever Xt ≤ x∗, where x∗ is identical to the

entry point without sentiments. Actual and perceived market Sharpe ratios are given by,

respectively,

ηt =
σY
Xt

− λ

σY
(St − s) and η̃t =

σY
Xt

,

where s := E[St] = ρ+ π + µY is the (true) average sentiment level.

Based on the results in Proposition 10, I will now argue that sentiments can generate a

type of Sharpe ratio volatility that is not curtailed by endogenous entry.

The actual Sharpe ratio η(x, s) = σY
x
− λ

σY
(s− s) is equal to the perceived Sharpe ratio

η̃, plus a term capturing sentiments. Computing

dηt − Et[dηt] = −
(
λβ + σ2

Y

1−Xt

X2
t

)
dZt (42)

we see the loading on the shock dZt is amplified by the degree of extrapolation λ and the

sentiment volatility parameter β. Thus, Sharpe ratios are more countercylical and volatile

with sentiments. Importantly, this result does not rely on increasing agents’ consumption

growth volatility (η̃t is participants’ local consumption growth volatility, which is independent

of λ).

Sentiment-driven Sharpe ratio volatility is not curbed by entry. Indeed, entry occurs

when the perceived, rather than actual, participation benefits are high. Perceived benefits

are given by

1

2
(ρ+ π)−1Ẽ

[ ∫ ∞
0

e−(ρ+π)tη̃2
t dt | F0

]
, (43)

where Ẽ denotes expectations under the extrapolative beliefs (this formula is the irrational

beliefs generalization of (28)). The perceived Sharpe ratio η̃ is independent of s. Similarly,

agents perceive the dynamics of (Xt, St) to be independent of St, so the subjective forecast

of η̃t+h is independent of St. Entry incentives are thus independent of sentiments, meaning

sentiment-driven volatility of actual Sharpe ratio ηt sidesteps the conditional-unconditional

tension of Section 3.
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This story is confirmed in Table 4, which displays Sharpe ratio statistics for different β,

λ, and φ. Sharpe ratio volatilities are strongly increasing in the extrapolation parameters β

and λ, as suggested by the local equation (42) above, but relatively insensitive to φ. At the

same time, average Sharpe ratios are insensitive to (β, λ) and increasing in φ. One can thus

think of the degree of frictions (φ) as controlling average Sharpe ratios, while extrapolation

(β, λ) as controlling Sharpe ratio volatility. In this sense, there is no tension between the

mean and volatility of ηt.

Quantitatively, with β = 0.5, λ = 1, and φ = 0.2, this economy generates a Sharpe

ratio distribution with mean 0.11 and volatility 0.53. By contrast, in the rational model

with φ = 0.2, the maximal Sharpe ratio is only 0.14. Note that, as in the baseline model,

log utility does not deliver high enough average Sharpe ratios; Section 4.3 generalizes the

sentiments model to recursive utility to help address this issue.

β = 0.30 (persistent, low-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

E[ηt] 0.08 0.11 0.12 0.08 0.11 0.13 0.08 0.11 0.13 0.08 0.12 0.13
std[ηt] 0.01 0.02 0.03 0.13 0.14 0.14 0.29 0.30 0.30 0.41 0.42 0.42

max[ηt] 0.08 0.14 0.20 0.53 0.58 0.64 1.11 1.17 1.23 1.56 1.61 1.67

β = 0.50 (moderate, medium-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

E[ηt] 0.08 0.11 0.12 0.08 0.11 0.13 0.08 0.12 0.13 0.08 0.12 0.13
std[ηt] 0.01 0.02 0.03 0.16 0.17 0.18 0.37 0.38 0.38 0.53 0.53 0.54

max[ηt] 0.08 0.14 0.20 0.70 0.75 0.81 1.51 1.57 1.63 2.12 2.18 2.24

β = 0.70 (transitory, high-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

E[ηt] 0.08 0.11 0.12 0.08 0.11 0.13 0.08 0.12 0.13 0.08 0.12 0.13
std[ηt] 0.01 0.02 0.03 0.19 0.20 0.20 0.43 0.44 0.45 0.62 0.63 0.63

max[ηt] 0.08 0.14 0.20 0.86 0.92 0.98 1.90 1.96 2.02 2.68 2.74 2.80

Table 4: Different measures of market Sharpe ratios (stationary average SR, standard deviation
of SR, and maximal SR) for extrapolation parameters (β, λ) and entry cost φ. The measures are
computed with Monte Carlo simulations of length 5000 years—this matters because, technically,
given the equilibrium Ornstein-Uhlenbeck followed by St, we have supt[ηt] = +∞. Other parameters
are in Table 1.

To more directly verify the notion that sentiments are controlling Sharpe ratio volatility,
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I perform the following variance decomposition of the Sharpe ratio:

1 =
(λβ)2

Vart[dηt]︸ ︷︷ ︸
pure sentiment

+
(1−Xt)

2
(
σY
Xt

)4

Vart[dηt]︸ ︷︷ ︸
pure risk concentration

+
2λβ(1−Xt)

(
σY
Xt

)2

Vart[dηt]︸ ︷︷ ︸
interaction between

sentiment and risk concentration

. (44)

The first term is the portion of variance that arising purely due to extrapolation (i.e., the

numerator represents Sharpe ratio variance in the representative agent version of this econ-

omy). As Table 5 shows, this pure sentiment term explains the lion’s share of Sharpe ratio

volatility.

β = 0.30 (persistent, low-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

pure sentiment 0.00 0.00 0.00 0.93 0.84 0.79 0.97 0.92 0.89 0.98 0.94 0.92
risk concentration 1.00 1.00 1.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

interaction 0.00 0.00 0.00 0.07 0.15 0.20 0.03 0.08 0.10 0.02 0.06 0.08

β = 0.50 (moderate, medium-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

pure sentiment 0.00 0.00 0.00 0.96 0.90 0.86 0.98 0.95 0.93 0.99 0.96 0.95
risk concentration 1.00 1.00 1.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

interaction 0.00 0.00 0.00 0.04 0.10 0.13 0.02 0.05 0.07 0.01 0.04 0.05

β = 0.70 (transitory, high-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

pure sentiment 0.00 0.00 0.00 0.97 0.93 0.90 0.99 0.96 0.95 0.99 0.97 0.97
risk concentration 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

interaction 0.00 0.00 0.00 0.03 0.07 0.10 0.01 0.04 0.05 0.01 0.03 0.03

Table 5: The variance decomposition (44) for various extrapolation parameters (β, λ) and entry
costs φ. Each term in the decomposition is computed as the average over a 5000 year Monte Carlo
simulation. Other parameters are in Table 1.

An interesting way to visualize these findings is to view Sharpe ratios during a boom-bust

cycle. Figure 5 plots Sharpe ratio dynamics through a 1-quarter boom, followed by a 4.5 year

quiet period, and finally followed by a 1-quarter bust, in each of three models (extrapolative

with frictions, rational with frictions, and extrapolative but frictionless). By comparing the

blue line to the broken red line, we can see how adding extrapolation to frictions greatly

amplifies the amount of Sharpe ratio variation, with far below-average Sharpe ratios in the

boom (briefly even negative) and Sharpe ratio spikes in the bust. The dramatic difference
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Figure 5: Dynamics through a boom-bust cycle in four models: (i) extrapolation and frictions (λ =
0.2, φ = 0.3); (ii) frictions but rational (λ = 0, φ = 0.3); (iii) extrapolation but frictionless (λ = 0.2,
φ = 0; (iv) rational and frictionless (λ = φ = 0). The series of shocks are Zt+0.01 − Zt =

√
0.01 for

t < 0.25; Zt constant for t ∈ [0.25, 4.75]; and Zt+0.01 − Zt = −
√

0.01 for t > 4.75. Consequently,
sentiment dynamics are identical across the models (left panel). The implied output growth rate in
the 1-quarter boom is 2.5% (or 10% annualized). Sentiment mean-reversion is β = 0.2, and other
parameters are in Table 1.

arises even though the extrapolation parameters are quite mild: λ = 0.2 and β = 0.2.

However, these Sharpe ratio dynamics look almost identical to those of an extrapolative

representative agent (dotted black line), but shifted upwards. In fact, letting η(λ,φ) be the

Sharpe ratio from an economy with extrapolation λ and friction φ, the curve with green

bubbles illustrates the following approximate identity in this model:

η(λ,φ)︸ ︷︷ ︸
extrapolative

plus
frictions

≈ η(0,φ)︸ ︷︷ ︸
rational

plus
frictions

+ η(λ,0)︸ ︷︷ ︸
extrapolative

and
frictionless

− η(0,0)︸︷︷︸
rational

and
frictionless

.

Taking expectations of this relation shows that E[η(λ,φ)] ≈ E[η(0,φ)].23 From this perspective,

extrapolation and frictions are additive: frictions and frictions alone control Sharpe ratio

levels, while beliefs control their dynamics. This additive property stands in contrast to

sub-additive nature of Section 3, in which extensions that add risk price variability reduce

risk price levels.

4.2 The central importance of extrapolative participants

By and large, models with extrapolative beliefs study economies in which all agents share

the same belief. Some conventional wisdom, however, posits that active participants in mar-

23Indeed, η(λ,0) = σY − λ
σY

(St − s), where E[St] = s. Thus, E[η(λ,0)] = σY = η(0,0).
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kets will tend to learn over time and hold more rational beliefs than occasional participants

or non-participants. Furthermore, the vast majority of survey evidence motivating the ex-

trapolative belief literature is not taken from banks or other financial professionals, so it

is unclear whether the assumption of extrapolative participants is well-justified.24 One can

get a sense of what participant learning would imply in my model by assuming participants

are fully rational and non-participants are extrapolative (in this extreme example, agents

immediately become rational when they enter, although they do not recognize this ex-ante).

Through this simple extension, I will illustrate how extrapolative participants are critical

to interesting Sharpe ratio dynamics. This is an important challenge for the literature to

address empirically, since most of the survey evidence on beliefs does not usually come from

the banks and other specialist investors that my class of models emphasizes.

Table 6 shows that this setting generates tiny Sharpe ratios, comparable to the rational

representative agent economy (i.e., σY = 0.04), with minuscule volatility. Two reasons drive

this finding, a direct effect and an indirect effect through entry, which I explain next.

β = 0.30 (persistent, low-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

E[ηt] 0.08 0.11 0.12 0.04 0.05 0.08 0.04 0.04 0.04 0.04 0.04 0.04
std[ηt] 0.01 0.02 0.03 0.01 0.02 0.04 0.00 0.00 0.01 0.00 0.00 0.00

max[ηt] 0.09 0.14 0.21 0.09 0.25 0.61 0.07 0.08 0.09 0.07 0.07 0.08

β = 0.50 (moderate, medium-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

E[ηt] 0.08 0.11 0.12 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04
std[ηt] 0.01 0.02 0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

max[ηt] 0.09 0.14 0.21 0.07 0.09 0.22 0.06 0.07 0.07 0.05 0.06 0.07

β = 0.70 (transitory, high-volatility extrapolators)

λ 0 (rational) 0.30 0.70 1 (pure extrap.)
φ 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

E[ηt] 0.08 0.11 0.12 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04
std[ηt] 0.01 0.02 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

max[ηt] 0.09 0.14 0.21 0.06 0.07 0.09 0.05 0.05 0.06 0.05 0.05 0.05

Table 6: Rational participants and extrapolative non-participants. Different measures of market
Sharpe ratios (stationary average SR, standard deviation of SR, and maximal SR) for extrapolation
parameters (β, λ) and entry cost φ. The measures are computed with Monte Carlo simulations of
length 5000 years—this matters because, technically, given the equilibrium Ornstein-Uhlenbeck
followed by St, we have supt[ηt] = +∞. Other parameters are in Table 1.

24Two important exceptions to this are Cheng, Raina, and Xiong (2014) and Gennaioli, Ma, and Shleifer
(2016), which study securitized finance managers and CFOs, respectively.
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First, sentiments have no direct effect on Sharpe ratios if participants are rational. Indeed,

actual and perceived risk prices are now25

(only non-participants extrapolate) ηt =
σY
Xt

and η̃t =
σY
Xt

+
λ

σY
(St − s). (45)

There is a symmetry between (45) and Proposition 10, in that ηt− η̃t = − λ
σY

(St−s) in both.

However, ηt is independent of St here.

Second, extrapolative non-participants are induced to enter much more often in a world

with rational participants. This entry force buoys Xt and indirectly reduces Sharpe ratio

levels and their dynamics. To see this, Figure 6 computes non-participants’ entry incentives

in this environment. From the figure, it is tempting to say that entry is delayed, since low

values of sentiment require more extreme drops in participants’ wealth share to induce entry.

However, the correct reading is that relatively high sentiment induces lots of entry, especially

for larger degrees of extrapolation, which then renders the economy “far from crisis.” For

example, in the right panel with λ = 0.5, the entry barrier is approximately an asymptote

near s ≈ s + ε. If sentiment rises above average, so much entry occurs that Xt → 1 almost

immediately. Afterward, even if sentiment declines, participants are so well-capitalized that

Sharpe ratios barely move.
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Figure 6: Net entry benefit for extrapolative non-participants, in an equilibrium with rational
participants. Entry occurs whenever this net benefit is zero. In this computation, all agents
additionally face a no-short-sales constraint on risky assets, which modifies the entry benefit for
non-participants to (43), with η̃2 replaced by max[0, η̃]2. Extrapolation parameters are β = 0.5 and
λ = 0.1 (panel a) or λ = 0.5 (panel b). Entry cost is φ = 0.20. Other parameters are in Table 1.

In summary, extrapolative participants are critical to generate large volatility in Sharpe

ratios. This is due to both a direct effect—whereby variation in the marginal trader’s beliefs

25With rational participants and log utility, (r, η, µX , σX) is identical to the values in Proposition 1.
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translates into risk price variation—and a less-obvious indirect effect, through accelerated

entry in good times.

4.3 Recursive utility

Now, we generalize preferences to recursive utility in order to obtain more reasonable quan-

titative magnitudes. This becomes a challenging methodological problem that has not been

tackled in the literature; Proposition C.1 in Appendix C.3 characterizes equilibrium as the

solution to a coupled set of nonlinear PDEs with a free boundary (entry barrier).26

Figure 7 displays entry incentives in this model. Although the equilibrium expressions are

substantially more complex than the log case, the left panel shows that entry decisions are

still well-approximated by a threshold level of Xt, as in Proposition 10 (i.e., entry incentives

are roughly independent of St). The core intuition is that the perceived Sharpe ratio η̃

remains the crux of the entry decision, and η̃ happens to be roughly independent of St (right

panel).
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Figure 7: Entry incentives with recursive preferences and sentiment. Risk aversion is γ = 3 and
EIS is ψ−1 = 4/3. Extrapolation parameters are β = 0.5 and λ = 0.5. Entry cost is φ = 0.45.
Other parameters are in Table 1.

Table 7 displays some quantitative results for this model. From panel A, we see the

model generates a high and time-varying Sharpe ratio, a low and smooth interest rate, and

return volatility above fundamental volatility. Although the increase in return volatility

26Jin and Sui (2021) and Nagel and Xu (2019) are the first to study extrapolation with Epstein-Zin
preferences in general equilibrium, albeit in a representative agent framework—they differ by assuming
return extrapolation versus fundamentals extrapolation, respectively. By contrast, Barberis et al. (2015) has
CARA preferences. Our model has—in addition to return extrapolation and Epstein-Zin preferences—a role
for the wealth distribution and an endogenous participation decision. As mentioned earlier, this puts our
paper closer to the financial friction papers of Maxted (2020) and Krishnamurthy and Li (2020)—but note
that their analyses is also limited to CRRA utility, extrapolation of an exogenous variable, and neither have
entry by non-participants.
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seems modest, the standard practice in the asset pricing literature is to scale this volatility

by a “leverage ratio” in order to compare with equity market data; for example, Bansal and

Yaron (2004) model dividends as three times more volatile than consumption. Using this

admittedly aggressive procedure, E[σR,t] = 0.0519 translates into equity return volatility of

15.6%, in line with the data.

The addition of extrapolative beliefs permits substantially lower entry frictions. In par-

ticular, panel A of Table 7 is generated with an entry cost of φ = 0.45—half of the baseline

entry cost needed in Section 2.4 to generate interesting risk price dynamics. The extrapola-

tion parameters are β = 0.5 and λ = 0.5, which we view as reasonable (recall: Barberis et al.

(2015) measure β = 0.5 and λ = 1 in surveys; λ = 0.5 is meant to capture in reduced-form

the presence of some rational traders).

A. model with frictions: φ = 0.45

Moment: E[ηt] std[ηt] max[ηt] E[rt] std[rt] E[σR,t]
Value: 0.2946 0.3075 1.5783 0.0298 0.0094 0.0519

B. frictionless model: φ = 0

Moment: E[ηt] std[ηt] max[ηt] E[rt] std[rt] E[σR,t]
Value: 0.2071 0.2916 1.3974 0.0337 0.0087 0.0493

Table 7: Asset pricing moments with recursive preferences and sentiment. The measures are
computed with Monte Carlo simulations of length 5000 years. Risk aversion is γ = 3 and EIS is
ψ−1 = 4/3. Extrapolation parameters are β = 0.5 and λ = 0.5. Entry cost is φ = 0.45 (panel A)
or φ = 0 (panel B). Other parameters are in Table 1.

For comparison, panel B shows the same results for a representative agent version of

the model, similar to Jin and Sui (2021). Notice in particular that the representative agent

model generates a substantially lower average Sharpe ratio, but nearly the same Sharpe ratio

volatility as the model with frictions. Thus, the additive separability finding from the log

utility model—that frictions modulate the average Sharpe ratio, while sentiments modulate

Sharpe ratio volatility—continues to hold with recursive preferences.

5 Conclusion

Asset market data suggest enormous costs—on the order of 90% of wealth—associated to

the financial frictions in limited participation and intermediary asset pricing models. Simply

put, because the compensation to participating in financial markets is large, especially in

crisis times, frictions that prevent participation and risk-sharing must be severe.
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What types of features can interact productively with endogenous entry and avoid the cri-

tiques outlined in this paper? I propose one possibility: extrapolative expectations. Whereas

the limited participation model with rational agents generates countercyclical entry, extrap-

olative expectations add a procyclical motive, namely that perceived risk premia exceed

actual risk premia in booms (and vice versa in busts). Among the mechanisms I consider,

this is the only one which can generate both high Sharpe ratio levels and high Sharpe ratio

volatility without extreme entry costs.

At a deeper level, my analysis raises the issue of how financial frictions matter for crises,

cycles, and the like. For instance, I find that belief dynamics must be the primary driver of

Sharpe ratio dynamics. By contrast, the policy conclusions of macro models of financial crises

(e.g., time-varying capital requirements, asset purchases, etc.) rely on a strong dependence

of asset price dynamics on bank leverage and other balance sheet variables. Whether these

policy proposals survive in a frictional world where dynamics are belief-driven is an open

question for future research.
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The appendix proceeds as follows. Section A provides all proofs and auxiliary results for the

benchmark model with log utility and its extensions. Section B provides results for the model

with recursive utility. Section C provides results on the critical extension to extrapolative beliefs.

Section D discusses the robustness of the model to several different extensions: a fixed entry cost, the

presence of labor income, and alternative preference constellations. Finally, Section E shows how

to compute the dynamic evolution of the (infinite-dimensional) wealth distribution in extensions

lacking homogeneity properties (e.g., fixed entry costs).

A Log utility model

Section A.1 provides proofs of Propositions 1-4 for the benchmark model with log utility. Section

A.2 discusses the fact that endogenous entry rules out bubbles and arbitrages in the economy, which

are present in many limited participation economies. Section A.3 contrasts the endogenous-entry

economy to one with exogenous entry. Section A.4 adds both equity issuance and idiosyncratic

risks, and then derives the equilibrium.

A.1 Proofs for the benchmark log utility model

Proof of Proposition 1. The entirety of the proof proceeds exactly as Proposition B.1 (the

recursive-utility generalization). Alternatively, one may simply taking limits γ, ψ → 1 in the

expressions from Proposition B.1. Although all endogenous objects are determined independently

of value functions, determination of the entry point x∗ requires solving the ODE for ∆g.

Proof of Proposition 2. In this proof, assume that φ is large enough so that (25) is not de-

generate, i.e., there is not a solution with x∗ = 1. (In particular, a sufficient condition to guarantee

x∗ < 1 is that Φ > 1
2(ρ + π)−2σ2

Y , from the result of Proposition 4.) In addition, the functions η,

µX , and σX are taken to be the extensions to (0, 1) of the functions from Proposition 1 (i.e., as if

x∗ → 0 in the expressions).

Existence. Define the linear differential operator L that applies to C2-a.e. functions f on (0, 1):

L f(x) := −(ρ+ π)f(x) + µX(x)f ′(x) +
1

2
σ2
X(x)f ′′(x). (A.1)
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Let δ be small enough, and consider the following problem. Find a function ϕ such that on (δ, 1)

the following hold: 
0 ≤ 1

2(ρ+ π)−1η2 + Lϕ,

0 ≥ ϕ− Φ,

0 =
(

1
2(ρ+ π)−1η2 + Lϕ

)
(ϕ− Φ),

(A.2)

subject to boundary conditions ϕ(δ) = Φ and 1
2(ρ + π)−1η2(1) − (ρ + π)ϕ(1) + µX(1)ϕ′(1) = 0.

Note that none of the objects in problem (A.2) depend on the equilibrium entry point (i.e., one

can think of this problem as a “partial equilibrium” problem). One can consult any reference on

free boundary problems and variational inequalities to find (A.2), augmented with the boundary

conditions above, has a unique C1(δ, 1) solution, which is also C2-a.e. (c.f. Bensoussan and Lions

(1982), chapter 3.1, or Friedman (2010), chapter 1.2).

Let X ∗ ⊂ (δ, 1) be the set of points where ϕ = Φ (stopping set), and define x∗ := supX ∗. If

δ was chosen small enough, then X ∗ is non-empty and so 1 > x∗ > δ > 0. Put ∆g(x) = ϕ(x) for

all x ∈ (x∗, 1) and ∆g(x) = Φ for all x ∈ (0, x∗]. By construction, value-matching ∆g(x∗) = Φ

holds. In addition, since ∆g is C1(0, 1), and since ∆g′(x) = 0 for all x < x∗, we have ∆g′(x∗) = 0.

Finally, the first line of (A.2) holds with equality for x > x∗, so the ODE (25) holds. This proves

that (∆g, x∗) constitute a solution to (25)-(27).

Uniqueness. Let (ϕ1, x
∗
1) and (ϕ2, x

∗
2) be two distinct solutions to (25)-(27), and suppose x∗1 < x∗2

without loss of generality. We have ϕ1(x∗1) = ϕ2(x∗2) = Φ by (26). Using (A.4), we then have

Ex
∗
1

[ ∫ ∞
0

e−(ρ+π)tη2(X
(1)
t )dt

]
= Ex

∗
2

[ ∫ ∞
0

e−(ρ+π)tη2(X
(2)
t )dt

]
, (A.3)

where X
(1)
t and X

(2)
t are processes for Xt with reflecting barriers at x∗1 and x∗2 respectively. In

the above, the initial values are X
(1)
0 = x∗1 and X

(2)
0 = x∗2 > X

(1)
0 . Path-by-path comparison

implies X
(1)
t ≤ X(2)

t almost-surely, with the inequality strict on a positive-Lebesgue-measure subset

of times. Since η(x) is a decreasing function, we therefore have η2(X
(1)
t ) ≥ η2(X

(2)
t ), with strict

inequality on a positive-measure subset. This fact contradicts (A.3) above and implies there cannot

be two solutions.

Proof of Proposition 3. The result is proved in equation (A.4) in Proposition A.1 below.

Proof of Proposition 4. Substitute Xt ≡ 1 in expression (29). To obtain the approximation

in σ2
Y , expand φ∗ around σ2

Y = 0 and substitute η∗ := η(1) = σY .
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Proposition A.1. The function ∆g can be equivalently represented in the following three ways:

∆g(x) = Ex
[1

2
(ρ+ π)−1

∫ ∞
0

e−(ρ+π)tη2(Xt)dt
]

(A.4)

= Ex
[1

2
(ρ+ π)−1

∫ τx∗

0
e−(ρ+π)tη2(Xt)dt+ e−(ρ+π)τx∗Φ

]
(A.5)

= inf
τ
Ex
[1

2
(ρ+ π)−1

∫ τ

0
e−(ρ+π)tη2(Xt)dt+ e−(ρ+π)τΦ

]
, (A.6)

where τx∗ := inf{t ≥ 0 : Xt = x∗}, the minimization in (A.6) is over the set of stopping times, and

(X,Ax
∗
) is the unique strong solution to dXt = µX(Xt)dt+ σX(Xt)dZt + dAx

∗
t with X0 = x.

Proof of Proposition A.1. All three equations are essentially derived from martingale argu-

ments. Since ∆g is C2 a.e., we apply Itô’s formula toMt := e−(ρ+π)t∆g(Xt)+
1
2(ρ+π)−1

∫ t
0 e
−(ρ+π)sη2(Xs)ds.

The result, for any stopping time τ , is

MT∧τ −M0 =
1

2
(ρ+ π)−1

∫ T∧τ

0
e−(ρ+π)tη2(Xt)dt+

∫ T∧τ

0
e−(ρ+π)tL [∆g](Xt)dt

+

∫ T∧τ

0
e−(ρ+π)tσX(Xt)∆g

′(Xt)dZt +

∫ T∧τ

0
e−(ρ+π)t∆g′(Xt)dA

x∗
t ,

where the differential operator L is defined by (A.1). Since ODE (25) holds on (x∗, 1), and since

{t : Xt = x∗} has zero Lebesgue measure a.s., the sum of the first two integrals is zero a.s. As ∆g

is C2 and σX is bounded, the stochastic integral is a martingale. As ∆g′(x∗) = 0 by (27), the last

integral is zero. Hence, Mt is a martingale, so by Doob’s optional sampling, we have

∆g(x) = Ex
[1

2
(ρ+ π)−1

∫ T∧τ

0
e−(ρ+π)tη2(Xt)dt+ e−(ρ+π)(T∧τ)∆g(XT∧τ )

]
. (A.7)

Using (A.7), we can prove (A.4)-(A.6). Result (A.4) follows by picking τ = +∞, performing

recursive substitution of ∆g(XT ) on the right-hand-side of (A.7), applying the Strong Markov

property, and finally taking T → +∞ with the monotone convergence theorem. Result (A.5)

follows by picking τ = τx∗ , noting that ∆g(Xτx∗ ) = ∆g(x∗) = Φ, and again taking T → +∞ with

the monotone convergence theorem (also using the fact that τx∗ < +∞ a.s.). Result (A.6) follows

by noting that ∆g(XT∧τ ) ≤ Φ (see equation (11)), so that the objective function of (A.6) exceeds

∆g(x) for any choice of τ . But choosing τ = τx∗ is feasible, and so equation (A.5) implies equation

(A.6).

A.2 Bubbles

Hugonnier (2012) shows that limited participation economies, like the one studied here, must feature

“bubbles” in both the risky and riskless asset, as a requirement for equilibrium. “Bubbles” refers

to the fact that these assets have equilibrium prices that exceed the cost of the cheapest replicating
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portfolio. This result is surprising because participants face dynamically complete markets and

can make arbitrage profits by purchasing the replicating portfolio and shorting the bubble asset.

Although such trades are limited by solvency constraints, some arbitrage trading does take place

in equilibrium.

The existence of these bubbles is tightly related to the explosive behavior of local risk prices

that occurs when participant wealth falls to zero. With entry, participant wealth never approaches

zero, so risk prices are bounded, and there exists a state-price density. In this case, all assets are

priced by discounting their cash flows with the state-price density, i.e., by the replicating portfolio,

which eliminates bubbles by construction. In this section, I illustrate these ideas in the model with

log utility by showing (a) bubbles exist without entry, i.e., when φ = 1; (b) for any φ < 1, there

are no bubbles.

To do this, we need to first define some concepts. Let Q denote the candidate equivalent local

martingale measure, and let ξ∗t := (dQdP )Ft be the corresponding candidate density. This is given by

the exponential local martingale

ξ∗t := ξ∗0 exp
(
− 1

2

∫ t

0
η2
sds−

∫ t

0
ηsdZs

)
.

Note that the state-price density process, if it exists, is given by ξt = exp(−
∫ t

0 rsds)ξ
∗
t . As is well

known, the fundamental value, or cheapest replicating cost, for a sequence of cash flows {Gt} is

F ∗t := Et
[ ∫ ∞

t

ξs
ξt
Gsds

]
.

A bubble exists if Ft > F ∗t , where Ft is the equilibrium price of {Gt}. We have the following

proposition.

Proposition A.2. Consider the equilibrium of Proposition 1. For φ = 1, the economy contains

bubbles. For any φ < 1, the economy has no bubbles. In both economies, P{Xt > 0 ∀t} = 1.

Proposition A.2 shows that bubbles are a technical issue encountered by complete absence of

entry. By examining the proof below, we can see that the technicality emerges because risk prices

ηt explode as participant wealth diminishes, Xt → 0. Surprisingly, this is not because this event

has any probability of occurring, as we also show that the boundary {0} is unattainable for Xt.

Proof of Proposition A.2. We first prove the final statement that P{Xt > 0∀t} = 1. It suffices

to consider φ = 1, in which case Xt is the pure diffusion

dXt =
[
− π(1− α)Xt + σ2

Y

(1−Xt)
2

Xt

]
dt+ (1−Xt)σY dZt.

Indeed, when φ < 1, the diffusive part of Xt is augmented by the weakly increasing process Ax
∗
t .

The result for φ = 1 is proved in Lemma B.3, by substituting γ = ψ = 1.
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Next, suppose ξ∗t is a true martingale. If so, Girsanov’s theorem implies that the process

dZ∗t := dZt+ηtdt is a Brownian motion under Q, which is an equivalent measure to P. Substituting

ηt = σY /Xt, the evolution of Xt under Q is

dXt =
[
− π(1− α)Xt − σ2

Y (1−Xt)
]
dt+ (1−Xt)σY dZ

∗
t + dAx

∗
t .

Suppose φ = 1 so that Ax
∗
t ≡ 0. Given −π(1−α)x−σ2

Y (1−x) < 0 for x = 0 and (1−x)σY > 0 for

all x ∈ (0, 1), we see that Xt hits {0} with positive Q-probability in finite time, i.e., Q{Xt > 0∀t} <
1. Hence, P and Q are mutually singular, contradicting the assumption that ξ∗t is a true martingale.

Thus, ξ∗t is a strict local martingale, implying it is a strict super-martingale, by the fact that it

is positive and non-constant (this means ξ∗t is a super-martingale that is not a martingale). This

immediately implies that the risk-free asset has a bubble: investing 1 in the risk-free bond at time t

delivers exp(
∫ T
t rsds) at time T , whereas the fundamental value of time-T cash flow exp(

∫ T
t rsds) is

F ∗t = Et[ ξTξt exp(
∫ T
t rsds)] = Et[

ξ∗T
ξ∗t

] < 1. In other words, the risk-free asset is more expensive than

its fundamental value. A related argument can be applied to the price of the aggregate endowment,

G = Y . See Loewenstein and Willard (2000) and Jarrow, Protter, and Shimbo (2010) for the strict

local martingale approach to bubbles.

On the other hand, the statement for φ < 1 follows from Step 3 in the proof of Proposition B.1,

which shows that ξt defines a true state-price density process, with bounded market price of risk,

i.e., ξ∗t is a true martingale. Consequently, there cannot be any arbitrages or bubbles.

A.3 Comparison to exogenous segmentation benchmark

Consider the following economy without endogenous entry. The setup is identical to the benchmark

model except for the fact that agents are born as participants or non-participants. In particular,

a fraction ν of newborns are designated participants, while 1 − ν are non-participants, and non-

participants may not ever participate. Given the law of large numbers assumption on death shocks,

each cohort b will always have ν fraction of participants. I would like to interpret this as an economy

where investors have “types” (e.g., experts and non-experts; investors and households), as much of

the limited participation literature.

With this modification, the goods market clearing becomes

Yt =

∫ t

−∞
πe−π(t−b)

(
νcPt,b + (1− ν)cNt,b

)
db,

and the consumption share state variable is defined by

Xt = Y −1
t ν

∫ t

−∞
πe−π(t−b)cPt,bdb,

where cPt,b is the time-t consumption of participants in cohort b, and similarly for cNt,b.
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This model admits a stationary equilibrium, described in Proposition A.3 below. This equi-

librium is very similar to that in Proposition 1, with the main difference that the expression for

µX now adjusts for the continuously entering participants. This operates primarily to shift the

stationary mean of Xt.

Proposition A.3. In the model with log utility and exogenous entry (with entry parameter ν), the

following is the unique equilibrium. Asset prices are given by

η(x) =
σY
x

and r(x) = ρ+ π + µY −
σ2
Y

x
, x ∈ (0, 1)

and state dynamics by

µX(x) = −π(1− α)(x− ν) + σ2
Y

(1− x)2

x
and σX(x) = (1− x)σY .

The non-degenerate stationary density of Xt is given by

hν(x) =
K0

σ2
X(x)

∫ x

0

(x
z

)2(1− x
1− z

)− 2π(1−α)
σ2
Y exp

(
− 2π(1− α)(1− ν)(x− z)

σ2
Y (1− x)(1− z)

)
dz, (A.8)

where K0 is a constant ensuring hν integrates to 1.

Proof of Proposition A.3. Given the similarity to Proposition 1, much of the proof is omitted.

One difference is the derivation of the stationary density hν , so I document this below. Recall that

hν satisfies the Kolmogorov forward equation

0 = − d

dx
(µXhν) +

1

2

d2

dx2
(σ2
Xhν).

Integrating this equation, we obtain

1

2
K0 = −µXhν +

1

2

d

dx
(σ2
Xhν).

Since µX(0) = +∞, it follows that hν(0) = 0. Thus, making the change of variables ĥ(x) =

σ2
X(x)hν(x), we must solve K0 = −2µX

σ2
X
ĥ + ĥ′ subject to the boundary condition ĥ(0) = 0. The

solution is ĥ(x) = K0

∫ x
0 exp(

∫ x
z

2µX(y)
σ2
X(y)

dy)dz. Lastly, the integrand on the right-hand-side can be

computed explicitly by substituting µX and σX from Proposition A.3, and the result is

exp
(∫ x

z

2µX(y)

σ2
X(y)

dy
)

=
(x
z

)2(1− x
1− z

)− 2π(1−α)
σ2
Y exp

(
− 2π(1− α)(1− ν)(x− z)

σ2
Y (1− x)(1− z)

)
.

To determine hν , we thus need only perform a single integration over z with this integrand.

Figure A.1 compares these two economies. The top four panels show four endogenous entry

economies, indexed by their entry costs φ. In each plot, risk prices η are displayed along with
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the ergodic distribution of Xt. Notice that the distribution of Xt is truncated by entry, with

less truncation occurring as the entry cost rises. The bottom four panels show four comparable

exogenous entry economies, indexed by their participant fraction ν. The parameter ν is chosen so

that the stationary mean x matches that of the endogenous entry economy plotted directly above.
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Figure A.1: Each plot features the market price of risk η (blue line) and stationary density for
X (gray area). The horizontal axis is the participants’ consumption share x. Top four panels:
Each plot corresponds to a different entry cost φ. Bottom four panels: Each plot corresponds to
a different participant population share ν. The share of participants ν is chosen to match the
stationary mean x := EXt in the endogenous entry economy plotted directly above. For example,
the endogenous entry model with cost φ = 10% and the exogenous entry model with ν = 38% both
have the same average participant consumption share x = 49%. Parameters are in Table 1.

For relatively small costs (e.g., φ = 0.10, 0.25), Figure A.1 shows that endogenous entry con-

strains the dynamics of Xt and ηt much more than a comparable amount of exogenous entry

(ν = 0.38, 0.10). Despite having the same stationary mean, economies with endogenous entry

spend much less time in low-x states.

For larger costs (e.g., φ = 0.40, 0.60), there is less of a distinction between endogenous and

exogenous entry. Asset prices become increasingly similar between the models as entry is eliminated.

A.4 Equity issuance and idiosyncratic risk

In this section, I extend the model in two ways—by allowing partial equity issuance by participants

and introducing idiosyncratic risks into participants’ risky asset returns.

Now, participants’ risky asset position is a claim to {Ŷt}, which follows

dŶt = Ŷt[µY dt+ σY dZt + σ̂Y dẐt],
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where Ẑ is an idiosyncratic Brownian motion, independent of Z. Each participant draws an inde-

pendent copy of Ẑ, so that the total risky asset claims in the participant sector will be equal to Yt,

due to the Law of Large Numbers. With these cash flows, participants’ risky asset return is given

by

dRt = µR,tdt+ σR,tdZt + σ̂Y dẐt.

Participants lever up this asset by the choice variable θt,b.

On their liabilities side, participants keep a fraction χt,b ≥ χ∗ of their equity risk on their

books, with χ∗ ∈ (0, 1), capturing partial equity issuance. They offload the remaining 1 − χt,b of

risk to financial markets. Here, χt,b is a choice variable. When buying participants’ outside equity,

non-participants optimally diversify away the embedded idiosyncratic risk, so their equity position

is summarized by a single portfolio choice variable θ̃t,b. Finally, I allow participants to purchase

long-only diversified positions in other participants’ outside equity (θ̃t,b ≥ 0 for b ∈ Pt), which they

might want to do if their aggregate risk exposure is too low after their equity issuance. With the

introduction of equity issuance, we require the additional equilibrium equation∫
Pt
πe−π(t−b)(1− χt,b)θt,bWt,bdb =

∫
Pt∪Nt

πe−π(t−b)θ̃t,bWt,bdb, (A.9)

which says that the equity offloaded by participants equals the equity investment of non-participants

and participants.

Participants are compensated for their equity issuance constraints by additional returns (e.g.,

management fees), which are captured mathematically by three different risk prices: one for the

aggregate risk of inside equity (ηt), one for the idiosyncratic risk of inside equity (η̂t), and one for

outside equity (η̃t). The idiosyncratic risk price η̂t is a fictitious construct to capture the residual

returns available to participants after they are fairly compensated for aggregate risk. Mathemati-

cally, we have µR,t − rt − (1− χt,b)σR,tη̃t of returns available to participants after equity issuance,

and we define ηt and η̂t such that

χt,bσR,tηt + χt,bσ̂Y η̂t := µR,t − rt − (1− χt,b)σR,tη̃t. (A.10)

With these considerations, agents’ budget constraints (4) and (5) are replaced by

dWt,b

Wt,b
=
(
rt + θ̃t,bσR,tη̃t + απ −

ct,b
Wt,b

)
dt+ θ̃t,bσR,tdZt, t < τb (A.11)

dWt,b

Wt,b
=
(
rt + χt,bθt,b(σR,tηt + σ̂Y η̂t) + θ̃t,bσR,tη̃t + απ −

ct,b
Wt,b

)
dt

+ (χt,bθt,b + θ̃t,b)σR,tdZt + χt,bθt,bσ̂Y dẐt, t ≥ τb. (A.12)

Equilibrium is given by the following proposition.

Proposition A.4. Assume (1− χ∗)σ̂2
Y < π(1− α). There exists a unique equilibrium with equity
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issuance, which is governed by the state variable Xt. When Xt ≥ χ∗, aggregate risk is shared

perfectly with σX,t = 0. When Xt ∈ (x∗, χ∗), participants are constrained in the sense that χt = χ∗

and θ̃t = 0. When Xt ≤ x∗, entry occurs until Xt ≥ x∗, where x∗ is determined by solving the

ODE (A.13). Equilibrium objects are given by the following set of functions of x which hold for

x ∈ [x∗, 1]:

η(x) =
max(x, χ∗)

x
σY and η̃(x) =

1−max(x, χ∗)

1− x
σY and η̂(x) =

χ∗

x
σ̂Y

r(x) = ρ+ π + µY −
[
xη2(x) + xη̂2(x) + (1− x)η̃2(x)

]
σX(x) = x(1− x)

[
η(x)− η̃(x)

]
µX(x) = −π(1− α)x+ x(1− x)

[
η2(x)− η̃2(x) + η̂2(x)

]
− x(1− x)[xη(x) + (1− x)η̃(x)][η(x)− η̃(x)],

and the stationary density of Xt is given by h(x) = K0

σ2
X(x)

exp
( ∫ x

x∗
2µX(y)
σ2
X(y)

dy
)

for x ∈ [x∗, χ∗) and

h(x) = 0 for x 6∈ [x∗, χ∗), where K0 is a constant ensuring h integrates to 1, i.e.,
∫ χ∗
x∗ h(x)dx = 1.

Proof of Proposition A.4. The proof proceeds similarly to Proposition 1. As before, conjec-

ture dXt = µX,tdt + σX,tdZt + dAx
∗
t , where Ax

∗
is a continuous, increasing process corresponding

to entry, i.e., Ax
∗

only increases when Xt ≤ x∗.
From agents’ HJB equations, consumption is proportional to wealth, ct = (ρ+π)Wt. Therefore,

the price-dividend ratio is given by (ρ+ π)−1, and hence σR = σY .

Portfolio choices are as follows. Because non-participants are unconstrained in their choice of

θ̃, they optimally choose θ̃ = η̃
σY

. Taking participants’ first-order conditions with respect to θ, θ̃,

and χ, we have

[ θ ] : 0 = µR − r − (1− χ)σY η̃ − χ(χθ + θ̃)σ2
Y − χ(χθ)σ̂2

Y

[ θ̃ ] : 0 ≥ σY η̃ − (χθ + θ̃)σ2
Y

[ χ ] : 0 ≥ σY η̃ − (χθ + θ̃)σ2
Y − χθσ̂2

Y .

It is clear that the FOCs for θ̃ and χ cannot simultaneously hold with equality (unless σ̂Y = 0).

Furthermore, assuming θ > 0 as will be verified in equilibrium, the FOC for χ must always be

slack, so we set χ = χ∗ (even when σ̂Y = 0, we may without loss of generality assume χ = χ∗

because of the available choice of θ̃). Let U denote the region where participants choose θ̃ > 0. We

will characterize the equilibrium separately on U and [0, 1]\U .

On U , participants’ θ̃ FOC holds with equality. Using asset market clearing, we have θ = x−1,

so θ̃ = η̃
σY
− χ∗

x . Substitute this result and non-participants’ θ̃ choice into market clearing for

participants’ outside equity, equation (A.9). This yields 1−χ∗ = x( η̃
σY
− χ∗

x )+(1−x) η̃
σY

= η̃
σY
−χ∗.

Therefore, η̃ = σY on U . Substituting this back into participants’ choice, we find θ̃ = 1 − χ∗

x ,

implying U = {x : x ≥ χ∗}. Next, substituting θ = x−1 into participants’ FOC for θ, and using

equation (A.10), we obtain χ∗

x σ̂
2
Y = σY (η − η̃) + σ̂Y η̂. One solution to this equation is to set η = η̃
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and η̂ = χ∗

x σ̂Y . This choice is unique in the sense that it exactly corresponds to participants’

shadow risk prices and continues to hold when σ̂Y = 0.

On [0, 1]\U , participants choose θ̃ = 0. Outside equity market clearing yields η̃ = 1−χ∗
1−x σY .

Applying asset market clearing to participants’ θ choice, we have χ∗

x (σ2
Y + σ̂2

Y ) = σY η + σ̂Y η̂. One

solution to this equation, which is consistent with the result for η̂ on U , is to set η = χ∗

x σY and

η̂ = χ∗

x σ̂Y . As with the choices of (η, η̂) on U , this choice is unique in the sense that it exactly

corresponds to participants’ shadow risk prices and continues to hold when σ̂Y = 0.

The results above directly determine the drifts and diffusions on the wealths of participants and

non-participants:

dWP
t = WP

t

[(
rt + απ − ρ− π + η2

t + η̂2
t

)
dt+ ηtdZt + η̂tdẐt

]
dWN

t = WN
t

[(
rt + απ − ρ− π + η̃2

t

)
dt+ η̃tdZt

]
.

The dynamics of (µX , σX) of Xt := Y −1
t

∫
Pt πe

−π(t−b)ct,bdb = P−1
t

∫
Pt πe

−π(t−b)Wt,bdb are deter-

mined by applying Itô’s formula to this definition. Applying Itô’s formula to the goods market

clearing equation, and substituting previous results, we obtain an equation for r.

We solve for the entry point x∗ as before, by solving the following ODE on (x∗, 1):

0 =
1

2
(ρ+π)−1

[
η2+η̂2−η̃2

]
−(ρ+π)∆g+µX∆g′+

1

2
σ2
X∆g′′, ∆g(x∗) = Φ, ∆g′(x∗) = 0. (A.13)

This is derived by taking the difference between participants’ and non-participants HJB equations,

as in the discussion leading up to equation (25).

Finally, the stationary distribution is computed using the Kolmogorov Forward Equation, with

the reflecting boundary condition at x = x∗. Under the assumed parameter restriction (1−χ∗)σ̂2
Y <

π(1−α), (x∗, χ∗) constitutes the unique ergodic region. This is because µX(x) < 0 and σX(x) = 0

for all x ≥ χ∗. From x = 1, reaching x ≤ χ∗ takes a finite amount of time T that satisfies

1− χ∗ = −
∫ T

0 µX(Xt)dt. As µX and σX are continuous, Xt can never reach χ∗ from below. This

completes the proof.

Lemma A.1. Entry occurs at a time τ when the following holds:

Φ = E
[1

2
(ρ+ π)−1

∫ ∞
τ

e−(ρ+π)(t−τ)
(
η2
t + η̂2

t − η̃2
t

)
dt | Fτ

]
. (A.14)

Proof of Lemma A.1. Start with equation (A.13) and proceed as in Proposition 3.

Proof of Proposition 7. Let ωχ
∗

t := Xt/χ
∗ be a revised state variable. The revised state
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dynamics are

µω(ω) = −π(1− α)ω + (1− ω)
[1− ω

ω
+

1− χ∗

1− χ∗ω

]
σ2
Y

σω(ω) = (1− ω)σY .

Since ωχ
∗

t ≤ 1, standard diffusion comparison theorems (see, e.g., Karatzas and Shreve (1991))

imply the path {ωχ
∗

t : t ≤ T}, for any T ≤ infE(τ
χ∗

x∗ ), is uniformly decreasing in χ∗, almost-surely.

Hence, ηt = σY /ω
χ∗

t is uniformly increasing in χ∗ until time T .

Next, define ω̃χ
∗

t := 1− (1− χ∗ωχ
∗

t )/(1− χ∗). Notice that (1− χ∗)(1− ω̃χ
∗

t )/χ∗ has the same

dynamics as −ωχ
∗

t . Consequently, the process {(1−χ∗)(1−ω̃χ
∗

t )/χ∗ : t ≤ T} is uniformly increasing

in χ∗. Since χ∗/(1−χ∗) is increasing in χ∗, we have shown that 1− ω̃χ
∗

t is also uniformly increasing

in χ∗. Hence, η̃t = σY /(1− ω̃χ
∗

t ) is uniformly decreasing in χ∗ until time T .

To prove (ii) and (iii), start with the result of Lemma A.1 with σ̂Y = 0, so that η̂t ≡ 0. Now,

we argue by contradiction. Assume, leading to contradiction, ηχ
∗

max := supt(η
χ∗

t ) is increasing in χ∗.

Because the function η(x;χ∗) = σY χ
∗/x is strictly decreasing in x, we have ηχ

∗
max = η(x∗(χ∗);χ∗),

where x∗(χ∗) is the equilibrium entry point in the χ∗-economy. This, plus our assumption that

ηχ
∗

max is increasing in χ∗, implies that ω∗(χ∗) := x∗(χ∗)/χ∗ is decreasing in χ∗. Since ωχ
∗

t ≥ ω∗(χ∗),
the latter of which is a reflecting boundary, it is obvious that {ωχ

∗

t : t ∈ R} is uniformly decreasing

in χ∗ (i.e., if the reflecting boundary is decreasing in χ∗, we can replace T = +∞ from the previous

comparison result). Therefore, the path of ηt = σY /ω
χ∗

t is uniformly increasing in χ∗ for all t.

Similar arguments show η̃t = σY /(1 − ω̃χ
∗

t ) is uniformly decreasing in χ∗ for all t. As a result,

the right-hand-side of equation (A.14) is strictly increasing in χ∗. This is a contradiction, as Φ is

unaffected by χ∗. Hence, ηχ
∗

max is decreasing in χ∗. The proof of (ii) follows from this fact and the

fact that inft(η
χ∗

t ) = η(χ∗;χ∗) = σY is independent of χ∗.

Finally, we prove (iii). Since ηχ
∗

max = σY /ω
∗(χ∗) is decreasing in χ∗, boundary ω∗(χ∗) is in-

creasing in χ∗. Combined with the fact that the path {ωχ
∗

t : t ≤ T} is decreasing in χ∗, the

stopping time inf{t ≥ 0 : ωχ
∗

t ≤ ω∗(χ∗)} is decreasing in χ∗. But this time is the same as

τχ
∗

x∗ = inf{t ≥ 0 : Xt ≤ x∗(χ∗)}.

Proof of Proposition 8. Consider an increase in σ̂Y . This increases µX(x), through η̂(x), and

leaves σX(x) unchanged. Standard diffusion comparison theorems (see, e.g., Karatzas and Shreve

(1991)) imply that the equilibrium process {X σ̂Y
t : t ≤ T} is uniformly increasing in σ̂Y , almost-

surely, where T ≤ infE(τ
σ̂Y
x∗ ). Therefore, ηt = σY /X

σ̂Y
t is uniformly decreasing in σ̂Y .

Proof of Proposition 9. Substitute Xt ≡ 1 in expression (37).
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B Recursive utility model

In Section B.1, I generalize the model by introducing recursive preferences and derive the equilib-

rium. Section B.2 provides a verification theorem, proving that the HJB equations and associated

boundary conditions are sufficient for optimality in individual agents’ control problems. Section

B.3 provides details on the full-integration equilibrium (i.e., for φ small enough such that x∗ = 1).

Section B.4 provides details on the equilibrium with asymptotically large entry costs (i.e., φ→ 1).

Section B.5 reviews the quantitative appeal of adding recursive Epstein-Zin preferences to the

model.

B.1 Details and equilibrium for recursive utility generalization

This section presents more details on the model environment under the recursive utility generaliza-

tion. The utility function is defined by (31)-(32) in the text, which we restate here for convenience:

Vt,b := E
[ ∫ ∞

t
f(cs,b, Vs,b)ds | Ft

]
, (B.1)

where the felicity function f is defined by

f(c, V ) :=
1

1− ψ

(
c1−ψ[V (1− γ)]

ψ−γ
1−γ − (ρ+ π)V (1− γ)

)
. (B.2)

In (B.2), parameter γ is the coefficient of relative risk aversion (RRA), and ψ−1 is the elasticity

of intertemporal substitution (EIS). Assume γ, ψ 6= 1. The death rate π simply augments the

subjective discount rate ρ, as shown by Gârleanu and Panageas (2015). For reference, we also

restate here the modified participation cost Φt,b, which now has a time and cohort dimension and

is given by

Φt,b := [1− (1− φ)1−γ ]V P
t,b. (B.3)

In the equilibrium of this model, the returns on the risky asset will need to be modified to

dRt = µR,tdt+ σR,tdZt + dARt ,

where AR is a non-decreasing, singularly continuous process.27 The bond pays an instantaneous

return of rtdt + dARt .28 The presence of the singular term dARt , though unusual, is due to the

equilibrium entry in the model in conjunction with these more general preferences. The state-price

27So AR is of bounded variation but not absolutely continuous with respect to Lebesgue measure.
28No arbitrage requires that the singular component of the bond process be identical to that of the stock.

See Karatzas and Shreve (1998), appendix B, for a proof.
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density process is modified to

ξt := exp
{
−
∫ t

−∞

(
rs + dARs +

1

2
η2
s

)
ds−

∫ t

−∞
ηsdZs

}
. (B.4)

Participants’ wealth dynamics are now given by

dWt,b = (rtWt,b + θt,bWt,b(µR,t− rt) +απWt,b− ct,b)dt+Wt,bdA
R
t + θt,bWt,bσR,tdZt, t ≥ τb. (B.5)

Given this new utility and budget constraint, participants’ optimization problems are now given by

V P
t,b = sup

c,θ
E
[ ∫ ∞

t
f(cs,b, V

P
s,b)ds | Ft

]
, (B.6)

subject to (B.5). Non-participants solve

V N
t,b = sup

c,τ
E
[ ∫ τ

t
f(cs,b, V

N
s,b)ds+ V P

τ,b − Φτ,b | Ft
]
, (B.7)

where wealth dynamics are given by

dWt,b = (rtWt,b + απWt,b − ct,b)dt+Wt,bdA
R
t , t < τb, Wb,b > 0 given. (B.8)

Homogeneity properties. As before, scalability properties of the model allow for a convenient

representation of value functions. We have

V P
t,b =

W 1−γ
t,b

1− γ
GPt and V N

t,b =
W 1−γ
t,b

1− γ
GNt ,

where GP and GN are processes independent of agents’ wealth. The key to achieving this is the

homogeneity of the entry cost (B.3), so that the payoff to an entrant at time t ≥ b is V P
t,b − Φt,b =

(1− φ)1−γV P
t,b =

((1−φ)Wt,b)
1−γ

1−γ GPt . Thus, the cost Φt,b is perceived as a fraction φ of wealth, as in

the log utility model. Consequently, entry incentives are summarized by

t ∈ T ∗ : (1− φ)1−γGPt = GNt ; (B.9)

t /∈ T ∗ : (1− φ)1−γGPt (1− γ)−1 < GNt (1− γ)−1, (B.10)

where T ∗ denotes the set of entry times.

Solving for Markov equilibrium. In a Markov equilibrium with state variable Xt (participants’

consumption share), the dynamics of Xt are given by

dXt = µX(Xt)dt+ σX(Xt)dZt + dAx
∗
t . (B.11)
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In addition, there are functions gP and gN such that GPt = gP (Xt)
ψ(1−γ)
1−ψ and GNt = gN (Xt)

ψ(1−γ)
1−ψ .

As before, apply dynamic programming to the participants’ and non-participants’ problems, leading

to two ODEs (the HJB equations) for the wealth-consumption ratios gP and gN :

0 = ψ +
[
− ρ− π + (1− ψ)

(
r + απ +

1

2γ
η2
)]
gP +

[
ψµX +

ψ

γ
(1− γ)ησX

]
g′P +

1

2
ψσ2

Xg
′′
P

+
1

2

ψ(ψ − γ)

γ(1− ψ)
σ2
X

(g′P )2

gP
(B.12)

0 = ψ +
[
− ρ− π + (1− ψ)(r + απ)

]
gN + ψµXg

′
N +

1

2
ψσ2

Xg
′′
N

+
1

2

(ψ(ψ − γ)

γ(1− ψ)
− ψ2(1− γ)2

γ(1− ψ)

)
σ2
X

(g′N )2

gN
. (B.13)

These ODEs are solved on (x∗, 1) with an endogenous boundary x∗. Boundary conditions for these

ODEs are the following. First, the value functions satisfy (B.9) at entry times, i.e., times where

Xt = x∗, implying the value-matching condition

(1− φ)
1−ψ
ψ gP (x∗) = gN (x∗). (B.14)

Next, the smooth-pasting conditions

g′P (x∗) = g′N (x∗) = 0 (B.15)

also hold at the entry point x∗. These are three boundary conditions at x = x∗. The other two

conditions are derived by taking the limits of (B.12)-(B.13) as x → 1. In Appendix B.2, I derive

the HJB equations, discuss boundary conditions, and finally prove that the HJB equations and

associated boundary conditions are sufficient for individual optimality (Proposition B.2).

In Proposition B.1, I solve for all equilibrium objects, up to the solutions gP and gN to (B.12)-

(B.13). This demonstrates the tractability of the setup, although it is more complicated than the

log utility model. The basic steps in determining η, r, µX , and σX are to apply Itô’s formula to

the goods market clearing equation and the definition of the state variable, for Xt ∈ [x∗, 1). The

proof is at the end of this section.
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Proposition B.1. There exists a stationary Markov equilibrium defined by asset prices

η(x) :=
[
1 +

1− x
x

ω(x)
]
γσY +

(γ − ψ
1− ψ

)
σY (1− x)

g′P (x)

gP (x)

r(x) := ρ+ ψµY −
1

2
γ(ψ + 1)σ2

Y + π(1− α) + ψπ − ψπ(1− α)
p(x)

gN (x)
− 1

2
γ(ψ + 1)σ2

Y

(1− x
x

)
ω2(x)

+
1

2

(γ − ψ
1− ψ

)
σ2
Y (1− x)(1− ω(x))2 −

(γ − ψ
1− ψ

)
σ2
Y

[
xζ(x) +

x

2
ζ2(x) + (1− x)ω(x)ζ(x)

]
σR(x) := σY

[
1 + (1− x)ω(x)

p′(x)

p(x)

]
µR(x) := r(x) + σR(x)η(x)

and state dynamics

µX(x) := −π(1− α)x
p(x)

gN (x)
+
(γ(ψ + 1)

ψ
− 1
)
σ2
Y (1− x)ω(x)

+
1

2

γ(ψ + 1)

ψ
σ2
Y

(1− x
x

)
(1− 2x)ω2(x) +

1

2

( γ − ψ
ψ(1− ψ)

)
σ2
Y x(1− x)(1− ω(x))2

+
( γ − ψ
ψ(1− ψ)

)
σ2
Y (1− x)

[
xζ(x) +

x

2
ζ2(x) + (1− x)ω(x)ζ(x)

]
σX(x) := (1− x)ω(x)σY

on [x∗, 1), where

p(x) := xgP (x) + (1− x)gN (x)

ω(x) :=
(

1− (1− x)
g′N (x)

gN (x)

)−1

ζ(x) := (1− x)
g′P (x)

gP (x)
ω(x),

and functions gP and gN , with endogenous entry point x∗, satisfy the ordinary differential equations

(B.12) and (B.13) subject to boundary conditions given by (B.14), (B.15), (B.23), and (B.24),

assuming these ODEs have a solution. In that case, (X,Ax
∗
) is the unique strong solution to

(B.11). Finally, the non-degenerate stationary density of Xt is given by

h(x) =
K0

σ2
X(x)

exp
(∫ x

x∗

2µX(y)

σ2
X(y)

dy
)
,

for x ∈ [x∗, 1), where K0 is a constant chosen to ensure h integrates to 1, i.e.,
∫ 1
x∗ h(x)dx = 1.

Canonical limited participation dynamics. With recursive utility, equilibrium dynamics are

more complicated, but strong effects of limited participation remain.

Indeed, notice that equilibrium objects can be decomposed into terms from a frictionless econ-
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omy, terms arising due to limited participation (“LP effects”), and terms due to recursive prefer-

ences. For example, the market price of risk can be understood this way:

η(x) = γσY︸︷︷︸
frictionless

+ γσY

(1− x
x

)
ω(x)︸ ︷︷ ︸

LP effects

+
(γ − ψ

1− ψ

)
σY (1− x)

g′P (x)

gP (x)︸ ︷︷ ︸
recursive preferences

. (B.16)

When ψ = γ, corresponding to power utility, the recursive preference terms disappear. The risk-free

rate has additional terms arising from the OLG environment, and can be decomposed as follows:

r(x) = ρ+ ψµY −
1

2
γ(ψ + 1)σ2

Y︸ ︷︷ ︸
frictionless

+π(1− α) + ψπ − ψπ(1− α)
p(x)

gN (x)︸ ︷︷ ︸
OLG effects

− 1

2
γ(ψ + 1)σ2

Y

(1− x
x

)
ω2(x)︸ ︷︷ ︸

LP effects

+
1

2

(γ − ψ
1− ψ

)
σ2
Y (1− x)(1− ω(x))2 −

(γ − ψ
1− ψ

)
σ2
Y

[
xζ(x) +

x

2
ζ2(x) + (1− x)ω(x)ζ(x)

]
︸ ︷︷ ︸

recursive preferences

.

(B.17)

The contributions of the “LP effects” terms are generally to lower r and increase η, qualitatively

the same as the log utility model.

Note on entry and singular asset prices. Examining the proof of Proposition B.1 shows that

returns contain a singularly continuous component at points of entry, i.e.,

dARt =
p′(x∗)

p(x∗)
dAx

∗
t 6= 0

in return dynamics dRt = µR,tdt+σR,tdZt+dA
R
t .29 Consequently, there is no well-defined expected

rate of return on assets at those times. Importantly, singular asset prices are not inconsistent with

absence of arbitrage as long as the singular components of risky and risk-free assets coincide, as

shown by Karatzas, Lehoczky, and Shreve (1991). The intuition is that there can be an infinite

expected rate of return in the economy if and only if the opportunity cost of obtaining that return

is also infinite. This model, which features micro-founded entry decisions, is arbitrage-free and yet

has singular asset prices.

Below, I prove Proposition B.1. The proof takes as given agents’ optimal controls to construct

29The fact that this singular component is non-zero can be attributed to the non-zero derivative of the
price-dividend ratio at x∗. Combining p(x) = xgP (x) + (1− x)gN (x) with the value-matching and smooth-
pasting conditions (B.14)-(B.15),

p′(x∗) = x∗g′P (x∗) + (1− x∗)g′N (x∗) + gP (x∗)− gN (x∗) =
[
1− (1− φ)

1−ψ
ψ
]
gP (x∗) ≷ 0 as ψ ≶ 1.

The intuition for the sign of p′(x∗) is as follows. When ψ < 1, the EIS is high, and agents are willing to
tolerate less consumption-smoothing than they would with log preferences. The standard result is that the
price-dividend ratio is procyclical, and it is sensible by extension that p(x) would rise as entry occurs.
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an equilibrium. These optimal controls are contained in (B.21), (B.22), and (B.28) in Appendix

B.2. For verification of the optimality of these controls, see Proposition B.2 in Appendix B.2.

Proof of Proposition B.1. The proof proceeds in four steps. First, we derive coefficients for

the state-price density (ξ) and consumption distribution (X), in terms of the participants’ and

non-participants’ wealth-consumption ratios (gP and gN ). Second, we solve for the price-dividend

ratio, stock volatility, expected stock returns, and the singular component of returns. Third, we

verify some technical conditions, required for existence of a state-price density and a solution to

the SDE for X. Finally, we compute the stationary density of X.

Step 1: State-price density and consumption distribution.

First, write down the consumption dynamics for participants and non-participants by applying

Itô’s formula to ct,b. For i ∈ {P,N} according to whether b ∈ Pt or Nt, we have

dct,b = d
( Wt,b

gi(Xt)

)
=
[ Wt,b

gi(Xt)

(
rt + απ + θt,b(µR,t − rt)− gi(Xt)

−1
)
−

Wt,b

gi(Xt)

g′i(Xt)

gi(Xt)
µX,t

− 1

2

Wt,b

gi(Xt)

(g′′i (Xt)

gi(Xt)
−
(g′i(Xt)

gi(Xt)

)2)
σ2
X,t −

Wt,b

gi(Xt)

g′i(Xt)

gi(Xt)
θt,bσR,tσX,t

]
dt

+
[ Wt,b

gi(Xt)
θt,bσR,t −

Wt,b

gi(Xt)

g′i(Xt)

gi(Xt)
σX,t

]
dZt

= ct,b

[
rt + απ + θt,b(µR,t − rt)− gi(Xt)

−1 − g′i(Xt)

gi(Xt)
µX,t +

(g′i(Xt)

g′i(Xt)

)2
σ2
X,t

− 1

2

g′′i (Xt)

gi(Xt)
σ2
X,t −

g′i(Xt)

gi(Xt)
θt,bσR,tσX,t

]
dt+ ct,b

[
θt,bσR,t −

g′i(Xt)

gi(Xt)
σX,t

]
dZt.

Using the fact that θt,b = ηt
γσR,t

+
σX,t
σR,t

ψ(1−γ)
γ(1−ψ)

g′P (Xt)

gP (Xt)
for b ∈ Pt and θt,b ≡ 0 for b ∈ Nt, we have

dct,b
ct,b

=
[
rt + απ +

η2
t

γ
− gP (Xt)

−1 +
((ψ(1− γ)

γ(1− ψ)
− 1

γ

)
ηtσX,t − µX,t

)g′P (Xt)

gP (Xt)

− ψ − γ
γ(1− ψ)

σ2
X,t

(g′P (Xt)

gP (Xt)

)2
− 1

2
σ2
X,t

g′′P (Xt)

gP (Xt)

]
dt

+
(ηt
γ

+
ψ − γ
γ(1− ψ)

σX,t
g′P (Xt)

gP (Xt)

)
dZt, b ∈ Pt (participants)

for participants, and

dct,b
ct,b

=
[
rt + απ − gN (Xt)

−1 − µX,t
g′N (Xt)

gN (Xt)
+ σ2

X,t

(g′N (Xt)

gN (Xt)

)2
− 1

2
σ2
X,t

g′′N (Xt)

gN (Xt)

]
dt

− σX,t
g′N (Xt)

gN (Xt)
dZt, b ∈ Nt (non-participants)

for non-participants. Substituting the second derivatives from the HJB equations (B.12)-(B.13),
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we have

dct,b
ct,b

=
1

ψ

[
rt + απ − ρ− π +

ψ + 1

2γ
η2
t +

ψ(ψ − γ)

γ(1− ψ)
ηtσX,t

g′P (Xt)

gP (Xt)
− 1

2

ψ(ψ − γ)

γ(1− ψ)
σ2
X,t

(g′P (Xt)

gP (Xt)

)2]
dt

+
(ηt
γ

+
ψ − γ
γ(1− ψ)

σX,t
g′P (Xt)

gP (Xt)

)
dZt, b ∈ Pt (participants)

dct,b
ct,b

=
1

ψ

[
rt + απ − ρ− π +

1

2

ψ

1− ψ
(1− γψ)σ2

X,t

(g′N (Xt)

gN (Xt)

)2]
dt− σX,t

g′N (Xt)

gN (Xt)
dZt, b ∈ Nt (non-participants).

Apply Itô’s formula to the goods market clearing equation (12) and match drifts and diffusions,

µY = π
(ct,t
Yt

)
− π +

Xt

ψ

[
rt + απ − ρ− π +

ψ + 1

2γ
η2
t +

ψ(ψ − γ)

γ(1− ψ)
ηtσX,t

g′P (Xt)

gP (Xt)
− 1

2

ψ(ψ − γ)

γ(1− ψ)
σ2
X,t

(g′P (Xt)

gP (Xt)

)2]
+

1−Xt

ψ

[
rt + απ − ρ− π +

1

2

ψ

1− ψ
(1− γψ)σ2

X,t

(g′N (Xt)

gN (Xt)

)2]
σY = Xt

[ηt
γ

+
ψ − γ
γ(1− ψ)

σX,t
g′P (Xt)

gP (Xt)

]
− (1−Xt)σX,t

g′N (Xt)

gN (Xt)

Note that
ct,t
Yt

=
ct,t
Wt,t

Wt,t

Pt
Pt
Yt

= (1 − α)gN (Xt)
−1p(Xt) by the newborn transfer equation (15). Do

the same to the state equation (16) to obtain

XtµY + µX,t + σY σX,t =
Xt

ψ

[
rt + απ − ρ− π − ψπ +

ψ + 1

2γ
η2
t +

ψ(ψ − γ)

γ(1− ψ)
ηtσX,t

g′P (Xt)

gP (Xt)

− 1

2

ψ(ψ − γ)

γ(1− ψ)
σ2
X,t

(g′P (Xt)

gP (Xt)

)2]
XtσY + σX,t = Xt

[ηt
γ

+
ψ − γ
γ(1− ψ)

σX,t
g′P (Xt)

gP (Xt)

]
Solving these four equations for r, η, µX , and σX gives the expressions in the text.

Step 2: Solve for other asset pricing objects.

To determine the price-dividend ratio pt := Pt/Yt, combine the stock and bond market clearing

conditions (13)-(14) to get the asset market clearing condition Pt =
∫ t
−∞ πe

−π(t−b)Wt,bdb. Then,

pt = Y −1
t

∫ t

−∞
πe−π(t−b)Wt,b

ct,b
ct,bdb

= gP (Xt)

∫
Pt
πe−π(t−b) ct,b

Yt
db+ gN (Xt)

∫
Nt
πe−π(t−b) ct,b

Yt
db

= XtgP (Xt) + (1−Xt)gN (Xt).
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To determine µR, σR, and dAR, apply Itô’s formula to stock prices:

dRt =
dPt
Pt

+
Yt
Pt
dt =

d(Ytpt)

Ytpt
+

1

pt
dt

=
(
µY + µX,t

p′(Xt)

p(Xt)
+ σY σX,t

p′(Xt)

p(Xt)
+

1

2
σ2
X,t

p′′(Xt)

p(Xt)
+

1

p(Xt)

)
dt

+
(
σY + σX,t

p′(Xt)

p(Xt)

)
dZt +

p′(Xt)

p(Xt)
dAx

∗
t .

Matching coefficients on the diffusion and singularly continuous component, we obtain formulas for

σR and dAR. To obtain µR, apply the no-arbitrage relationship µR = r + ησR.

Step 3: Verify technical conditions.

Suppose that x∗ ∈ (0, 1). Then, µX(x∗+) and µX(1−) are finite, so µX(x) is bounded by

continuity. Similarly, σX(x∗+) and σX(1−) are finite, so σX(x) is bounded by continuity. In

addition, one can verify that µX and σX are Lipschitz in the interior (x∗, 1). Indeed, gP and

gN are bounded away from infinity and zero, and g′P and g′N are both continuously differentiable

on (x∗, 1). As a result, for any δ > 0, µX is bounded on [x∗, 1 − δ] and σX is bounded away

from 0 and continuously differentiable on [x∗, 1− δ]. Therefore, given any point x0 ∈ (x∗, 1) where

X0 = x0, the assumptions of Theorem 3.1 of Zhang (1994) hold, so there is a unique strong solution

({Xδ
t }t∈[0,τ1−δ∧T ], {A

x∗,δ
t }t∈[0,τ1−δ∧T ]) to the SDE (B.11), where τ1−δ := inf{t ≥ 0 : Xδ

t = 1 − δ}
and T > 0. Take the limit δ → 0 in the solutions (Xδ, Ax

∗,δ) to obtain a candidate solution

({Xt}t∈[0,T ], {Ax
∗
t }t∈[0,T ]) to the SDE (B.11), given functions gP and gN . Indeed, the limit exists

almost-surely due to the following reasoning. First, on {τ1−δ ≥ T, some δ}, there exists δ∗ such

that (Xδ′ , Ax
∗,δ′) = (Xδ∗ , Ax

∗,δ∗) for all δ′ < δ∗. Second, similar to the proof of Lemma B.3 in

Appendix B.4, we could prove that any solution to (B.11) must satisfy P{Xt < 1, ∀t ≥ 0} = 1

(although Lemma B.3 makes some parametric assumptions, the proof that Xt never reaches 1 uses

none of these assumptions). This implies that P{τ1−δ < T, ∀δ} = 0. Hence, in P-almost-every case,

the limit is reached at some positive δ, i.e.,

P
{
∃δ > 0 : ({Xδ

t }t∈[0,τ1−δ∧T ], {A
x∗,δ
t }t∈[0,τ1−δ∧T ]) = ({Xt}t∈[0,T ], {Ax

∗
t }t∈[0,T ])

}
= 1.

This limit is clearly unique by construction. Finally, to get the solution for t ∈ R, one just pieces

together solutions on finite intervals.

Next, conjecture that g′P (1), g′N (1) < +∞, which in conjunction with the smooth-pasting con-

dition (B.15), implies that g′P and g′N are bounded on [x∗, 1). Then, as p(x) = xgP (x)+(1−x)gN (x)

and p′(x) = xg′P (x) + (1 − x)g′N (x) + gP (x) − gN (x) are both bounded on [x∗, 1), we know that

σR is bounded. Similarly, it is easily verified that η and r are bounded. Finally, the guess

g′P (1), g′N (1) < +∞ may be verified by using boundary conditions (B.23)-(B.24) and the bounded-

ness of η and r. As a result, processes σR,t = σR(Xt) and ηt = η(Xt) are uniformly bounded, and
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for every T > 0,

E
[

exp
(1

2

∫ T

−T
η2
t dt
)]

< +∞ and E
(∫ T

−T
σ2
R,tdt

)
< +∞.

Hence, given the results in Chapter 6 of Duffie (2010a) and Appendix B of Karatzas and Shreve

(1998), a state price density ξ defined in (B.4) exists and is consistent with absence of arbitrage.

Step 4: Stationary distribution.

Let h denote the stationary density of Xt. Then, as is well known, h satisfies the Kolmogorov

forward equation (c.f. Karatzas and Shreve (1991), Section 5.7B)

0 = − d

dx
(µXh) +

1

2

d2

dx2
(σ2
Xh)

subject to the reflecting boundary condition at x = x∗:

0 = −µX(x∗)h(x∗) +
1

2

d

dx
(σ2
Xh)

∣∣∣
x=x∗

.

Integrating the forward equation and using the reflecting boundary condition, we obtain

0 = −µXh+
1

2

d

dx
(σ2
Xh). (B.18)

Equation (B.18) can be solved subject to the condition that h is in fact a probability density,

i.e.,
∫ 1
x∗ h(x)dx = 1. A convenient approach to solving (B.18) is to make the change-of-variables

ĥ(x) := σ2
X(x)h(x), which satisfies

ĥ′ =
2µX
σ2
X

ĥ.

Integrating from x∗ to x, and then inverting the change-of-variable from ĥ to h, we get

h(x) =
K0

σ2
X(x)

exp
(∫ x

x∗

2µX(y)

σ2
X(y)

dy
)
,

where K0 is a constant chosen to ensure h integrates to 1 on [x∗, 1).

Proof of Proposition 6. Take x→ x∗ and x→ 1 in Proposition B.1, using the smooth-pasting

condition (B.15) to find η(x∗) = γσY /x
∗ and η(1) = γσY .

B.2 HJBs and proof of optimality

Admissible controls.

For completeness, I state the participants’ and non-participants’ problems here. For the sake of

generality, this is done for the model with recursive utility. An admissible control for participants
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is given by consumption and portfolio processes that satisfy the dynamic budget constraint and

lead to finite utility, i.e., (ct,b, θt,b) such that (B.5) has a unique strong solution and

E
[ ∫ ∞

t

∣∣f(cs,b, V
P
s,b)
∣∣ds | Ft] < +∞,

where f is the felicity function defined in (B.2). The set of admissible participant controls as of

time t is denoted by APt . Similarly, non-participants must choose (ct,b, τb) such that τb is a stopping

time,

dWt,b = (rtWt,b + απWt,b − ct,b)dt+Wt,bdA
R
t

has a unique strong solution, and

E
[ ∫ ∞

t

∣∣f(cs,b, V
N
s,b)
∣∣ds | Ft] < +∞.

The set of admissible non-participant controls is denoted by ANt . Then, participants and non-

participants solve

b ∈ Pt : V P
t,b = sup

c,θ∈APt
E
[ ∫ ∞

t
f(cs,b, V

P
s,b)ds | Ft

]
(B.19)

b ∈ Nt : V N
t,b = sup

c,τ∈ANt
E
[ ∫ τ

t
f(cs,b, V

N
s,b)ds+ V P

τ,b − Φτ,b | Ft
]
, (B.20)

where Φt,b is given by (B.3).

Heuristic derivation of HJB equations.

The HJB equations for V = V P and V = V N are as follows (where if V = V N , we require

θ ≡ 0):

0 = sup
c,θ

f(c, V ) + Vww
(
r + απ + θ(µR − r)−

c

w

)
+

1

2
Vwww

2θ2σ2
R

+ VxµX +
1

2
Vxxσ

2
X + VxwwθσRσX

= sup
c,θ

1

1− ψ

(( c
w

)1−ψ
g(x)1−ψ − (ρ+ π)g(x)

)
+ g(x)

(
r + απ + θ(µR − r)−

c

w

)
− γ

2
g(x)θ2σ2

R +
ψ

1− ψ
g′(x)µX +

ψ(1− γ)

1− ψ
g′(x)θσRσX

+
1

2

ψ

1− ψ

[
g′′(x) +

(ψ(1− γ)

1− ψ
− 1
)g′(x)2

g(x)

]
σ2
X ,

where the second line uses the homogeneity property V (w, x) = w1−γ

1−γ g(x)
ψ(1−γ)
1−ψ . The FOCs for c
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and θ imply

ct,b =

Wt,bgP (Xt)
−1, if b ∈ Pt;

Wt,bgN (Xt)
−1, if b ∈ Nt.

(B.21)

and

θt,b =
µR,t − rt
γσ2

R,t

+
σX,t
σR,t

ψ(1− γ)

γ(1− ψ)

g′P (Xt)

gP (Xt)
if b ∈ Pt. (B.22)

Substituting these back into the HJB equations, we get two ODEs for the wealth-consumption

ratios, given by (B.12) and (B.13).

Boundary conditions.

The boundary conditions for (B.12)-(B.13) at x = x∗ are given by the value-matching and

smooth-pasting conditions (B.14)-(B.15) in the text. The boundary conditions at x = 1 are derived

by taking the limit x→ 1 the HJB equations, assuming that (1−x)g′i(x)→ 0 and (1−x)2g′′i (x)→ 0

as x→ 1, for i ∈ {P,N}. Since σX(x)→ 0 as x→ 1, all terms multiplying σX vanish in this limit.

Then, passing to the limit x→ 1,

0 = ψ +
[
− ρ− π + (1− ψ)

(
r(1) + απ +

1

2γ
η2(1)

)]
gP (1) + ψµX(1)g′P (1) (B.23)

0 = ψ +
[
− ρ− π + (1− ψ)

(
r(1) + απ

)]
gN (1) + ψµX(1)g′N (1). (B.24)

The following proposition establishes that these arguments are in fact sufficient for optimality

in the investors’ problems.

Proposition B.2 (Verification of Optimality). Let X be the unique strong solution to the stochastic

differential equation dXt = µX,tdt + σX,tdZt + dAx
∗
t on [x∗, 1), assuming it exists, where Ax

∗
t =∫ t

−∞ 1{Xs≤x∗}dA
x∗
s is a singularly continuous non-decreasing process. Define S := R+ × [0, x∗] and

O := R+ × (x∗, 1]. Consider two functions JP and JN satisfying

J i(w, x) =
w1−γ

1− γ
gi(x)

ψ(1−γ)
1−ψ , (B.25)

for strictly positive bounded functions gi ∈ C1([0, 1])∩C2((0, 1)\{x∗}), for i ∈ {P,N}. Additionally,

suppose JP and JN satisfy

(i) JP ((1− φ)w, x) = JN (w, x) on S, and JP ((1− φ)w, x) < JN (w, x) on O.

(ii) supc∈AN DNJN + f(c, JN ) = 0 on O, and supc∈AN DNJN + f(c, JN ) ≤ 0 on S, where

DNJN := w
(
r + απ − c

w

)
∂wJ

N + µX∂xJ
N + 1

2σ
2
X∂xxJ

N . (B.26)
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supc,θ∈AP DPJP + f(c, JP ) = 0 on O ∪ S \ {x∗}, where

DPJP := w
(
r + απ + θ(µR − r)− c

w

)
∂wJ

P + µX∂xJ
P

+ 1
2w

2θ2σ2
R∂wwJ

P + 1
2σ

2
X∂xxJ

P + wθσRσX∂wxJ
P . (B.27)

(iii) ∂xJ
N (w, x∗) = ∂xJ

P (w, x∗) = 0.

(iv) Strategies ct,b and θt,b are such that J i(Wt,b, Xt), θt,bσR,tJ
i(Wt,b, Xt), and σX,t

g′i(Xt)
gi(Xt)

J i(Wt,b, Xt)

belong to H2 := {h : E
∫ T
−T |ht|

2dt < +∞, for all T}.

(v) limT→∞ E[J i(WT,b, XT ) | Ft] = 0 for i ∈ {P,N}.

Then, if {V P
t,b}t≥b and {V N

t,b}t≥b are unique solutions to (B.19)-(B.20), we have J i(Wt,b, Xt) = V i
t,b

for i ∈ {P,N}. In addition, optimal decisions are given by ct,b in (B.21), θt,b in (B.22), and

τb := inf{t ≥ b : (Wt, Xt) ∈ S}. (B.28)

Proof of Proposition B.2. In the proof, we suppress the cohort b in all expressions when the

meaning is clear. Let T <∞ and (Wt, Xt) be arbitrary. Consider first the unconstrained investor

(participant) problem. Let a = (c, θ) ∈ APt be an admissible control. Let W a be the wealth process

under a. Apply Itô’s formula to JP (W a
t , Xt) to get

JP (W a
T , XT ) = JP (Wt, Xt) +

∫ T

t
DP,aJP (W a

s , Xs)ds+

∫ T

t
∂xJ

P (W a
s , Xs)dA

x∗
s

+

∫ T

t

[
W a
s θsσR,s∂wJ

P (W a
s , Xs) + σX,s∂xJ

P (W a
s , Xs)

]
dZs,

where DP,a is defined by (B.27) under control a. Note that, in using Itô’s formula, we can ignore

the set {s : Xs = x∗} in the first integral as this set has Lebesgue measure zero. Next, because

Ax
∗
s is flat off {s : Xs = x∗}, condition (iii) implies that the second integral is zero. Because of the

multiplicative separable representation (B.25), W a
s θsσR,s∂wJ

P (W a
s , Xs) = (1−γ)θsσR,sJ

P (W a
s , Xs)

and σX,s∂xJ
P (W a

s , Xs) = ψ(1−γ)
1−ψ σX,s

g′P (Xs)

gP (Xs)
JP (W a

s , Xs). By condition (iv), the stochastic integral

(as function of T ) is then a true martingale and has conditional expectation zero (with respect to

Ft). Finally, condition (ii) implies that DP,aJP (w, x)+f(c, JP (w, x)) ≤ 0 for all (w, x) and a ∈ APt .

Taking expectations and using these results,

JP (Wt, Xt) ≥ E
[ ∫ T

t
f(cs, J

P (W a
s , Xs))ds+ JP (W a

T , XT ) | Ft
]
.

Now, pick a sequence {Tn}∞n=1 with Tn →∞ as n→∞ such that
∫ Tn
t

c1−ψs
1−ψ [(1−γ)JP (W a

s , Xs)]
ψ−γ
1−γ ds

and
∫ Tn
t

ρ+π
1−ψ [(1 − γ)JP (W a

s , Xs)]ds are monotonic sequences. Such a choice is possible since JP

has an unambiguous sign, by (B.25). Using condition (v) and the monotone convergence theorem
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to take the limit as n→∞, then maximizing over feasible controls, we obtain

JP (Wt, Xt) ≥ sup
a∈APt

E
[ ∫ ∞

t
f(cs, J

P (W a
s , Xs))ds | Ft

]
. (B.29)

On the other hand, consider the admissible control a = (c, θ) given by (B.21) and (B.22) and

suppose this control also satisfies integrability condition (iv). Representation (B.25) implies that

∂wJ
P > 0 and ∂wwJ

P < 0, sufficient to imply that a attains the maximum in condition (ii). Then,

letting τ be any stopping time, applying Itô’s formula to
∫ t
τ f(cs, J

P (W a
s , Xs))ds + JP (W a

t , Xt),

using condition (ii), and taking expectations under the hypotheses of condition (iv), we obtain

JP (Wτ , Xτ ) = E
[ ∫ T

τ
f(cs, J

P (W a
s , Xs))ds+ JP (W a

T , XT ) | Fτ
]
.

Using condition (v) and the monotone convergence theorem, we can take the limit to obtain for

any t

JP (Wt, Xt) = E
[ ∫ ∞

t
f(cs, J

P (W a
s , Xs))ds | Ft

]
.

Combining with inequality (B.29), this shows that control a attains the maximum in APt . In

addition, we obtain an equation identical to the recursive formulation of the value function in

(B.19). Since (B.19) has the unique solution V P
t,b, we have

JP (Wt,b, Xt) = V P
t,b. (B.30)

Similarly, for the non-participant, fixing admissible control a = (c, τ) ∈ ANt and applying Itô’s

formula to JN (W a
t , Xt), we obtain

JN (W a
τ∧T , Xτ∧T ) = JN (Wt, Xt) +

∫ τ∧T

t
DN,aJN (W a

s , Xs)ds+

∫ τ∧T

t
∂xJ

N (W a
s , Xs)dA

x∗
s

+

∫ τ∧T

t

[
W a
s θsσR,s∂wJ

N (W a
s , Xs) + σX,s∂xJ

N (W a
s , Xs)

]
dZs,

where DN,a is defined by (B.26) under control a. Now, repeat the arguments above, but also apply

JN (w, x) ≥ JP ((1− φ)w, x) from condition (i) to get

JN (Wt, Xt) ≥ sup
a∈ANt

E
[ ∫ τ

t
f(cs, J

N (W a
s , Xs))ds+ JP ((1− φ)W a

τ , Xτ ) | Ft
]
. (B.31)

On the other hand, consider the admissible control a = (c, τ) given by (B.21) and (B.28),

supposing (iv) is satisfied. Again, ∂wJ
N > 0 and ∂wwJ

N < 0 so that c attains the maximum in

(ii). Repeating the arguments above, we obtain

JN (Wt, Xt) = E
[ ∫ τ∧T

t
f(cs, J

N (W a
s , Xs))ds+ JN (W a

τ∧T , Xτ∧T ) | Ft
]
,
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since equality holds in condition (ii) for all t < τ . Taking the limit T → ∞ as before, and using

JN (W a
τ , Xτ ) = JP ((1− φ)W a

τ , Xτ ) from condition (i), we have

JN (Wt, Xt) = E
[ ∫ τ

t
f(cs, J

N (W a
s , Xs))ds+ JP ((1− φ)W a

τ , Xτ ) | Ft
]
.

Finally, we can use the form of JP in (B.25), our previous result (B.30), and the equation for the

entry cost (33) to get JP ((1 − φ)W a
τ , Xτ ) = (1 − φ)1−γJP (W a

τ , Xτ ) = (1 − φ)1−γV P
τ = V P

τ − Φτ .

Thus,

JN (Wt, Xt) = E
[ ∫ τ

t
f(cs, J

N (W a
s , Xs))ds+ V P

τ − Φτ | Ft
]
.

Combining with inequality (B.31), this shows that control a attains the maximum in ANt . Exactly

as before, the uniqueness of V N
t,b as a solution to (B.20) implies JN (Wt,b, Xt) = V N

t,b .

Remark B.1 (Verify conditions of Proposition B.2). To verify optimality of ct,b, θt,b, and τb in

(B.21), (B.22), and (B.28), it suffices to verify that the conditions of Proposition B.2 are satisfied

for any x∗ ∈ (0, 1). First, as proved in Proposition B.1, the SDE dXt = µX(Xt)dt+ σX(Xt)dZt +

dAx
∗
t indeed has a unique strong solution in equilibrium. Second, the homogeneity of problems

(B.19)-(B.20) imply V P (w, x) = w1−γ

1−γ gP (x)
ψ(1−γ)
1−ψ and V N (w, x) = w1−γ

1−γ gN (x)
ψ(1−γ)
1−ψ , so that (B.25)

is satisfied by V P and V N . Third, if there is a solution to the ODEs (B.12)-(B.13), subject to

boundary conditions (B.14)-(B.15) at x = x∗ and (B.23)-(B.24) at x = 1, then conditions (i), (ii),

and (iii) of Proposition B.2 are automatically satisfied, given the form of functions V P and V N .

Thus, I assume throughout that there exists a solution to this ODE system. Fourth, condition (iv)

is also satisfied: one can check that θ, σR, σX , and gi are bounded on [x∗, 1), so it suffices that the

functions g′i not explode too quickly at the boundaries, which is guaranteed by (B.15), (B.23), and

(B.24). Finally, transversality condition (v) is verified below in Lemma B.1.

Lemma B.1 (Transversality condition). For i ∈ {P,N},

lim
T→∞

E[V i(WT,b, XT ) | Ft] = 0.

Proof of Lemma B.1. Note that gP is positive and bounded, so there exists K > 0 such that
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gP (Xs)
−1 ≥ K. Under the optimal participant controls (c, θ), we have

+∞ > E
[ ∫ ∞

t

∣∣f(cs, V
P
s )
∣∣ds | Ft]

=
∣∣∣ 1

1− ψ

∣∣∣E[ ∫ ∞
t

∣∣∣c1−ψ
s [(1− γ)V P

s ]
ψ−γ
1−γ − (ρ+ π)(1− γ)V P

s

∣∣∣ds | Ft]
=
∣∣∣ 1

1− ψ

∣∣∣E[ ∫ ∞
t

∣∣∣gP (Xs)
−1gP (Xs)

ψ(1−γ)
1−ψ − (ρ+ π)g

ψ(1−γ)
1−ψ

∣∣∣W 1−γ
s ds | Ft

]
=
∣∣∣ 1− γ
1− ψ

∣∣∣E[ ∫ ∞
t

∣∣gP (Xs)
−1 − (ρ+ π)

∣∣∣∣V P
s

∣∣ds | Ft]
≥ max(|K − ρ− π|, ρ+ π)

∣∣∣ 1− γ
1− ψ

∣∣∣E[ ∫ ∞
t

∣∣V P
s

∣∣ds | Ft]
≥ (K + ρ+ π)

∣∣∣ 1− γ
1− ψ

∣∣∣ ∫ ∞
t

E[
∣∣V P
s

∣∣ | Ft]ds,
which implies E[V P

T | Ft]→ 0 as T →∞. An identical argument applies to V N .

B.3 Free-entry equilibrium

In this section, I examine properties of the free-entry equilibrium. These are the key results for

small costs φ. I prove these results in the context of the more general recursive utility model. One

can obtain the analogous log utility model results by taking limits γ, ψ → 1.

Proposition B.3. With φ = 0, the following is an equilibrium:

r∗ := ρ+ π(1− α) + ψ(µY + πα)− 1

2
γ(ψ + 1)σ2

Y

η∗ := γσY

σ∗R := σY

µ∗R := r∗ + σ∗Rη
∗

p∗ := (µ∗R − µY )−1.

In particular, Proposition B.3 shows that all formulas in Proposition B.1 apply, putting x =

1 and replacing p(Xt)/gN (Xt) with p(Xt)/gP (Xt) = 1, which is because newborns immediately

become participants.

Proof of Proposition B.3. With φ = 0, agents begin participating in risky asset markets at

birth. Thus, Xt ≡ 1 for all t. Consequently, all equilibrium objects are time-invariant and will be

denoted by the symbols in the time-varying case, with the addition of stars.

Applying Itô’s formula to stock returns, we obtain σ∗R = σY . Next, since all agents must choose

θt,b ≡ 1 in equilibrium, the first order condition for portfolio choice (which has no hedging demand

term) can be inverted to deliver η∗ = γσ∗R = γσY . The expected returns on the stock are simply

determined by the no-arbitrage condition η∗ = (σ∗R)−1(µ∗R − r∗). Stock returns have no singular
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component, even with continuous entry, since p∗ is constant (the singular component of returns was
p′(Xt)
p(Xt)

dAx
∗
t ). Use the Gordon growth formula to determine p∗. Finally, to determine the risk-free

rate, use the participants’ HJB equation, which is

0 = ψ +
[
− ρ− π + (1− ψ)

(
r∗ + απ +

1

2γ
(η∗)2

)]
g∗.

Stock market clearing, the Gordon growth formula for p∗, and the no-arbitrage condition for µ∗R
implies that

g∗ = p∗ = (µ∗R − µY )−1 = (r∗ + γσ2
Y − µY )−1.

Combining this equation with the HJB equation and solving for r∗ gives the result.

Proof of Proposition 5. Denote the wealth-consumption ratios of the participants and de-

viating non-participant by g∗ and g̃∗, and their expected lifetime utility by V ∗(w) and Ṽ ∗(w),

respectively. Using the HJB equations (B.12)-(B.13) and the fact that µX = σX = 0 we have

g∗ = ψ
[
ρ+ π + (ψ − 1)

(
r∗ + απ +

1

2γ
(η∗)2

)]−1
and V ∗(w) =

w1−γ

1− γ
(g∗)

ψ(1−γ)
1−ψ

g̃∗ = ψ
[
ρ+ π + (ψ − 1)(r∗ + απ)

]−1
and Ṽ ∗(w) =

w1−γ

1− γ
(g̃∗)

ψ(1−γ)
1−ψ .

Using V ∗(1− φ̃∗) = Ṽ ∗(1), we find

φ∗ ≥ φ̃∗ = 1−
( g̃∗
g∗

) ψ
1−ψ

,

which equals 0 if and only if η∗ = γσY ≡ 0, and is otherwise positive. To get the approximation

result in the statement of the proposition, expand φ̃∗ around σ2
Y = 0 and substitute the equilibrium

quantities from Proposition B.3.

B.4 Economy for asymptotically large entry costs

In this section, I consider what happens to the economy and the stationary distribution as entry

costs become infinitely large, i.e., φ→ 1. The main results are Lemmas B.2 and B.3.

As Lemma B.2 below shows, without entry, the economy has a singularity at x = 0. This is

typical of limited participation models without entry. For example, Lemma B.2 shows that the

market price of risk process η increases without bound as x approaches 0.

Lemma B.2. Let {φn}∞n=1 be a sequence of entry costs such that x∗n > 0 for all n, and such that

φn → 1 and consequently x∗n → 0 as n → ∞. Assume that (x∗n)2(1 − φn)
ψ−1
ψ → 0 as n → ∞.

Assume finally that (x∗n)2g′′P (x∗n+)→ 0 and x∗ng
′′
N (x∗n+)→ 0 as x∗n → 0. Then, for n large enough,
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the equilibrium is given approximately by

xη(x) = aη +O(x)

xr(x) = ar +O(x)

xµX(x) = aµ +O(x)

xσX(x) = O(x),

where aη > 0, ar < 0, and aµ > 0 are constants depending only on parameters.

Proof of Lemma B.2. Let φ and x∗ be arbitrary members of the sequence {φn, x∗n}∞n=1. Let x ∈
[x∗, κx∗] for some constant κ > 1. As we take x∗ → 0, we keep fixed the constant κ, so that x→ 0

as well. Under the stated assumption that such sequences exist such that (x∗n)2(1− φn)
ψ−1
ψ → 0 as

n→∞, we then have

x∗(x− x∗)(1− φ)
ψ−1
ψ = O(x∗).

Next, we approximate the equilibrium objects from Proposition B.1 at x = κx∗, for small x∗. To

do this, first note that

ω(x∗) = 1, ω′(x∗) = −(1− x∗)
g′′N (x∗)

gN (x∗)
, ζ(x∗) = 0, ζ ′(x∗) = (1− x∗)

g′′P (x∗)

gP (x∗)
,

x∗
p(x∗)

gN (x∗)
= x∗

[
x∗(1− φ)

ψ−1
ψ + 1− x∗

]
+O(x∗) = O(x∗),

x∗
p′(x∗)

gN (x∗)
(x− x∗) = x∗(x− x∗)

[
(1− φ)

ψ−1
ψ − 1

]
+O(x∗) = O(x∗).

Then, we obtain

η(κx∗) =
γσY
x∗

+ (1− x∗)
[(γ − ψ

1− ψ

)
σY

g′′P (x∗)

gP (x∗)
−
g′′N (x∗)

gN (x∗)

]
(κ− 1)x∗ +

O(x∗)

x∗
+O(x∗)

r(κx∗) = ρ+ ψµY + π(1− α) + ψπ +
1

2
(κ− 1)γ(ψ + 1)σ2

Y −
1

2

γ(ψ + 1)σ2
Y

x∗
+
O(x∗)

x∗

+ σ2
Y (1− x∗)

[γ(ψ + 1)

2

g′′N (x∗)

gN (x∗)
−
(γ − ψ

1− ψ

)g′′P (x∗)

gP (x∗)

]
(κ− 1)x∗ +O(x∗)

and

µX(κx∗) = −σ2
Y −

γ(ψ + 1)

ψ
σ2
Y

[κ
2

+ (κ− 1)(1− x∗)2(1− 2x∗)
g′′N (x∗)

gN (x∗)

]
+

1

2

γ(ψ + 1)

ψ

σ2
Y

x∗
+
O(x∗)

x∗

+ σ2
Y

[( γ − ψ
ψ(1− ψ)

)
(1− x∗)2 g

′′
P (x∗)

gP (x∗)
−
(γ(ψ + 1)

ψ
− 1
)(

1 + (1− x∗)2 g
′′
N (x∗)

gN (x∗)

)]
(κ− 1)x∗ +O(x∗)

σX(κx∗) = σY − σY
[
1 + (1− x∗)2 g

′′
N (x∗)

gN (x∗)

]
(κ− 1)x∗ +O(x∗).

Under the assumptions in the statement of the lemma, x∗g′′N (x∗) → 0 and (x∗)2g′′P (x∗) → 0 as
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x∗ → 0, so we have

x∗η(κx∗) = γσY +O(x∗)

x∗r(κx∗) = −1

2
γ(ψ + 1)σ2

Y +O(x∗)

x∗µX(κx∗) =
1

2ψ
γ(ψ + 1)σ2

Y +O(x∗)

x∗σX(κx∗) = O(x∗)

Since κ > 1 is arbitrary, and since x∗ and x converge to zero together (recall that x ∈ [x∗, κx∗]),

we may replace both x∗ and κx∗ with x, which completes the proof.

The important issue of long-run stationarity arises in this limiting economy. Although the OLG

environment implies that the measure of participants vanishes asymptotically without entry, their

wealth and consumption shares do not necessarily vanish. Intuitively, there are two forces: non-

participants tend to replace participants in the birth-death process, while an individual participants’

wealth expands faster than a non-participants’. The memoryless and independent death shocks

ensure that these two forces offset in some sense. Heuristically,

(near x = 1) lim
x↑1

σX(x) = 0 and lim
x↑1

µX(x) < 0

(near x = 0) lim
x↓0

σX(x) < +∞ and lim
x↓0

µX(x) = +∞.

The top two conditions are enough to ensure that Xt does not reach 1; the bottom two are essentially

enough to ensure that Xt does not reach 0, and they hold under parameter restrictions given below.

The reason for µX(0) = +∞ and σX(0) < +∞ is that risky assets become infinitely attractive as

participants’ wealth share dwindles, as demonstrated in Lemma B.2. The question of stationarity

is addressed formally in Lemma B.3, which gives an affirmative answer. In particular, Lemma B.3

implies that the complete segmentation model stays away from x = 0 with probability 1, i.e., entry

never occurs.

Lemma B.3. Let the assumptions of Lemma B.2 hold. If, in addition, γ > ψ
ψ+1 , then the limiting

economy with φ→ 1 is stationary in the sense that Xt never reaches 0 or 1, almost surely.

Proof of Lemma B.3. Let (xn, xn) be a sequence of intervals converging to (0, 1) as φn → 1,

in such a way that xn > 0 and xn < 1 for each n. Letting Tn := inf{t : Xt 6∈ (xn, xn)} and

T := limn→∞ Tn, we want to show that P{T = ∞} = 1. By Feller’s theory of explosions, cf.

Karatzas and Shreve (1991) Section 5.5.C, it suffices to show that v(0+) = v(1−) = +∞, where

the function v is defined by

v(x) :=

∫ x

c

∫ y

c
exp

(
− 2

∫ y

z

µX(u)

σ2
X(u)

du
) 1

σ2
X(z)

dzdy,

29



for some fixed c ∈ (0, 1).

For φn large enough, hence x∗n small enough, and for x near enough to x∗n, the analysis of

Lemma B.2 shows that Xt evolves approximately with

µX(x) = K +
aµ
x

+O(x)

σX(x) = aσ +O(x),

for constants K, aµ := 1
2ψγ(ψ + 1)σ2

Y , and aσ := σY . For x small enough, we can evaluate the

integrals in the definition of v using these approximate formulas for µX and σX . We obtain:

−
∫ y

z

µX(u)

σ2
X(u)

du = −
∫ y

z

K + aµu
−1 +O(u)

a2
σ +O(u)

du

= −
∫ y

z

K

a2
σ

du−
∫ y

z

aµ
a2
σu
du−

∫ y

z
O(u)du

= −K
a2
σ

(y − z)− aµ
a2
σ

(log y − log z)−O(y),

∫ y

c
exp

(
− 2

∫ y

z

µX(u)

σ2
X(u)

du
) 1

σ2
X(z)

dz =

∫ y

c
exp

(
− 2aµ

a2
σ

log(y/z) +O(y)
)( 1

a2
σ

+O(z)
)
dz

=

∫ y

c
(1 +O(y))

(y
z

)−2aµ/a2σ
( 1

a2
σ

+O(z)
)
dz

= y−2aµ/a2σ(a2
σ + 2aµ)−1

(
y1+2aµ/a2σ − c1+2aµ/a2σ

)
+O(y),

and

v(x) =

∫ x

c
y−2aµ/a2σ(a2

σ + 2aµ)−1
(
y1+2aµ/a2σ − c1+2aµ/a2σ

)
dy +O(x)

= −(a2
σ + 2aµ)−1c1+2aµ/a2σ

∫ x

c
y−2aµ/a2σdy +O(x)

= −(a2
σ + 2aµ)−1c1+2aµ/a2σ

(
1− 2aµ

a2
σ

)−1(
x1−2aµ/a2σ − c1−2aµ/a2σ

)
+O(x)

= O(1)− (a2
σ + 2aµ)−1

(
1− 2aµ

a2
σ

)−1
c1+2aµ/a2σx1−2aµ/a2σ .

If γ > ψ
ψ+1 , then

sgn
(

1− 2aµ
a2
σ

)
= sgn(ψ − γ(ψ + 1)) < 0.

As a result, v(x)→ +∞ as x→ 0.

Near 1, σX(x) = O(1− x) while µX(x) = −π(1− α) p(1−)
gN (1−) + O(1− x) < 0. Using these facts,
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it is easily verified that v(1−) = +∞. First,

exp
(
− 2

∫ y

z

µX(u)

σ2
X(u)

du
)
≥ 1,

and so

v(x) ≥
∫ x

c

∫ y

c

1

σ2
X(z)

dzdy

≥
∫ x

c

∫ y

c

1

(1− z)2
dzdy

=

∫ x

c

( 1

1− y
− 1

1− c

)
dy

= − log(1− x) + log(1− c)− x− c
1− c

,

which approaches +∞ as x→ 1.

B.5 Benefits of recursive preferences for asset pricing

In this section, we discuss the (quantitative) benefits of recursive Epstein-Zin preferences in the

model. The effects of this utility specification on asset prices are relatively well-understood in the

representative agent asset pricing literature, and several of those well-known features carry over

to this limited participation setting. In short, with recursive utility, the model can deliver (a) low

risk-free rates; (b) procyclical price-dividend ratios and counter-cyclical return volatility; and (c) a

large component of equity volatility which is unrelated to the risk-free rate. Below, I verify some of

these properties analytically (see Lemmas B.4 and B.5 below) as well as in numerical calculations.

To begin the discussion, I compare asset prices from Proposition B.1 to an identical economy

with CRRA preferences, that is setting γ = ψ. The results of this comparison are plotted in Figure

B.1.

First, notice that the risk-free rate is substantially lower under recursive utility, helping resolve

the risk-free rate puzzle. This resolution is primarily due to reducing the contribution of the “growth

term” ψ(µY + π + π(1− α) p(x)
gN (x)) in (B.17). Indeed, if the terms in parentheses are approximately

3%, then lowering ψ from ψ = γ = 3 to ψ = 3/4 reduces r by 7%, which explains the entire fall in

r from Figure B.1.

Second, with ψ < 1 (EIS > 1), the price-dividend ratio is procyclical, p′(x) > 0, meaning that

positive cash flow shocks translate to higher prices as we see in the data. For the same reason,

asset volatility is higher than fundamental volatility, σR > σY , and countercyclical, σ′R(x) < 0. The

reason for all these effects relates to the standard intuition that cash flow effects (income effects)

dominate discount rate effects (substitution effects) when the EIS is larger than 1. In particular,

when there is a negative shock to dividends, cash flows are permanently lower but discount rates

also fall. The discount rate effect comes from the fact that participant consumption falls now but is

31



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η
(x

)

0 0.2 0.4 0.6 0.8 1
0.02

0.04

0.06

0.08

0.1

0.12

r
(x

)

0 0.2 0.4 0.6 0.8 1
10

15

20

25

30

35

40

45

p
(x

)

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

1.1

1.2

1.3

σ
R
(x

)/
σ
Y

Figure B.1: Asset prices in the benchmark limited participation economy with recursive preferences
(blue: γ = 3 and ψ = 3/4) versus CRRA preferences (dashed red: γ = ψ = 3). Other parameters
given in Table 1. The horizontal axis is the participants’ consumption share x.

expected to rebound in the future; high participant consumption growth (thus low marginal utility

growth) implies low discount rates, as participants are the marginal risky asset pricers. The net

effect is to lower the price-dividend ratio if EIS is larger than 1 (and raise the price-dividend ratio if

the EIS is smaller than 1). Figure B.1 shows this result graphically, and Lemma B.4 demonstrates

it analytically, that this intuition carries through to limited participation models.

Lemma B.4. Suppose ψ < 1 (EIS > 1). Then, for all x close enough to x∗, σR(x) > σR(1) = σY .

Proof of Lemma B.4. First, note that

p′(x∗) = x∗g′P (x∗) + (1− x∗)g′N (x∗) + gP (x∗)− gN (x∗) = gP (x∗)
[
1− (1− φ)

1−ψ
ψ
]
,

which is strictly positive for ψ < 1. As a result, there exists δ1 > 0 such that p′(x) > 0 for

all x ∈ [x∗, x∗ + δ1). Similarly, since ω(x∗) = 1, there exists δ2 > 0 such that ω(x) > 0 for all

x ∈ [x∗, x∗ + δ2). Letting δ := δ1 ∧ δ2, we have

σR(x) = σY

[
1 + (1− x)ω(x)

p′(x)

p(x)

]
> σY = σR(1)

for all x ∈ [x∗, x∗ + δ).

Finally, expected returns on risky assets can be made substantially more volatile than riskless

returns In particular, one can pick utility parameters such that nearly all of the volatility of risk

premia comes from expected return variation rather than risk-free rate variation, matching the

data. In symbols, we have by Itô’s formula,

std[µR(x)− r(x)]

std[r(x)]
=
|η(x)σ′R(x) + η′(x)σR(x)|

|r′(x)|
. (B.32)
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We will show that the numerator of (B.32) dominates the denominator, implying high risk premium

volatility owes much more to expected risky asset returns than to risk-free rate variation.

With log utility, it’s the opposite: all variation in risk premia is due to variation in the riskless

rate, as in the model of Basak and Cuoco (1998), and (B.32) is equal to 1. With more general

CRRA utility, the result is quantitatively similar to 1 as well. Recursive preferences are needed:

the proof of Lemma B.5 below suggests that ψ < 1 and γ > 1 are requisite parameter choices to

generate the result.

Lemma B.5. Given φ small enough, there exist choices for the other parameters such that (B.32)

can be made arbitrarily large.

Proof of Lemma B.5. Approximating the equilibrium objects described in Proposition B.1 for

x near x∗, we obtain

η(x) = γσY +O(1− x∗)

σR(x) = σY +O(1− x∗)

η′(x) = −γσY +O(1− x∗)

σ′R(x) = σY
[
1− (1− φ)

1−ψ
ψ
]

+ σYO(1) +O(1− x∗)

r′(x) = ψπ(1− α)
[
1− (1− φ)

ψ−1
ψ
]

+
1

2
γ(ψ + 1)σ2

Y +O(1− x∗).

To derive these expressions, we have used the facts that

p(x∗) =
[
x∗(1− φ)

ψ−1
ψ + (1− x∗)

]
gN (x∗)

p′(x∗) =
[
(1− φ)

ψ−1
ψ − 1

]
gN (x∗)

(1− x∗)p′′(x∗) = (1− x∗)x∗g′′P (x∗) + (1− x∗)2g′′N (x∗),

as well as the result in Lemma B.6 below, which implies that (1 − x∗)p′′(x∗) converges to a finite

constant, possibly zero, as x∗ → 1 (this constant is denoted by O(1) above).

Next, observe that there exist parameters such that r′(x) = O(1− x∗), i.e., such that

ψπ(1− α)
[
1− (1− φ)

ψ−1
ψ
]

+
1

2
γ(ψ + 1)σ2

Y = 0.

Indeed, choosing ψ arbitrarily close to 0 makes the left-hand-side diverge to −∞, while choosing

ψ > 1 makes the left-hand-side positive. Choosing parameters in such a way, we find r′(x)→ 0 as

φ→ φ∗ := sup{φ : x∗(φ) = 1}. On the other hand,

η′(x)σR(x) + η(x)σ′R(x) = −γσ2
Y (1− φ)

1−ψ
ψ + γσ2

YO(1) +O(1− x∗),
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which converges to a non-zero constant as φ→ φ∗. Hence,

lim
φ→φ∗

|η(x)σ′R(x) + η′(x)σR(x)|
|r′(x)|

= +∞

under these parameter choices, proving the claim.

Lemma B.6. Let {φn}∞n=1 be any sequence converging to φ∗ := inf{φ : x∗(φ) = 1} such that

φn > φ∗ for all n, and let x∗n denote the corresponding equilibrium entry threshold. For any

xn ∈ [x∗n, 1], we have lim supn g
′′
i (xn)(1− xn) < +∞ for i ∈ {P,N}.

Proof of Lemma B.6. Let φn and x∗n be the entry cost and entry point, respectively. Approxi-

mating g′P (1)− g′N (1) by its value at point xn ∈ (x∗n, 1), then taking the limit xn → x∗n and using

the smooth-pasting conditions (B.15) results in

g′i(1) = g′′i (x∗n+)(1− x∗n) + o(1− x∗n), i ∈ {P,N}.

Because the boundary conditions (B.23) and (B.24) imply that g′i(1) is uniformly bounded (for any

φ and x∗), the result that g′′i (xn)(1− xn) converges uniformly is immediate.
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C Sentiments model

This appendix adds extrapolative beliefs to the economy. Section C.1 first establishes some general

preliminaries for how sentiments govern belief distortions and impacts other aspects of the economy.

Section C.2 then adds sentiments to the log utility economy. Section C.3 repeats the exercise for

the recursive utility economy. Section C.4 discusses the numerical solution method.

C.1 Preliminaries with sentiments

Recall the actual return process dRt = µR,tdt + σR,tdZt + dARt , where Z is a one-dimensional

Brownian motion and AR is a continuous, weakly increasing process (which only increases at times

of entry). Thus, µR,t is the true expected return. By contrast, equation (41) defines agents’

perceived expected return, restated here for convenience:

µ̃R,t = (1− λ)µR,t + λSt, (C.1)

where recall that sentiment St follows

dSt = β(dRt − Stdt). (C.2)

Equation (C.1) effectively defines agents misspecified beliefs. Based on the true and perceived

expected returns, define the actual and perceived Sharpe ratios

ηt :=
µR,t − rt
σR,t︸ ︷︷ ︸

actual Sharpe ratio

and η̃t :=
µ̃R,t − rt
σR,t︸ ︷︷ ︸

perceived Sharpe ratio

. (C.3)

By Girsanov’s theorem, in order to justify µ̃R,t as the “perceived expected return”, agents must

think of Z̃t as the driving Brownian motion, which in fact follows

dZ̃t := dZt +
(µR,t − µ̃R,t

σR,t

)
dt = dZt + (ηt − η̃t)dt. (C.4)

Indeed, substituting (C.4) into the return process gives dRt = µ̃R,tdt+ σR,tdZ̃t as desired.

The object ηt − η̃t serves as a change-of-measure from the true probability P to agents’ per-

ceived probability P̃. By Girsanov’s theorem, this change-of-measure only adjusts the drifts of each

stochastic process. In what follows, we will put tildes on all drifts to indicate drifts under the

perceived probability P̃. Mathematically, if M is any stochastic process adapted to Z—i.e., we can

write it as dMt = µM,tdt + σM,tdZt—then we will denote µ̃M as its perceived drift. Due to (C.4),

we have

µ̃M,t = µM,t + σM,t(η̃t − ηt). (C.5)
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The same formula holds if the dynamics of M are specified in geometric form, e.g., dMt =

Mt[µM,tdt + σM,tdZt]. We can use equation (C.5) to recover ex-post true drifts from their per-

ceived counterparts, or vice-versa. For example, aggregate output Y , which has true drift YtµY ,

possesses the following geometric drift under P̃:

µ̃Y,t := µY + σY (η̃t − ηt). (C.6)

In the remainder of this appendix, we will posit an equilibrium in the two state variables

(Xt, St). The state processes follow

dXt = µ̃X(Xt, St)dt+ σX(Xt, St)dZ̃t + dAXt (C.7)

dSt = µ̃S(Xt, St)dt+ σS(Xt, St)dZ̃t + dASt , (C.8)

where AX and AS are continuous, weakly increasing processes. These processes will increase only

when (Xt, St) 6∈ Ω, where the set Ω ⊂ (0, 1) × R corresponds to when entry is not occurring (Ω is

the relevant region for equilibrium, as the economy will spend zero measure of time outside of Ω).

We now derive a few formulas for returns that will apply to the rest of this appendix. First,

given that we need the true Sharpe ratio η in order to perform the change-of-drift in (C.5), we solve

for it here. By combining (C.3) with (C.1), we obtain

ηt = η̃t +
λ

1− λ

(
η̃t +

rt − St
σR,t

)
, λ 6= 1, (C.9)

where if λ = 1, we instead have the relation rt = St − σR,tη̃t.
Next, if pt = p(Xt, St) denotes the equilibrium price-dividend ratio, then the definition of

returns as dividend yield plus capital gains delivers dRt = 1
pt
dt + d(ptYt)

ptYt
. Using Itô’s formula to

write the capital gain term and matching the result to dRt = µ̃R,tdt+ σR,tdZ̃t + dARt delivers the

following relations

σR,t = σY +
( ∂
∂x

log pt

)
σX,t +

( ∂
∂s

log pt

)
σS,t (C.10)

dARt =
( ∂
∂x

log pt

)
dAXt +

( ∂
∂s

log pt

)
dASt . (C.11)

On the other hand, substituting dRt into equation (C.2), and then matching terms with (C.8), we

obtain

σS,t = βσR,t (C.12)

dASt = βdARt . (C.13)

Equations (C.10)-(C.11) and (C.12)-(C.13) specify a two-way feedback between (σR, dA
R) and
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(σS , dA
S). Solving this two-way feedback, we obtain

σR,t =
σY + σX,t

∂
∂x log pt

1− β ∂
∂s log pt

(C.14)

dARt =
∂
∂x log pt

1− β ∂
∂s log pt

dAXt (C.15)

We can substitute (C.14)-(C.15) back into (C.12)-(C.13) to obtain (σS , dA
S).

Finally, we may use (C.3) to write true and perceived expected returns in terms of the interest

rate and Sharpe ratio: µR = r + σRη and µ̃R = r + σRη̃. Given these formulas, we can obtain

µS = β(µR − s) and µ̃S = β(µ̃R − s) from (C.2). Given these results, along with (C.9) and (C.14),

it only remains to solve for (r, η̃, p).30

C.2 Extrapolative beliefs and log utility

Proof of Proposition 10. Posit an equilibrium in the two state variables (Xt, St), and assume

the entry boundary is given by x∗(St) for some function x∗(·) (i.e., entry occurs whenever Xt ≤
x∗(St)). Below, we show that x∗(·) is a constant function and denote its level by x∗.

Due to log utility, participants and non-participants with wealth levelWt achieve values V i(Wt, Xt, St) =

(ρ + π)−1 logWt + gi(Xt, St) for i ∈ {P,N}. HJB equations for gP and gN are derived similar to

the rational model, except under the probability measure induced by the extrapolative beliefs, P̃.

The HJB equation for participants is

0 = log(ρ+ π)− 1 + (ρ+ π)−1[απ + r +
1

2
η̃2]− (ρ+ π)gP

+ µ̃X
∂

∂x
gP + µ̃S

∂

∂s
gP +

1

2
σ2
X

∂2

∂x2
gP +

1

2
σ2
S

∂2

∂s2
gP + σXσS

∂2

∂x∂s
gP

and similarly for gN (with η̃ replaced by 0). As in the rational model, it suffices to consider

∆g := gP − gN , which solves

0 =
1

2
(ρ+ π)−1η̃2 +

[
µ̃X

∂

∂x
+ µ̃S

∂

∂s
+

1

2
σ2
X

∂2

∂x2
+

1

2
σ2
S

∂2

∂s2
+ σXσS

∂2

∂x∂s
− (ρ+ π)

]
∆g

subject to the value-matching and smooth-pasting conditions ∆g(x∗(s), s) = Φ and ∂
∂x∆g(x∗(s), s) =

∂
∂s∆g(x∗(s), s) = 0.

To solve for equilibrium objects, we use an identical procedure as in Proposition C.1. First,

since all agents’ consumption-wealth ratios equal ρ+π, the asset market clearing condition implies

the price-dividend ratio is constant, pt = (ρ+π)−1. From (C.10) and (C.12), we thus have σR = σY

and σS = βσY . Next, apply Itô’s formula to the definition of Xt and goods market clearing, noting

that participants’ consumption growth volatility is η̃, while it is 0 for non-participants. This yields

30If λ = 1, then we instead have already a formula for r and instead need to solve for (η, η̃, p).
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a system of equations in η̃, r, µ̃X , and σX , which is

µ̃Y = π(1− α)− π + x[r + απ − ρ− π + η̃2] + (1− x)[r + απ − ρ− π]

σY = xη̃

xµ̃Y + µ̃X + σY σX = x[r + απ − ρ− π − π + η̃2]

xσY + σX = xη̃.

Substitute µ̃Y = µY + λ
1−λ(s− r− σY η̃), which is (C.39) with σR = σY substituted, and then solve

the four equations to get

η̃ = σY /x

r = (1− λ)[ρ+ π + µY ] + λs− σ2
Y /x

σX = (1− x)σY

µ̃X = −π(1− α)x+ σ2
Y (1− x)2/x.

Next, we solve µ̃R = r + σRη̃ = (1 − λ)[ρ + π + µY ] + λs. Combined this with equation (C.1)

to solve for µR = ρ + π + µY . Hence, µS = β(ρ + π + µY − s). At this point, it is clear that

s = ρ + π + µY , since dSt is an Ornstein-Uhlenbeck process. Then substitute µR, r, and σR to

obtain η := µR−r
σR

. Lastly, no-arbitrage with extrapolative agents implies discounted returns—

discounted by the process dξt = −ξt[µξ,tdt + σξ,tdZ̃t]—must be local martingales under P̃, which

identifies µξ = r and σξ = η̃.

It remains to determine equilibrium entry, x∗(s). Substitute all equilibrium objects back into

the PDE for ∆g and observe that the only term depending on s is µ̃S = (1 − λ)β(s − s) (this is

obtained using (C.5) in conjunction with µS , η̃, and η). Guess ∂
∂s∆g ≡ 0 identically, so that ∆g

only depends on x. Thus, the PDE simplifies to an ODE, which shows that x∗(s) = x∗ constant

(if a solution exists). The ODE we need to solve to determine x∗ is

0 =
1

2
(ρ+ π)−1η̃2 − (ρ+ π)∆g + µ̃X∆g′ +

1

2
σ2
X∆g′′, ∆g(x∗) = Φ, ∆g′(x∗) = 0, (C.16)

where η̃ = σY
x , µ̃X = −π(1− α)x+ σ2

Y
(1−x)2

x , and σX = (1− x)σY . By inspection, this exactly the

same problem as (25), which implies that the entry point x∗ is independent of λ and β.

C.3 Extrapolative beliefs and recursive preferences

Proposition C.1. Assuming existence of a solution (gP , gN ) to the variational inequality (C.22)-

(C.23), there exists a stationary Markov equilibrium with sentiments, governed by (Xt, St).

Proof of Proposition C.1. As in the rational model with recursive preferences, due to the ho-

mogeneity properties of the utility function and budget constraints, participants and non-participants
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with wealth level Wt achieve values V i(Wt, Xt, St) = (1 − γ)W 1−γ
t gi(Xt, St)

ψ(1−γ)
1−ψ for i ∈ {P,N},

where functions gi correspond to agent’s wealth-consumption ratios. To save on notation, write the

process for these wealth-consumption ratios as

dgi(Xt, St) = gi(Xt, St)
[
µ̃gi(Xt, St)dt+ σgi(Xt, St)dZ̃t

]
, i ∈ {P,N}.

Due to Itô’s formula, we have the identities

µ̃gi =
1

gi

[
µ̃X

∂

∂x
gi + µ̃S

∂

∂s
gi +

1

2
σ2
X

∂2

∂x2
gi +

1

2
σ2
S

∂2

∂s2
gi + σXσS

∂2

∂x∂s
gi

]
(C.17)

σgi =
1

gi

[
σX

∂

∂x
gi + σS

∂

∂s
gi

]
. (C.18)

We derive HJB equations for gP and gN similarly to Appendix B.2, except under the perceived

probability P̃. We merely state the result here. Define the operators DN and DP by

Digi := ψ/gi − (ρ+ π) + (1− ψ)
[
r + απ +

1

2γ
η̃21{i=P}

]
+ ψ

1− γ
γ

σgi η̃1{i=P}

+ ψµ̃gi +
ψ

2

(ψ(1− γ)

1− ψ
− 1 +

ψ(1− γ)2

(1− ψ)γ
1{i=P}

)
σ2
gi . (C.19)

Due to (C.17)-(C.18), Di is a differential operator. Then, optimal behavior requires (where recall

Ω is the region of the state space where entry is not taking place)

(x, s) ∈ Ω : g
ψ

1−ψ
N − (1− φ)g

ψ
1−ψ
P > 0 and (1− ψ)−1DNgN = (1− ψ)−1DP gP = 0 (C.20)

(x, s) 6∈ Ω : g
ψ

1−ψ
N − (1− φ)g

ψ
1−ψ
P = 0 and (1− ψ)−1DNgN ≤ (1− ψ)−1DP gP = 0. (C.21)

The equations (C.20)-(C.21) can be compactly summarized by

min
{
g

ψ
1−ψ
N − (1− φ)g

ψ
1−ψ
P , (ψ − 1)−1DNgN

}
= 0 (C.22)

DP gP = 0. (C.23)

Along the way to deriving (C.22)-(C.23), we also obtain the optimal portfolios θN,t = 0 (by the

non-participation constraint) and

θP =
η̃

γσR
+
ψ(1− γ)

(1− ψ)γ

σgP
σR

. (C.24)

One can use straightforward arguments to extend Proposition B.2 to show that these conditions

characterize individual optimality; we omit this for brevity.

To solve for equilibrium objects, we use a similar procedure as in Proposition B.1 but under

P̃. First, since (gP , gN ) are wealth-consumption ratios, and since x represents the participant
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consumption share, the price-dividend ratio p(x, s) must satisfy (from combining asset market

clearing equations (13)-(14))

p(x, s) = xgP (x, s) + (1− x)gN (x, s). (C.25)

Since we are solving the equilibrium up to the functions (gP , gN ) and their derivatives, (C.25)

implies we may solve up to (gP , gN , p) and their derivatives.

Second, suppose the consumption dynamics of type i ∈ {P,N} agents can be written

dci,t
ci,t

= µ̃ci,tdt+ σci,tdZ̃t + dAcit .

Apply Itô’s formula to the definition of Xt and goods market clearing, then match terms to obtain

the following equations:

µ̃Y = π(1− α)p/gN − π + xµ̃cP + (1− x)µ̃cN (C.26)

σY = xσcP + (1− x)σcN (C.27)

xµ̃Y + µ̃X + σY σX = xµ̃cP − xπ (C.28)

xσY + σX = xσcP . (C.29)

To replace (µ̃ci , σci), we obtain consumption dynamics as follows. Letting Wi denote the wealth of

a type i ∈ {P,N} agent, Itô’s formula gives the dynamics of ci = Wi/gi as

dci,t
ci,t

=
dWi,t

Wi,t
− dgi,t

gi,t
+
d[gi]t
g2
i,t

− d[Wi, gi]t
Wi,tgi,t

(C.30)

=
[
rt + απ − g−1

i,t + θi,tσR,t(η̃t − σgi,t)− µ̃gi,t + σ2
gi,t︸ ︷︷ ︸

=µ̃ci,t

]
dt+ (θi,tσR,t − σgi,t)︸ ︷︷ ︸

=σci,t

dZ̃t + dARt .

I will solve (C.26)-(C.29) for (σX , η̃, r, µ̃X), taking as given (gP , gN , p) and their derivatives.

First consider equations (C.27) and (C.29). Substituting (C.30), then using (C.18), we have

σY = x[θPσR − σgP ]− (1− x)σgN (C.31)

xσY + σX = x[θPσR − σgP ]. (C.32)

Combining (C.31) with (C.32) to eliminate θPσR − σgP , then using (C.18) to substitute σgN , then

using (C.14) in (C.12) to plug σS , and finally rearranging, we obtain

σX =
(1− x)(1 + βζ ∂

∂s log gN )

1− (1− x)[ ∂∂x log gN + βζ( ∂∂s log gN )( ∂
∂x log p)]

σY , (C.33)
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where

ζ :=
(
1− β ∂

∂s
log p

)−1

Given the solution for σX , we now have solutions to σR and σS from (C.14) and (C.12). Conse-

quently, armed with both σX and σS , we have solutions for both σgP and σgN in (C.18). Thus,

substituting θP from (C.24) into (C.31), we obtain

η̃ =
γ

x

[
σY + xσgP + (1− x)σgN

]
+
ψ(γ − 1)

1− ψ
σgP . (C.34)

Now consider equations (C.26) and (C.28). Substituting (µ̃cP , µ̃cN ) from (C.30), the system of

equations becomes

µ̃Y = π(1− α)(p/gN − 1) + r + x
[
− g−1

P + θPσR(η̃ − σgP )− µ̃gP + σ2
gP

]
(C.35)

+ (1− x)
[
− g−1

N + θNσR(η̃ − σgN )− µ̃gN + σ2
gN

]
xµ̃Y + µ̃X + σY σX = x

[
r + απ − π − g−1

P + θPσR(η̃ − σgP )− µ̃gP + σ2
gP

]
. (C.36)

To solve equations (C.35)-(C.36), we need formulas for (µ̃gP , µ̃gN ). These formulas come from

setting DNgN = 0 and DP gP = 0, which recall is valid when entry is not taking place (i.e.,

DNgN = DP gP = 0 holds on Ω; see equation (C.20)). The results are

µ̃gP = −1/gP +
ρ+ π

ψ
+
ψ − 1

ψ
(r + απ +

1

2γ
η̃2) +

γ − 1

γ
σgP η̃ −

1

2

(ψ(1− γ)

γ(1− ψ)
− 1
)
σ2
gP

(C.37)

µ̃gN = −1/gN +
ρ+ π

ψ
+
ψ − 1

ψ
(r + απ)− 1

2

(ψ(1− γ)

1− ψ
− 1
)
σ2
gN
. (C.38)

Let us solve equation (C.35). We treat the cases λ 6= 1 and λ = 1 separately. If λ 6= 1, then by

combining (C.6) and (C.9), we obtain

µ̃Y = µY + σY
λ

1− λ

(s− r
σR

− η̃
)
, λ 6= 1. (C.39)

Into (C.35), substitute (C.37)-(C.38)-(C.39) and portfolio choices (θN , θP ), then rearrange to obtain

r =
( λσYσR

(1− λ)ψ−1 + λσYσR

)
[s− σRη̃] +

( (1− λ)ψ−1

(1− λ)ψ−1 + λσYσR

)[
ρ+ π(1− α)(1− ψ p

gN
) + ψ(π + µY )

− ψx

2

(1 + ψ

γψ
η̃2 +

(
1− ψ(1− γ)

γ(1− ψ)

)
σ2
gP
− 2
(

1− ψ(1− γ)

γ(1− ψ)

)
η̃σgP

)
− ψ(1− x)

2

(ψ(1− γ)

1− ψ
+ 1
)
σ2
gN

]
, λ 6= 1. (C.40)

With r in hand, we can also compute µ̃Y from (C.39) and η from (C.9).

On the other hand, if λ = 1, equation (C.9) implies r = s−σRη̃. Given r, we view (C.35)—after
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combining with (C.37)-(C.38)—as an equation for µ̃Y . Given µ̃Y , we can compute η by rearranging

equation (C.6) to obtain η = η̃ + µY −µ̃Y
σY

. Note that the equilibrium solution for r from (C.40) is

thus continuous as λ→ 1 (hence, the rest of the equilibrium too).

Finally, in either case (λ 6= 1 or λ = 1), rearrange (C.36) to get

µ̃X = −σY σX − xµ̃Y + x
[
r + απ − π − g−1

P + θPσR(η̃ − σgP )− µ̃gP + σ2
gP

]
. (C.41)

This completes the derivation of equilibrium, since all other equilibrium objects can be obtained

using the results in Appendix C.1.

C.4 Numerical method with sentiments

In the baseline version of the model, where Xt is the only state variable, I use the matlab package

“bvp4c” to solve the boundary value problem characterizing equilibrium. This package projects

the solution onto Chebyshev polynomials and works well in one dimension.

In the model with sentiments, as well as the extension with a fixed cost in Appendix D.1, a

second state variable arises in agents’ optimization problems. To solve this type of problem (e.g.,

the variational inequality (C.22)-(C.23)), I use a finite difference scheme augmented with a false

transient (fake time derivative). I provide a brief verbal description of the solution algorithm, with

details available in the numerical code.

The participant PDE (C.23) is solved using a standard iterative implicit finite difference scheme

as in Achdou et al. (2020). This scheme first treats any nonlinear terms as known functions of the

state (using the previous time-iteration’s value functions), and uses “upwinding” of the first-order

derivative terms. Because sentiment and the consumption share are correlated, there are cross-

derivatives in (C.23), which technically breaks the sufficient conditions for the scheme’s convergence

(i.e., the “monotonicity” property of Barles and Souganidis (1991)). However, in practice, I find

that the scheme converges. The boundary conditions used are reflecting at high and low values of s,

reflecting at the lower boundary x ≈ 0 (because entry occurs at that point for sure), and “natural”

at the upper boundary x ≈ 1 (because the drift µX < 0 while σX → 0 as x→ 1). In sum, taking a

time-step in the implicit scheme involves solving a system of linear equations.

The non-participant PDE (C.22) is complicated by the entry decision. In this case, taking a

time-step in the implicit scheme cannot be done by solving a system of linear equations. However,

it turns out that, after treating nonlinear terms as known from the previous time-iteration, taking

a time-step in (C.22) is equivalent to solving a “linear complementarity problem” (LCP). I use

standard code to solve this problem at each time-step.

To test this scheme, I apply it to the log utility model, which has a quasi-analytical solution

even with sentiments (see Proposition 10). I also test the same methodology on the various one-

dimensional models (e.g., the baseline model with recursive utility but without sentiments). In all

cases, I find that the numerical described above converges to the correct solution.
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D Other extensions

This section presents some robustness exercises. Section D.1 discusses and solves another formu-

lation of entry costs that are not homogeneous in wealth. Section D.2 discusses and solves an

extension with labor income. Section D.3 discusses other types of preferences (heterogeneous risk

aversion; heterogeneous EIS; and hyperbolic discounting).

D.1 Fixed non-homogeneous entry cost

In this section, we consider a different formulation of entry costs that are not a fixed proportion of

wealth. We take the other extreme and assume entry costs are completely independent of individual

wealth. Such non-homogeneous fixed costs have been emphasized in the household finance literature

(Campbell, 2006) to achieve consistency with two important stock market non-participation facts:

(i) wealthier households tend to participate and poorer households do not; (ii) participation tends

to be procyclical. In the context of intermediation, it also makes some sense that setup and market

research costs would have a component which is largely size-independent. While the purpose of

this section is to show that our baseline results are robust to deviating from proportional entry

costs, such an extension with non-homogeneous entry costs is analytically and computationally

non-trivial. We develop a detailed solution method below, and then present the results.

Consider an entry cost of the form

Φ̃t(w) := −(ρ+ π)−1 log
[(

1− φPt
w

)+]
, φ ∈ (0, 1), (D.1)

where w is the individual’s wealth and Pt is the aggregate wealth (stock market value). For an

individual of average wealth (w = Pt), note Φ̃t(Pt) = −(ρ+π)−1 log(1−φ). This is identical to the

proportional cost specification Φ (perceived as φ fraction of wealth) used in the baseline model (see

equation (6)). For comparison purposes, I have intentionally specified this new fixed cost function

so that the individual of average wealth perceives the same cost as in the proportional cost baseline.

But with a fixed cost specification, entry incentives depend on financial wealth levels. For

an individual of below average wealth (w < Pt), the cost is perceived as something greater than φ

fraction of wealth. For an individual with very low wealth (w ≤ φPt), entry is perceived as infinitely

costly (Φ̃t = +∞). Finally, for a very wealthy individual (w → +∞), entry is perceived as costless

(Φ̃t → 0).

Boundedly-rational beliefs. Given the discussion above, non-participant entry decisions (and

thus also their consumption decisions) will be non-homogeneous in their wealth. Because of this

feature, the full cross-sectional distribution becomes an aggregate state variable, leading to infinite-

dimensional optimization problems for our agents. To circumvent this complexity, we assume a form

of “bounded rationality” a la Krusell and Smith (1998): suppose agents attempt to summarize

aggregate dynamics by a single state variable. As in our baseline model, assume that agents use
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participants’ consumption share Xt as the relevant aggregate state variable. Dynamics of Xt are

given by

dXt = µX,tdt+ σX,tdZt,

for some µX and σX to be determined. (Note the absence of a singularly continuous term here, as

it will turn out that entry will occur at the dt order in this extension.) Conditioning solely on Xt

will be flawed, as many equilibrium objects will now depend on more than just Xt; we will allow

this dependence in deriving equilibrium but agents will suboptimally ignore it.

Bounded rationality means agents perceive asset prices and state dynamics (rt, pt, ηt, σR,t, µX,t, σX,t)

as governed solely byXt, and we write their approximating functions (r̂(x), p̂(x), η̂(x), σ̂R(x), µ̂X(x), σ̂X(x)).

Agents will use the latter objects in decision-making. At the end of this subsection, we will describe

how agents observe data and design the fitted values (objects with hats), but for now just note

that it will be a type of regression procedure.31

Participant optimality. Because they are unconstrained and have log utility, participants make

similar portfolio and consumption decisions as in the baseline model (i.e., with log utility, they

display the familiar “myopic” behavior and ignore the dynamics of aggregate states). For this

reason, we may actually continue to assume participants are fully rational (i.e., we do not need

them to approximate equilibrium dynamics solely with Xt in order to solve their optimization

problem).32 One can use standard martingale techniques for unconstrained log utility investors to

find that participants consume ρ+π fraction of their wealth and hold exposure ηt to the aggregate

shock. Under these policies, optimal participant consumption dynamics are

dct,b = ct,b
[
µcP ,tdt+ σcP ,tdZt

]
, b ∈ Pt (D.2)

where µcP ,t := rt − ρ− π + απ + η2
t

σcP ,t := ηt.

These are the true consumption dynamics; perceived consumption dynamics simply replace (rt, ηt)

by (r̂t, η̂t).

31In continuous time Brownian models, this type of bounded rationality procedure delivers a distorted
expectation Ê which is mutually singular to the true expectation E (i.e., the change-of-measure cannot be
justified via Girsanov’s theorem). For example, our derivation below shows that the diffusion σX will depend
on more than Xt, whereas the perceived diffusion σ̂X only depends on Xt (to use Girsanov’s theorem, these
diffusions must agree). That being said, our numerical results will show that σ̂X ≈ σX , so we view this as a
minor issue. Relatedly, the riskless bond return cannot be misestimated under an equivalent distorted belief,
and technically these agents will misestimate it; however, we will show numerically that r̂ ≈ r in equilibrium.
We leave for future research the task of formalizing the present type of bounded-rationality procedure as a
Girsanov change-of-measure.

32An additional advantage of this strategy is that the risk price ηt will show up directly in participants’
consumption growth volatility, as opposed to their perceived risk price η̂t. As a result, market clearing will
pin down ηt rather than the belief η̂t, which is inconsistent with algorithms like Krusell and Smith (1998),
in which beliefs are specified prior to imposing market clearing.

44



To later solve the non-participants’ entry problem, it is important to calculate the participant

utility under the approximate beliefs Ê. Under these beliefs, a participant with time-t wealth w

obtains indirect utility

V P
t (w) := Êt

[ ∫ ∞
t

e−(ρ+π)(s−t) log(cs,b)ds
]

= Êt
[ ∫ ∞

t
e−(ρ+π)(s−t)

(
log(ρ+ π) + log(w) +

∫ s

t
[απ − ρ− π + r̂u +

1

2
η̂2
u]du+

∫ s

t
η̂udZu

)
ds
]

= (ρ+ π)−1 log(w) + (ρ+ π)−1 log(ρ+ π) + Êt
[ ∫ ∞

t
e−(ρ+π)(s−t)

∫ s

t
[απ − ρ− π + r̂u +

1

2
η̂2
u]duds

]
:= (ρ+ π)−1 log(w) + ĝP,t,

where the last line defines ĝP,t as a stochastic process independent of individual behavior. In

principle, this process can depend arbitrarily on aggregate states, but under the approximate beliefs,

it will be solely a function of Xt, i.e., ĝP,t = ĝP (Xt). In summary, we still have for participants the

additively separable characterization of the value function V P
t (w) = (ρ+ π)−1 log(w) + ĝP (Xt).

Given the distorted belief, we can solve for the function ĝP via the differential equation (HJB

equation)

0 = D̂P ĝP , (D.3)

where the differential operator D̂P is defined on functions of x by (given r̂, η̂, µ̂X , and σ̂X)

D̂P g := −(ρ+ π)g + log(ρ+ π)− 1 + (ρ+ π)−1[r̂ + απ +
1

2
η̂2] + µ̂X

∂

∂x
g +

1

2
σ̂2
X

∂2

∂x2
g.

This is the same HJB equation as in the baseline model, but with prices and state dynamics

approximated to be functions of Xt only.

Non-participant approximate optimality. Non-participants’ problem is significantly compli-

cated by the combination of their constraints and non-homogeneous entry cost in (D.1). In par-

ticular, non-participants’ problem becomes inhomogeneous in wealth, and we can no longer write

their value function as V N
t (w) = (ρ+ π)−1 log(w) + gN,t for a process gN,t independent of wealth.

This failure precludes several of the convenient properties of the baseline model.

What matters for decisions is not only does the level of an individual non-participant’s wealth,

but also the ratio of his wealth to some aggregate. We use the following wealth-to-income ratio to

capture this relative wealth:

ωt,b :=
Wt,b

Yt
, b ≤ t. (D.4)

In addition to aggregate states, the non-participant value function will depend on both wealth w

and wealth-to-aggregate-income ω, and we write this as V N
t (w,ω). It turns out that ω is a conve-
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nient choice for the second individual state variable, as it allows us to obtain the characterization

V N
t (w,ω) = (ρ + π)−1 log(w) + ĝN,t(ω) for some function ĝN,t(ω) independent of wealth w (once

accounting for relative wealth ω). Under bounded rationality, this latter term will only depend on

relative wealth and participants’ consumption share; i.e., ĝN,t(ω) = ĝN (ω,Xt). For the future, we

derive the dynamics of ω for non-participants. Recall that dWt,b = Wt,b[rt + απ − ct,b/Wt,b]dt and

dYt = Yt[µY dt+ σY dZt], so that

dωt,b = ωt,b

[
rt + απ − µY −

ct,b
Wt,b

+ σ2
Y

]
dt− ωt,bσY dZt, b ∈ Nt. (D.5)

The HJB equation for a non-participant with time-t wealth w and wealth-to-income ω is

log(w) + (ρ+ π)ĝN = max
c

log(c) + (ρ+ π)−1[r̂ + απ − c

w
] + ω[r̂ + απ − µY −

c

w
+ σ2

Y ]
∂

∂ω
ĝN

+ µ̂X
∂

∂x
ĝN +

1

2
σ̂2
X

∂2

∂x2
ĝN + σωσ̂X

∂2

∂x∂ω
ĝN +

1

2
σ2
ω

∂2

∂ω2
ĝN , (D.6)

where σω(ω) := −ωσY is the diffusion of individual level ω. Importantly, the HJB equation (D.6)

is written under the non-participant beliefs. Optimal consumption is thus given by c = (ρ +

π)m(ω, x)w, where

m(ω, x) :=
1

1 + (ρ+ π)ω ∂
∂ω ĝN (ω, x)

. (D.7)

Note in passing that, following the same steps as for participants above, we can substitute this

consumption rule into the definition of V N
t to verify our conjectured form, in particular that ĝN is

indeed independent of wealth w. After substituting m into the HJB above, we obtain

(ρ+ π)ĝN = log(ρ+ π) + log(m) + (ρ+ π)−1[r̂ + απ]−m+ ω[r̂ + απ − µY − (ρ+ π)m+ σ2
Y ]

∂

∂ω
ĝN

+ µ̂X
∂

∂x
ĝN +

1

2
σ̂2
X

∂2

∂x2
ĝN + σωσ̂X

∂2

∂x∂ω
ĝN +

1

2
σ2
ω

∂2

∂ω2
ĝN .

These equations hold when a non-participant delays entry and chooses to remain a non-participant.

Finally, when a non-participant decides to enter at some time T , we have the value-matching

condition V N
T (w) = V P

T (w) − Φ̃T (w). Substituting the entry cost from (D.1), the definition of ω

from (D.4), and the various bounded rationality approximations, this condition can be written

ĝN (ω, x) = ĝP (x) + (ρ+ π)−1 log
[(

1− φp̂(x)

ω

)+]
. (D.8)

Before entry, ĝN (ω, x) > ĝP (x)+(ρ+π)−1 log[(1−φ p̂(x)
ω )+], implying entry occurs when ω ≥ ω∗(x)

for some function ω∗. We can thus summarize the non-participant decision problem as solving the
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variational inequality

0 = min
{
− D̂N ĝN , ĝN − ĝP − (ρ+ π)−1 log

[(
1− φ p̂

ω

)+]}
, (D.9)

where the differential operator D̂N is defined on functions of ω and x by (given r̂, µ̂X , and σ̂X)

D̂Ng := −(ρ+ π)g + log(ρ+ π)− log
(

1 + (ρ+ π)ω
∂

∂ω
g
)

+ (ρ+ π)−1[r̂ + απ]−
(

1 + (ρ+ π)ω
∂

∂ω
g
)−1

+ ω
[
r̂ + απ − µY −

ρ+ π

1 + (ρ+ π)ω ∂
∂ωg

+ σ2
Y

] ∂
∂ω

g + µ̂X
∂

∂x
g +

1

2
σ̂2
X

∂2

∂x2
g + σωσ̂X

∂2

∂x∂ω
g +

1

2
σ2
ω

∂2

∂ω2
g.

Equilibrium. We derive the equilibrium similarly to the baseline model, but the expressions will

be substantially more complicated, given non-participant consumption and entry decisions depend

on their ω. To characterize equilibrium, we will thus need the distribution of non-participant wealth,

i.e., ft(ω) that satisfies the following expression for any function ϕ in an appropriate function space

(see Definition E.1 in Appendix E below):∫ ∞
0

ϕ(ω,Xt)ft(ω)dω =
1

(1−Xt)Yt

∫
Nt
πe−π(t−b)ct,bϕ(ωt,b, Xt)db. (D.10)

We take as given knowledge of ft(ω) for now. In fact, as part of equilibrium, ft will satisfy a

stochastic PDE, derived in Proposition E.1 below. We also introduce the notation Mt(ϕ) :=∫
ϕt(ω)ft(ω)dω to denote the time-t cross-sectional average (among non-participants) of ϕt.

First, combining optimal consumption policies with asset market clearing, we obtain

ptYt = (ρ+ π)−1
[
XtYt +

∫
Nt
πe−π(t−b) ct,b

m(ωt,b, Xt)
db
]
.

Using equation (D.10), we can then obtain an equation for the price-dividend ratio

pt = (ρ+ π)−1
[
Xt + (1−Xt)Mt(

1

m
)
]
. (D.11)

It is clear that pt depends not only on Xt, but also on the entire density ft, as foreshadowed earlier.

Second, given pt and all the other equilibrium objects (which we solve for below), we may

compute σR by applying the infinite-dimensional version of Itô’s formula to pt = p(Xt, ft). To

do this, note that L[h] :=
∫∞

0
1

m(ω,x)h(ω)dω defines a linear operator L, which thus has Fréchet

derivative L′ = L. Using this facts, and the evolution of ft(ω) derived in Proposition E.1, we have

σR,t = σY + σX,t
∂

∂x
log pt + (ρ+ π)−1p−1

t (1−Xt)Mt(
σf
m

)

= (ρ+ π)−1p−1
t [XtσY + σX,t]. (D.12)

The result on the second line is derived after tedious algebra. Given solutions for (σR, r, η), the
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latter two of which are derived below, we obtain µR,t = rt + σR,tηt from no-arbitrage.

Next, given non-participants consume ct,b = (ρ+ π)m(ωt,b, Xt)Wt,b, we have the following form

for consumption dynamics for non-participants (these are the true consumption dynamics):

dct,b = ct,b
[
µcN ,t(ωt,b)dt+ σcN ,t(ωt,b)dZt

]
, b ∈ Nt (D.13)

µcN ,t(ω) := rt + απ − (ρ+ π)m(ω,Xt)

+
1

m(ω,Xt)

[
µX,t

∂

∂x
+ µω,t(ω)

∂

∂ω
+

1

2
σ2
X,t

∂2

∂x2
+

1

2
σω(ω)2 ∂2

∂ω2
+ σX,tσω(ω)

∂2

∂x∂ω

]
m(ω,Xt)

σcN ,t(ω) :=
1

m(ω,Xt)

[
σX,t

∂

∂x
+ σω(ω)

∂

∂ω

]
m(ω,Xt),

where

µω,t(ω) := ω[rt + απ − µY − (ρ+ π)m(ω,Xt) + σ2
Y ]

σω(ω) := −ωσY .

We already derived the participant consumption dynamics in (D.2). Exactly as in the baseline

model, time-differentiate goods market clearing Yt =
∫ t
−∞ πe

−π(t−b)ct,bdb and the definition Xt :=

Y −1
t

∫
Pt πe

−π(t−b)ct,bdb to obtain the following four equations:

σY = XtσcP ,t + (1−Xt)Mt(σcN ) (D.14)

XtσY + σX,t = XtσcP ,t (D.15)

µY = −π + π(ρ+ π)ωt,tmt,t +XtµcP ,t + (1−Xt)Mt(µcN ) (D.16)

XtµY + µX,t + σY σX,t = XtµcP ,t −Xtπ + (1−Xt)nt, (D.17)

where newborns enter with relative wealth ωt,t := (1−α)pt, where mt,t := 1{ωt,t<ω∗(Xt)}m(ωt,t, Xt)+

1{ωt,t≥ω∗(Xt)} denotes the newborns’ scaled consumption-wealth ratio depending on whether they

enter as non-participants or participants, and where (1 − Xt)ntdt represents the change in Xt

exclusively due to expansions in Pt (i.e., entry by non-participants). In the proof of Proposition

E.1, we showed that (see equation (E.7) and use g ≡ 1 and the boundary condition (E.6))

nt = −1

2

[
σω(ω∗(Xt))

2 +
(
σX,t

∂

∂x
ω∗(Xt)

)2] ∂
∂ω

ft(ω)
∣∣∣
ω=ω∗(Xt)

. (D.18)

Using the above results, and taking ft and the functions m and ω∗ as given, equations (D.14)-(D.17)
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become four equations in the four unknowns (rt, ηt, µX,t, σX,t), which we can solve to obtain

σX,t =
(1−Xt)[σY −Mt(σω

∂
∂ω logm)]

1 + (1−Xt)Mt(
∂
∂x logm)

(D.19)

ηt = σY +
σX,t
Xt

(D.20)

rt =
(

1 + (1−Xt)(Mt[Xt

∂
∂xm

m
] +Mt[ω

∂
∂ωm

m
])
)−1

(D.21)

×
(
µY + (1− α)π − π(ρ+ π)ωt,tmt,t + (ρ+ π)(Xt + (1−Xt)Mt[m])−Xtη

2
t − (1−Xt)Mt[q]

)
µX,t = (1−Xt)nt −Xtπ +Xt

[
rt + απ − ρ− π − µY + η2

t

]
− σY σX,t, (D.22)

where

qt(ω) := ω
[
απ − µY + σ2

Y − (ρ+ π)m(ω,Xt)
] ∂
∂ωm(ω,Xt)

m(ω,Xt)

+
[
(1−Xt)nt −Xtπ +Xt(απ − ρ− π − µY + η2

t )− σY σX,t
] ∂
∂xm(ω,Xt)

m(ω,Xt)

+
1

2

1

m(ω,Xt)

[
σ2
X,t

∂2

∂x2
+ σω(ω)2 ∂2

∂ω2
+ 2σX,tσω(ω)

∂2

∂x∂ω

]
m(ω,Xt).

Thus, we have solved for (rt, ηt, pt, µX,t, σX,t) explicitly, given beliefs, knowledge of ft and Xt, and

the policy functions m and ω∗.

Fixed point for beliefs and equilibrium. It remains to form agents’ boundedly rational beliefs,

namely to project all relevant functions into the space of functions depending only on x. This is

similar to Krusell and Smith (1998), except that our asset pricing objects (r, η, p) are not solely

functions of x (they depend on the distribution f), so they must undergo a projection.

The iterative procedure to obtain approximate beliefs and solve for a boundedly rational equi-

librium is as follows:

0. Initial guess: Start with guesses (r̂(0), p̂(0), µ̂
(0)
X , σ̂

(0)
X )—solely functions of participants’ con-

sumption share Xt. Although later iterations of these objects will belong to a particular class

of functions (e.g., polynomials), it is not necessary that these initial guesses belong to the

same class.

1. Participant value: Using projections (r̂(i), η̂(i), µ̂
(i)
X , σ̂

(i)
X ) in place of (r̂, η̂, µ̂X , σ̂X), obtain

ĝ
(i)
P by solving the approximate participant HJB equation (D.3). The result will be solely a

function of x.

2. Non-participant value: Given projections (ĝ
(i)
P , r̂(i), µ̂

(i)
X , σ̂

(i)
X ), obtain ĝ

(i)
N by solving vari-

ational inequality (D.9). The result will be solely a function of ω and x.
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3. Policy functions: obtain the consumption-wealth ratio m(i) via (D.7); obtain entry thresh-

old (ω∗)(i) via the solution to (D.9), i.e., (ω∗)(i) := inf{ω : equation (D.8) holds with ĝ
(i)
N , ĝ

(i)
P , and p̂(i) }.

4. Simulate: Using the calculated objects from iteration (i), simulate time-paths for (Xt)t∈[0,T ],

(ft)t∈[0,T ], and (rt, ηt, pt, µX,t, σX,t)t∈[0,T ] using equations (D.11), (D.19)-(D.22), and Proposi-

tion E.1, as well as a simulation scheme (e.g., first-order Euler). Burn the first τ length of time

from the simulations, chosen large enough such that the remaining paths are approximately

drawn from the ergodic distribution.

5. Project: For each time-path (zt)t∈[τ,T ] ∈ {rt, ηt, pt, µX,t, σX,t : t ∈ [τ, T ]}, obtain an approx-

imating function ẑ ∈ {r̂(i+1), η̂(i+1), p̂(i+1), µ̂
(i+1)
X , σ̂

(i+1)
X } by running a univariate nonlinear

regression as follows

min
ẑ∈Z

1

T − τ

∫ T

τ

(
zt − ẑ(Xt)

)2
dt, (D.23)

where Z is a class of functions (e.g., polynomials in x; step functions on an x-grid does “non-

parametric regression”). We impose certain boundary conditions when selecting the function

class Z, which is necessary to preserve global well-posedness of the optimization problems.

In particular, we impose that as x → 1, the economy (and thus beliefs) converges to the

complete-integration economy. At the other boundary, we impose asymptotic conditions

that are known to hold in the proportional cost economy. Mathematically,

r̂(1) = µY + ρ+ π − σ2
Y and lim

x→0
xr̂(x) = constant

η̂(1) = σY and lim
x→0

xη̂(x) = constant

µ̂X(1) = −(1− α)π and lim
x→0

xµ̂X(x) = constant

σ̂X(1) = 0 and σ̂X(0) = σY

p̂(1) = (ρ+ π)−1 and p̂(0) = constant.

For σ̂X , we also make sure it always takes strictly positive values by imposing it be at least

0.001. In forming the updated projections of these objects, we dampen the updating by

taking a weighted average of the old estimates and new estimates, e.g., we set η̂(i+1) as a

weighted average of η̂(i) and the solution to (D.23).

6. Iterate: Stop if the new and old estimates are close, i.e., if (r̂(i+1), η̂(i+1), p̂(i+1), µ̂
(i+1)
X , σ̂

(i+1)
X )

is close to (r̂(i), η̂(i), p̂(i), µ̂
(i)
X , σ̂

(i)
X ) in some metric.

Along the way to solving the model, we obtain a measure of fitness in step 5 (e.g., R-squared)

for each equilibrium object and each iteration. Krusell and Smith (1998) includes an additional

layer, whereby more moments from the cross-sectional distribution are added (and the space Z
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is expanded to functions with a higher-dimensional domain), if the goodness-of-fit in step 5 is

inadequate.

Results. First, just to get a sense of how optimal behavior works in this model, Figure D.1 plots

a comparison of the proportional and fixed cost economies, both with φ = 0.4. There is non-trivial

dependence of the non-participant value function on their wealth-to-income ratio ω. Higher ω is

beneficial to non-participants, but much more so if participants’ consumption share x is low, which

is when risk prices are particularly high. Relatedly, the “net entry benefit,” defined as ĝP − ĝN − Φ̃

depends non-trivially on both ω and x. To see it a different way, Figure D.2 plots the wealth-to-

income entry threshold ω∗(x) (plotted relative to the perceived price-dividend ratio p̂(x) so that

the threshold is interpreted as “how many times richer than average is the marginal entrant”).

Figure D.1: A comparison of the proportional cost economy to the fixed cost economy, with entry
parameter φ = 0.4 in both. The value functions in the top row are ĝP and ĝN . All other parameters
are as in Table 1.

The resulting equilibrium objects are plotted in Figure D.3. The blue dots are outcomes of

a simulation, whereas the red lines are their projections into the space of functions of Xt. In

particular, we fit the simulated data, suitably adjusted so that boundary conditions in step 5 above

are automatically satisfied, to quadratic functions of Xt. For instance, if (Xt, ηt)t≥0 are simulated

data, we first fit the quadratic function â(Xt) := â0 + â1Xt + â2X
2
t to (ηt − σY ) Xt

1−Xt , which

ensures that η̂(x) := σY + 1−x
x â(x) satisfies the appropriate boundary conditions. As in Krusell

and Smith (1998), we can compute the R-squared from the projection, and we obtain the following

for the fitting of r̂, η̂, µ̂X , σ̂X , and p̂, respectively: 0.9887, 0.9993, 0.9526, 0.9378, and 0.9401.

Note in particular how tight the fit of η̂ is, a result which can also be seen in Figure D.3. This is
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Figure D.2: Entry threshold in the fixed cost economy, in units of multiples of the average perceived
wealth, i.e., ω∗/p̂ is the wealth of the marginal entrant relative to the average perceived wealth.
The grid for the model solution is truncated at ω = 10(ρ+ π)−1, which is why the entry threshold
becomes flat at high values of x. For comparison, the vertical dotted line is the entry threshold
from the proportional cost economy. Both economies have entry parameter φ = 0.4. All other
parameters are as in Table 1.

reassuring, given entry benefits depend particularly strongly on ηt, an intuition we made exact in

the proportional cost model through formula (29).

Figure D.3: Equilibrium objects (blue dots, from a 5000 year simulation) and their fitted perceived
values (red lines) in the fixed cost economy. The entry cost parameter is φ = 0.4. For comparison,
the black dotted line plots the equilibrium objects in the proportional cost economy with the same
φ. All other parameters are as in Table 1.

For comparison, the dotted black lines in Figure D.3 represent the equilibrium objects from

the corresponding proportional cost economy (i.e., with the same φ = 0.4). Notice that risk prices
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ηt are slightly lower with fixed costs, and the dynamics of Xt are less volatile (lower σX,t) and

less conducive to reaching bad states (i.e., µX,t is higher for low Xt than in the proportional cost

economy). Although slightly tangential to the main arguments of this paper, note also that fixed

entry costs induce some counterfactual behavior in the price-dividend ratio and return volatility

(in particular, pt becomes countercyclical, σR,t becomes procyclical, and σR,t is reduced relative to

the proportional cost economy).

D.2 Labor income

In this paper, all income is capital income. In reality, approximately two-thirds of income is labor

income. What would happen to asset price dynamics in the model if agents also receive labor

income endowments? For simplicity, and to focus on the relevant issues, we proceed under the

assumption that labor income is perfectly correlated with capital income (i.e., it is only subject to

the aggregate shock dZt and carries no idiosyncratic risk).

In the model with labor income, each newborn born at time b is endowed with no financial

income, but they receive a labor tree that pays the stream {(1− α̃)Yt}t∈[b,T ], where T is the agent’s

random time of death. The total labor income in the economy is thus a fraction 1− α̃ of aggregate

output. The stock market is a claim to the residual {α̃Yt}, i.e., capital accounts for α̃ fraction of

total income.

In addition, we assume as in Blanchard (1985) and Gârleanu and Panageas (2015) that all

agents have full access to actuarily-fair annuity markets for insurance against their Poisson death

shocks—our baseline model limits the degree of participation in these annuity markets to a fraction

α of wealth, so that 1 − α fraction of dying wealth is redistributed as “unintended bequests” to

newborns.

Next, we consider two cases: (1) full pledgeability of labor income and (2) non-pledgeability.

Obviously, reality is somewhere in between these two cases, as there exist markets to borrow against

labor income, but these markets are imperfect due to financial frictions and ethical issues.

Full pledgeability. First, I prove Lemma 1, which says that my baseline setup is essentially

equivalent to a setting with labor income, if the labor income is pledgeable.

Proof of Lemma 1. Because the tree is risky, and because agents are risk-averse, all newborns

will use this opportunity to sell the entirety of their tree. Indeed, they receive a fair market price,

namely participants’ willingness-to-pay; this value is always higher than non-participants’ shadow

valuation of their own labor income, because participants can hedge labor income risks and non-

participants cannot. Thus, after selling their tree, a time-t newborn begins life with (1 − α̃)Yt`t

units of financial wealth, where

`t := Et
[ ∫ ∞

0
e−πs

ξt+s
ξt

Yt+s
Yt

ds
]

(D.24)
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is a scaled measure of human wealth-income, which is computed using participants’ marginal utility

ξt (i.e., the stochastic discount factor for the economy). As in the baseline model, the financial

wealth received by non-participants must be held in riskless bonds until the participation cost is

paid. Non-participants will still consume ρ+π fraction of this financial wealth, but they receive flow

payments of π for their annuities, meaning an individual non-participant’s consumption dynamics

are

dcN,t = cN,t[rt − ρ]dt.

Newborn consumption equals (ρ+ π)(1− α̃)Yt`t.

Given the discussion above, participants hold, in addition to their own financial wealth, all

claims to (alive) human wealth in the economy, whose total value is `tYt at time t. Nevertheless,

the participant optimization problem remains the same, as they face dynamically complete markets:

because participants have unconstrained access to both the stock market and the market for this

human capital, and since both values respond to the same shock dZt, participants can effectively

pick their exposure to dZt in an unconstrained fashion, earning the risk price ηt, as in the baseline

model. Consequently, participants will consume a fraction ρ+π of their “total wealth” (sum of their

financial capital and the human capital they have purchased), and their consumption dynamics are

dcP,t = cP,t[rt − ρ+ η2
t ]dt+ cP,tηtdZt.

Given these consumption policies, the price-dividend ratio p for financial capital is determined via

α̃pt + (1− α̃)`t = (ρ+ π)−1. (D.25)

In the baseline model without labor, we had pt = (ρ + π)−1; any level or cyclicality modifications

to pt are inherited oppositely by `t.

Because the participant consumption share Xt remains the sole state variable, we follow a

similar procedure as in the baseline model to determine endogenous objects r, η, µX , and σX . The

solutions η = σY /x and σX = (1 − x)σY remain the same as in Proposition 1, independent of α̃.

By contrast, r and µX are now given by

r = ρ+ π + µY − π(1− α̃)(ρ+ π)`−
σ2
Y

x

µX = −xπ(1− α̃)(ρ+ π)`+
(1− x)2

x
σ2
Y .

Comparing to the expressions in Proposition 1, we see that µX will remain unchanged if and only

if

(1− α̃)(ρ+ π)`t = 1− α. (D.26)

The only remaining object needed for equilibrium is the human wealth-income ratio `t. Standard
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arguments can be used to obtain an ODE for `t = `(Xt), i.e., at times of non-entry we have

0 = 1 + [µY − ησY − π − r]`+ [µX − (η − σY )σX ]`′ +
1

2
σ2
X`
′′. (D.27)

Conjecture a constant solution `t = ¯̀. Setting `′ = `′′ = 0 and plugging in r and η, we then obtain

the quadratic equation

0 = 1− [ρ+ 2π]¯̀+ π(1− α̃)(ρ+ π)¯̀2,

which has the two roots

¯̀± :=
1

2π(1− α̃)(ρ+ π)

[
ρ+ 2π ±

√
(ρ+ 2π)2 − 4π(1− α̃)(ρ+ π)

]
. (D.28)

One can show that pt > `t is required in equilibrium (because the cash flows of capital have an

infinite horizon, unlike labor income that disappears at rate π). One can also show that ¯̀
+ >

(ρ + π)−1 > ¯̀− (if and only if α̃ < 1). Thus, equation (D.25) implies the smaller root ¯̀− must be

chosen. This proves that a unique constant solution `t = ¯̀− satisfies equilibrium.

Substituting ¯̀− back into the condition (D.26), we find that we must set α according to (35).

If we make this choice, then (η, µX , σX) are identical, as functions of Xt, in the baseline model and

the present model with labor income. Furthermore, following identical logic as in Proposition 3,

non-participant entry decisions are determined solely by the participation cost φ and the dynamics

of ηt (i.e., the riskless rate rt plays no role). Thus, the entry barrier x∗ remains identical. This

proves that risk price time-paths {ηt} are isomorphic between the two models, under the parameter

choice (35). Similarly, given an initial condition X0, the time-paths of {Xt} are identical between

the two models. Finally, substituting condition (35) into the expression for rt and comparing to

Proposition 1, we see that the riskless rate rt is lower by the constant level (1−α)π in the present

labor income model, relative to the baseline model.

Non-pledgeability. Solving the model with non-pledgeable human capital is substantially more

complicated, because non-participant consumption will not only depend on total wealth, but

also the split between financial and human wealth. As this ratio is heterogeneous across non-

participants, the entire distribution of non-participant financial wealth-to-income ratios becomes

an aggregate state variable. The solution is even more complicated than the infinite-dimensional

equilibrium of Appendix D.1, because the non-participant optimization problem is not separable in

financial wealth and labor income. Instead of tackling this problem directly, we study a simplified

partial equilibrium environment that nevertheless allows some comparisons to the baseline model.

In particular, we suppose asset prices are given by their full-integration benchmark (in which

markets are complete). We will also allow agents to have recursive utility with risk aversion γ and

EIS ψ−1, as in Appendix B. In this environment, we will compute measures of willingness-to-pay

(to enter) of a hypothetical non-participant. We will also compute the entry willingness-to-pay of
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a hypothetical non-participant who additionally has pledgeable labor income. By comparing these

cases, we will get a sense of how non-pledgeability of labor income affects entry incentives.

By Proposition 1 of Gârleanu and Panageas (2015), equilibrium of our full-integration economy

satisfies

r = ρ+ ψ(µY + π)− ψπ(1− α̃)
ψ−1ρ+ π + (1− ψ−1)(r + γ

2σ
2
Y )

r + π − µY + γσ2
Y

− 1

2
γ(ψ + 1)σ2

Y

η = γσY .

The equation for r is a quadratic equation, and we must select the larger of the two roots so that

aggregate wealth is well-defined. Indeed, we can immediately calculate (using the Gordon growth

formula)

` = (r + π − µY + σY η)−1

p = (r − µY + σY η)−1,

where the labor valuation ` is defined in (D.24). Thus, the riskless rate is

r =
1

2

[
B +

(
B2 − 4π(1− α̃)(ρ+ ψπ +

γ

2
(ψ − 1)σ2

Y ) + 4r∗(π + γσ2
Y − µY )

)1/2]
where B := r∗ − π − γσ2

Y + µY + π(1− α̃)(ψ − 1)

and r∗ := ρ+ ψ(µY + π)− γ

2
(ψ + 1)σ2

Y

Next, consider participants’ optimization problem, which is unaffected by the non-tradability

of their labor endowment, because of their access to complete financial markets. Indeed, we only

need to use “total wealth” (sum of financial plus human wealth)

W̃t,b := Wt,b + (1− α̃)`Yt,

in place financial wealth as the relevant individual state variable. Omitting the details (one can also

see the Appendix A of Gârleanu and Panageas (2015)), a participant with total wealth w̃ obtains

indirect utility

V P (w̃) =
(A(η)w̃)1−γ

1− γ
,

where A(η) := ψ
− ψ
ψ−1

[
ρ+ π + (ψ − 1)(r + π +

1

2

η2

γ
)
] ψ
ψ−1

.

We explicitly write the dependence of A on η because a hypothetical non-participant will obtain

indirect utility that depends on A(0).

To solve a hypothetical non-participant’s optimization problem, we follow the analysis of Wang,

Wang, and Yang (2016). Define the financial wealth-to-labor-income ratio ωt := Wt/(1−α̃)Yt, which
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will be the relevant state variable. Recall the financial wealth of this non-participant evolves as

dWt = [Wt(r + π)− ct + (1− α̃)Yt]dt, W0 = 0.

Thus, the dynamics of ωt are given by

dωt =
[
ωt(r + π − µY + σ2

Y )− ct
(1− α̃)Yt

+ 1
]
dt− ωtσY dZt, ω0 = 0.

Following Wang, Wang, and Yang (2016), we assume a borrowing constraint Wt ≥ 0 for all t, which

implies ωt ≥ 0. As shown in Proposition 2 of Wang, Wang, and Yang (2016), the value function of

this agent then satisfies

V N (Yt, ωt) =
(A(0)(1− α̃)Ytq(ωt))

1−γ

1− γ
,

where the function q is a measure of “certainty equivalent wealth” and solves the following ODE:

0 =
(
− (A(0)q′)1−ψ−1 − ψ−1(ρ+ π)

1− ψ−1
+ µY −

γ

2
σ2
Y

)
q + [1 + ω(r + π − µY + γσ2

Y )]q′ +
1

2
(ωσY )2

[
q′′ − γ (q′)2

q

]
subject to the boundary conditions limω→∞ q

′(ω) = 1 and A(0)ψ−1q(0)ψ ≤ q′(0). The latter bound-

ary condition binds if and only if the borrowing constraint ever binds, since the consumption-to-

income ratio is A(0)1−ψ−1
q(ω)q′(ω)−ψ

−1
. For the parameters we use below, the borrowing constraint

never binds, so instead we may simply use as a boundary condition the ODE itself in the limit as

ω → 0 (i.e., the “natural boundary” condition). Finally, note that we can also write the participant

value function V P in the same form as V N , which facilitates comparison:

V P (Yt, ωt) =
(A(η)(1− α̃)Ytq

∗(ωt))
1−γ

1− γ
,

where q∗(ω) := ω + `.

Figure D.4 plots a comparison of participants to the hypothetical non-participant in this envi-

ronment. Note that non-participants have a concave consumption function (middle panel), although

the concavity is very mild given labor income risk σY = 0.04 is small. Notice that participants’

marginal value of wealth (right panel) is greater than one, not because of any financial friction, but

because they are uniquely able to earn the Sharpe ratio η > 0.

Figure D.5 plots a non-participant’s willingness-to-pay (WTP) to become a participant. The

WTP is defined in various ways: as a fraction of financial wealth; as a fraction of total wealth;

and as a fraction of aggregate total wealth. It is straightforward to show that these are correctly
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Figure D.4: Equilibrium objects in the non-pledgeable labor income economy. Non-participants
(blue lines) cannot hedge labor income shocks. Participants (dashed black lines) can hedge shocks,
and they additionally receive/pay risk price η when trading this shock. Risk aversion and EIS are
set to γ = 3 and ψ−1 = 4/3. The labor share is set to 1− α̃ = 2/3. All other parameters are as in
Table 1.
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Figure D.5: The willingness-to-pay of a non-participant to become a participant in the full-
integration economy outlined above. Left panel: the non-participant has non-pledgeable labor
income. Right panel: the non-participant has pledgeable labor income. Risk aversion and EIS are
set to γ = 3 and ψ−1 = 4/3. The labor share is set to 1− α̃ = 2/3. All other parameters are as in
Table 1.

defined as functions e(ω) that satisfy

(fraction of financial wealth): V N (Y, ω) = V P (Y, (1− e(ω))ω)

(fraction of total wealth): V N (Y, ω) = V P ((1− e(ω))Y, ω)

(fraction of aggregate total wealth): V N (Y, ω) = V P (Y, ω − α̃p+ (1− α̃)`

1− α̃
e(ω))
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For comparison, we also compute the same WTP measures but for a hypothetical non-participant

whose labor income is pledgeable, as in the baseline model. Figure D.5 shows that WTPs are uni-

formly higher with non-pledgeable labor income, as compared to pledgeable income. Surprisingly,

at low levels of ω, a non-participant with pledgeable income would actually need to be paid to

participate: this finding arises because poor non-participants are using financial markets to hedge

their labor income, and entry implies they will have to pay a non-zero Sharpe ratio η to continue

performing this hedge. At high values of ω, where hedging becomes relatively unimportant, the

WTP measures converge. Overall, this comparison suggests that non-pledgeability of labor income

would raise implied participation costs, if anything.

D.3 Other preference constellations

Heterogeneous risk aversion. Gârleanu and Panageas (2015)—which features OLG, recursive

preferences, and heterogeneity in γ—showed that heterogeneous risk aversion can potentially help

resolve multiple aggregate asset price puzzles. For example, with negative shocks, less risk-averse

agents (who are levered) lose wealth faster than more risk-averse agents. As they liquidate some

of their risky asset position, more risk-averse agents have to buy, which generates amplification in

the risk price dynamics.

With limited participation and an entry mechanism, their results are not likely carry over to this

model. Indeed, the dominant effect of risk aversion heterogeneity is for risk-tolerant agents to select

into financial markets, while risk-averse agents stay out. First, this selection depresses risk prices

on average. Second, because the more risk-averse agents choose not to participate, they do not

buy the liquidated positions of risk-tolerant agents in bad times, shutting down any amplification

of risk price dynamics.

To formalize this conjecture, I consider a single agent whose risk aversion is γ̂ 6= γ. Define e(x)

to be non-participants’ willingness-to-pay function, which says how much wealth non-participants

are willing to give up in order to participate forever after in risky asset markets. The function

e(x) solves the equation V P (1 − e(x), x) = V N (1, x). By computing e(x; γ̂) and e(x; γ) for non-

participants with risk aversions γ̂ and γ, respectively, we can understand how much stronger the

entry incentives are for less risk-averse agents. The result of this analysis, displayed in the left panel

of Figure D.6, shows that e(x; γ̂) > e(x; γ) for γ̂ < γ, and vice versa for γ̂ > γ, as conjectured.

Intuitively, for γ̂ < γ, the γ̂-agent finds risk prices very attractive, as they are an equilibrium

outcome from an economy full of γ-agents.

Heterogeneous elasticity of intertemporal substitution. Guvenen (2009) builds a model

with exogenous limited participation in which the EIS of participants exceeds the EIS of non-

participants and shows how these two features interact to generate large risk prices and risk price

dynamics. Bondholders exogenously have a low EIS, meaning they want to save in good times

and borrow in bad times. The fact that stockholders have a larger EIS means they are willing to
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Figure D.6: Left panel: Functions e(x; γ̂) and e(x; γ) are entry willingnesses-to-pay, as a fraction
of wealth, for two agents with risk aversions γ̂ and γ, living in an economy populated by γ-agents.
Right panel: Functions e(x; ψ̂) and e(x;ψ) are entry willingnesses-to-pay, as a fraction of wealth,
for two agents with EIS ψ̂−1 and ψ−1, living in an economy populated by ψ-agents.

tolerate this resulting larger consumption volatility over time, which amplifies risk prices and their

dynamics.

With endogenous participation through entry, this channel survives only if the high EIS agents

are more willing to participate. The right panel of Figure D.6 repeats the analysis from the left

panel by constructing willingness-to-pay functions e(x;ψ) and e(x; ψ̂) for ψ̂ 6= ψ. Indeed, the higher

EIS agents prefers to enter risky asset markets sooner than the lower EIS agents.

An agent with high EIS (low ψ̂) living in an economy full of low EIS individuals finds the

volatility of risky assets to be low, and she is willing to take a levered position in such an asset

to achieve a tolerable level of consumption growth volatility. This force induces earlier entry by

the ψ̂-agent. This analysis suggests that heterogeneity in EIS is a promising ingredient in limited

participation models, even with entry.

Hyperbolic discounting. Hyperbolic discounting, under which agents display present bias and

procrastinating behavior, could mitigate entry incentives and thus increase risk concentration. The

idea is that agents excessively discount the large lifetime benefit from holding risky assets that pay

substantial premia, so they are less likely to enter. In order to get an cursory understanding of how

hyperbolic discounting might affect the results, consider using ρ = 0.3 as opposed to 0.01, keeping

all other parameters fixed as in Table 1. With this adjustment, the estimate of φ∗ in (30) becomes

1% of wealth, rather than 10% of wealth. Since hyperbolic discounting has a modest effect on risk

attitudes, we don’t expect such a model to imply very different risk prices (Luttmer and Mariotti,

2003). If, in addition, we hold the interest rate fixed, this back-of-the-envelope calculation suggests

that hyperbolic discounting can dramatically lower participation incentives and thus induce more

risk concentration.
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E Dynamics of the cross-sectional distribution of wealth

Some of the extensions we consider (e.g., fixed entry costs) do not possess the same homogene-

ity properties as the baseline model. Consequently, the equilibria of these extensions cannot be

summarized by the aggregate consumption share of participants (a scalar state variable). Instead,

these equilibria depend on the entire cross-sectional distribution of wealth. This appendix develops

analytical formulae for the dynamics of this distribution, formulae which will apply to all exten-

sions of interest. These formulae are analogous to the Kolmogorov Forward equation, but with the

addition of aggregate shocks. Thus, instead of a partial differential equation (PDE), the result will

be a stochastic partial differential equation (SPDE).

Define the ratio of cohort-level wealth to aggregate income:

ωt,b :=
Wt,b

Yt
, b ≤ t. (E.1)

As before, agents are identical within a cohort, so ωt,b can be thought of as an individual level

variable. Because participants are unconstrained, their policies are homogeneous in their wealth,

and ω plays no role for them. As in the baseline model, participants can be aggregated into a

representative participant. By contrast, non-participants decisions (consumption and entry) will

depend non-trivially on their individual wealth-to-income ω.

The key assumption we make is that non-participant decisions can be written as functions

of individual wealth-to-income ω and a finite set of aggregate states. In a rational expectations

equilibrium, the full set of aggregate states would include the full cross-sectional distribution of

ωt,b, because decisions depend non-trivially on ω. This distribution is an infinite dimensional

object, which precludes a numerical solution. For the purposes of this paper, we follow the spirit

of Krusell and Smith (1998) and take a finite set of “moments” of the distribution as summary

statistics; this can be understood as a kind of “bounded rationality.”

Furthermore, in our computations and the analysis below, we will specialize the finite set of

moments to a single moment (although the analysis is very easily generalized to any finite number

of moments). For this purpose, we continue to let Xt denote the participant consumption share,

which is assumed to have Itô dynamics

dXt = µX,tdt+ σX,tdZt.

(Note the absence of a singularly continuous term here, as it will turn out that entry will occur at the

dt order in the relevant extensions where the full distribution of wealth matters.) Going forward,

we will use Xt as the aggregate state variable agents use in approximating their more complex

environment.33 Nevertheless, even though agents will be performing this dimension-reduction,

33This is similar to the first moment used by Krusell and Smith (1998), for the following reason. Note that
XtYt represents aggregate participant consumption, so that (1−Xt)Yt represents aggregate non-participant
consumption. As in the baseline model, all equilibrium objects will either scale with Yt or remain independent
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many equilibrium objects will depend on more than just Xt. To compute such an equilibrium, we

require dynamics equations for the entire distribution of wealth-to-income.

Now, we proceed more formally. In particular, let m(ω, x) denote the (scaled) non-participant

consumption-to-wealth ratio, i.e.,

m(ωt,b, Xt) := (ρ+ π)−1 ct,b
Wt,b

. (E.2)

In the baseline version of the model, we had m ≡ 1. Additionally, let ω∗(x) denote the non-

participant entry threshold: non-participants with ωt,b ≥ ω∗(Xt) pay the entry cost to become

participants; those with ωt,b < ω∗(Xt) remain non-participants. Thus, the indicator function

e(ω,Xt) := 1{ω≥ω∗(Xt)} represents entry decisions.

Given any policy function g(ω, x) of this form, and a cross-sectional density ft(ω) of non-

participant wealth-to-income ratios, we compute non-participant aggregates as∫ ∞
0

g(ω,Xt)ft(ω)dω =
1

(1−Xt)Yt

∫
Nt
πe−π(t−b)ct,bg(ωt,b, Xt)db, (E.3)

where recall Nt denotes the set of non-participants. Note that the density ft is required to integrate

to one, i.e.,
∫∞

0 ft(ω)dω = 1. Similarly, on the right-hand-side, the expression πe−π(t−b) ct,b
(1−Xt)Yt

integrates to one, making it also a density. Therefore, equation (E.3) is an equality between two

cross-sectional expected values; the particular type of integral appearing on the right-hand-side

recurs repeatedly in derivation of equilibrium, which is why we seek a density satisfying (E.3). In

fact, equation (E.3) serves as the definition of ft, since it needs to hold for every policy function g

in an appropriate space of functions. For our purposes, the following space suffices.

Definition E.1. The space G consists of functions g : R+× (0, 1) 7→ R that are twice continuously

differentiable and have compact support.

To derive the appropriate dynamic equation, we will time-differentiate (E.3), giving the following

result.

Proposition E.1. Assume equation (E.3) holds for almost all t and for each function g ∈ G.

Assume that non-participant policies depend only on aggregate states through Xt; furthermore,

assume the non-participant consumption-wealth ratio m ∈ G, and assume ω∗ is twice continuously

differentiable. Then, the density ft(ω) satisfies the following stochastic partial differential equation

of Yt, so Xt can be thought of as capturing the first moment of the consumption distribution.
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on ω < ω∗(Xt), subject to ft(ω) = 0 for all ω ≥ ω∗(Xt):

dft(ω) = µf,t(ω)dt+ σf,t(ω)dZt, where

µf,t(ω) :=
[
− π +

µX,t
1−Xt

− µY +
σX,tσY
1−Xt

+
σ2
X,t

(1−Xt)2
+ σ2

Y + µcN ,t(ω) +
( σX,t

1−Xt
− σY

)
σcN ,t(ω)

]
ft(ω)

− ∂

∂ω

[(
µω,t(ω) +

( σX,t
1−Xt

− σY + σcN ,t(ω)
)
σω,t(ω)

)
ft(ω)

]
+

1

2

∂2

∂ω2
[σω,t(ω)2ft(ω)]

+
π(ρ+ π)ωt,tm(ωt,t, Xt)

1−Xt
Diracωt,t(ω)

σf,t(ω) :=
( σX,t

1−Xt
− σY + σcN ,t(ω)

)
ft(ω)− ∂

∂ω
[σω,t(ω)ft(ω)],

where (µcN , σcN ) denote the geometric drift and diffusion of non-participant consumption (reported

in (E.5)), where (µω, σω) denote the drift and diffusion of non-participant wealth-to-income ratios

(reported in (E.4)), and where Diracωt,t(ω) is the Dirac delta function at the time-t newborn level

of wealth-to-income, ωt,t.

Proof of Proposition E.1. Before obtaining the results, we state some preliminaries. First,

recall the dynamics of Wt,b and Yt are

dWt,b = Wt,b

[
rt + απ − (ρ+ π)m(ωt,b, Xt)

]
dt, Wt,t given

dYt = Yt
[
µY dt+ σY dZt

]
.

By Itô’s formula, we obtain the dynamics of the wealth-to-income ratio:

dωt,b = µω,t(ωt,b)dt+ σω,t(ωt,b)dZt, ωt,t given, where (E.4)

µω,t(ω) := ω
[
rt + απ − µY − (ρ+ π)m(ω,Xt) + σ2

Y

]
σω,t(ω) := −ωσY .

Next, given g ∈ G (see Definition E.1), we have the following useful evolution equation:

dg(ωt,b, Xt) = µg,t(ωt,b)dt+ σg,t(ωt,b)dZt

µg,t(ω) :=
[
µX,t

∂

∂x
+ µω,t(ω)

∂

∂ω
+

1

2
σ2
X,t

∂2

∂x2
+

1

2
σω,t(ω)2 ∂2

∂ω2
+ σX,tσω,t(ω)

∂2

∂x∂ω

]
g(ω,Xt)

σg,t(ω) :=
[
σX,t

∂

∂x
+ σω,t(ω)

∂

∂ω

]
g(ω,Xt).

The dynamics of ct,b can also be obtained via Itô’s formula on ct,b = (ρ+π)m(ωt,b, Xt)Wt,b, assuming

that m ∈ G as well. In particular, if µm,t(ω) and σm,t(ω) are the drift and diffusion coefficients of
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m, analogously to g above, then

dct,b = ct,b
[
µcN ,t(ωt,b)dt+ σcN ,t(ωt,b)dZt

]
, where (E.5)

µcN ,t(ω) := rt + απ − (ρ+ π)m(ω,Xt) +
µm,t(ω)

m(ω,Xt)

σcN ,t(ω) :=
σm,t(ω)

m(ω,Xt)
.

Finally, note that the optimal entry policy e(ω, x) = 1{ω≥ω∗(x)}, substituted into (E.3), implies the

boundary condition

ft(ω
∗(Xt)) = 0. (E.6)

Consequently, all integrals of the form
∫∞

0 g(ω,Xt)ft(ω)dω can be truncated as
∫ ω∗(Xt)

0 g(ω,Xt)ft(ω)dω.

At the other boundary, we will also make use of the fact that ft(0) = ∂
∂ωft(0) = 0 naturally due to

the dynamics of ωt,b. With these preliminaries, we can determine the dynamics of ft.

Time-differentiate (E.3) to obtain

∫ ω∗(Xt)

0

[
g(ω,Xt)dft(ω) + ft(ω)dg(ω,Xt) + σX,tσf,t(ω)

∂

∂x
g(ω,Xt)dt

]
dω

+
1

2

(
σX,t

∂

∂x
ω∗(Xt)

)2 ∂
∂ω

[g(ω,Xt)ft(ω)]
∣∣
ω=ω∗(Xt)

dt

=
πct,tg(ωt,t, Xt)1{ωt,t<ω∗(Xt)}dt

(1−Xt)Yt
+

1

(1−Xt)Yt

∫
Nt
πe−π(t−b)ct,bg(ωt,b, Xt)

[
− πdt+ d

( (1−Xt)
−1Y −1t

(1−Xt)−1Y
−1
t

)
+
dg(ωt,b, Xt)

g(ωt,b, Xt)
+
dct,b
ct,b

+ σcN ,t(ωt,b)
σg,t(ωt,b)

g(ωt,b, Xt)
dt+

( σX,t
1−Xt

− σY
)(
σcN ,t(ωt,b) +

σg,t(ωt,b)

g(ωt,b, Xt)

)
dt
]
db− nt(g)dt,

where
πct,tg(ωt,t,Xt)1{ωt,t<ω∗(Xt)}dt

(1−Xt)Yt represents newborns that become non-participants, and nt(g)dt

represents changes due to Nt (i.e., entry into participation), which are to be determined. Note that

in deriving the left-hand-side, several terms involving ft(ω
∗(Xt)) arise, and these terms vanish due

to (E.6). The equation above must hold separately for the Brownian dZt terms and the drift dt

terms.

Look first at the Brownian terms:∫ ω∗(Xt)

0

[
g(ω,Xt)σf,t(ω) + ft(ω)σX,t

∂

∂x
g(ω,Xt)

]
dω

=
1

(1−Xt)Yt

∫
Nt
πe−π(t−b)ct,bg(ωt,b, Xt)

( σX,t
1−Xt

− σY + σcN ,t(ωt,b) +
σg,t(ωt,b)

g(ωt,b, Xt)

)
db.

We can use equation (E.3), which holds for any function g ∈ G, and then substitute σg,t and collect
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terms in order to rewrite the previous expression as∫ ω∗(Xt)

0
g(ω,Xt)σf,t(ω)dω =

∫ ω∗(Xt)

0

( σX,t
1−Xt

− σY + σcN ,t(ω) +
σω,t(ω) ∂

∂ωg(ω,Xt)

g(ω,Xt)

)
g(ω,Xt)ft(ω)dω.

For the term σω,t(ω) ∂
∂ωg(ω,Xt), we can integrate-by-parts to obtain

∫ ω∗(Xt)

0
g(ω,Xt)σf,t(ω)dω =

∫ ω∗(Xt)

0

[( σX,t
1−Xt

− σY + σcN ,t(ω)
)
ft(ω)− ∂

∂ω
[σω,t(ω)ft(ω)]

]
g(ω,Xt)dω.

Since g is arbitrary, this equation holds ω-by-ω without the integral, providing the desired expression

for σf,t(ω).

Look next at the drift terms, as before using equation (E.3) to convert the db integrals to dω

integrals, and then substituting expressions for µg,t and σg,t, we have

∫ ω∗(Xt)

0

[
g(ω,Xt)µf,t(ω) + σf,t(ω)σX,t

∂

∂x
g(ω,Xt)

]
dω +

1

2

(
σX,t

∂

∂x
ω∗(Xt)

)2 ∂
∂ω

[g(ω,Xt)ft(ω)]
∣∣
ω=ω∗(Xt)

=

∫ ω∗(Xt)

0

[
− π +

µX,t
1−Xt

− µY +
σX,tσY
1−Xt

+
σ2
X,t

(1−Xt)2
+ σ2

Y + µcN ,t(ω) +
( σX,t

1−Xt
− σY

)
σcN ,t(ω)

]
g(ω,Xt)ft(ω)dω

+

∫ ω∗(Xt)

0

[
µω,t(ω)

∂

∂ω
g(ω,Xt) +

1

2
σω,t(ω)2

∂2

∂ω2
g(ω,Xt) + σX,tσω,t(ω)

∂2

∂x∂ω
g(ω,Xt)

]
ft(ω)dω

+

∫ ω∗(Xt)

0

( σX,t
1−Xt

− σY + σcN ,t(ω)
)[
σX,t

∂

∂x
g(ω,Xt) + σω,t(ω)

∂

∂ω
g(ω,Xt)

]
ft(ω)dω

+
πct,tg(ωt,t, Xt)1{ωt,t<ω∗(Xt)}

(1−Xt)Yt
− nt(g).

Substituting the result for σf,t derived above, we have

∫ ω∗(Xt)

0

[
g(ω,Xt)µf,t(ω)− ∂

∂ω
[σω,t(ω)ft(ω)]σX,t

∂

∂x
g(ω,Xt)

]
dω +

1

2

(
σX,t

∂

∂x
ω∗(Xt)

)2 ∂
∂ω

[g(ω,Xt)ft(ω)]
∣∣
ω=ω∗(Xt)

=

∫ ω∗(Xt)

0

[
− π +

µX,t
1−Xt

− µY +
σX,tσY
1−Xt

+
σ2
X,t

(1−Xt)2
+ σ2

Y + µcN ,t(ω) +
( σX,t

1−Xt
− σY

)
σcN ,t(ω)

]
g(ω,Xt)ft(ω)dω

+

∫ ω∗(Xt)

0

[
µω,t(ω)

∂

∂ω
g(ω,Xt) +

1

2
σω,t(ω)2

∂2

∂ω2
g(ω,Xt) + σX,tσω,t(ω)

∂2

∂x∂ω
g(ω,Xt)

]
ft(ω)dω

+

∫ ω∗(Xt)

0

( σX,t
1−Xt

− σY + σcN ,t(ω)
)
σω,t(ω)ft(ω)

∂

∂ω
g(ω,Xt)dω

+
πct,tg(ωt,t, Xt)1{ωt,t<ω∗(Xt)}

(1−Xt)Yt
− nt(g).

We integrate-by-parts the third and fourth lines (twice for the term with ∂2

∂ω2 ), using the compact
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support assumption on g and the boundary conditions for ft, to obtain∫ ω∗(Xt)

0

g(ω,Xt)µf,t(ω)dω +
1

2

(
σX,t

∂

∂x
ω∗(Xt)

)2 ∂
∂ω

[g(ω,Xt)ft(ω)]
∣∣
ω=ω∗(Xt)

=

∫ ω∗(Xt)

0

[
− π +

µX,t
1−Xt

− µY +
σX,tσY
1−Xt

+
σ2
X,t

(1−Xt)2
+ σ2

Y + µcN ,t(ω) +
( σX,t

1−Xt
− σY

)
σcN ,t(ω)

]
g(ω,Xt)ft(ω)dω

−
∫ ω∗(Xt)

0

g(ω,Xt)
∂

∂ω
[µω,t(ω)ft(ω)]dω +

1

2

∫ ω∗(Xt)

0

g(ω,Xt)
∂2

∂ω2
[σω,t(ω)2ft(ω)]dω

−
∫ ω∗(Xt)

0

g(ω,Xt)
∂

∂ω

[( σX,t
1−Xt

− σY + σcN ,t(ω)
)
σω,t(ω)ft(ω)

]
dω − 1

2
g(ω∗(Xt), Xt)

∂

∂ω
[σω,t(ω)2ft(ω)]

∣∣
ω=ω∗(Xt)

+
πct,tg(ωt,t, Xt)1{ωt,t<ω∗(Xt)}

(1−Xt)Yt
− nt(g).

From this result, we can see that for the density to be finite at ω∗(Xt), it must be the case that

nt(g) = −1

2

[
g(ω,Xt)

∂

∂ω
[σω,t(ω)2ft(ω)] +

(
σX,t

∂

∂x
ω∗(Xt)

)2 ∂

∂ω
[g(ω,Xt)ft(ω)]

]∣∣∣
ω=ω∗(Xt)

. (E.7)

Note also that, using (E.1) and (E.2), we may rewrite the newborn entry term as

πct,tg(ωt,t, Xt)1{ωt,t<ω∗(Xt)}

(1−Xt)Yt
=
π(ρ+ π)ωt,tm(ωt,t, Xt)

1−Xt

∫ ω∗(Xt)

0
Diracωt,t(ω)g(ω,Xt)dω. (E.8)

Using (E.7)-(E.8), and then the fact that g is arbitrary, we obtain the desired result for µf,t.
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