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Abstract

We discover sentiment-driven equilibria in popular macroeconomic models of im-
perfect risk sharing. In these equilibria, sentiment dynamics behave like uncertainty
shocks, in the sense that self-fulfilled beliefs about volatility drive aggregate fluctua-
tions. Because such fluctuations can decouple from the wealth distribution, rational
sentiment helps resolve two puzzles plaguing models emphasizing balance sheets:
(i) financial crises emerge suddenly, featuring large volatility spikes and asset-price
declines; (ii) asset-price booms, with below-average risk premia, predict busts and fi-
nancial crises. Quantitatively, our sentiment equilibria are able to replicate empirical
crisis dynamics for output, volatility, and risk premia, whereas the fundamental equi-
librium performs poorly on these dimensions. Methodologically, our contribution is
using stochastic stability theory to establish existence of sunspot equilibria.
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It has by now become commonplace, especially after the 2008 global financial cri-
sis, for macroeconomic models to prominently feature banks, limited participation, im-
perfect risk-sharing, and other such “financial frictions.” Incorporating these features
allows macroeconomists to speak meaningfully about financial crises and desirable pol-
icy responses. Despite the dramatic growth in this literature, there remain two major
sources of disconnect between these models and actual crisis data. For one, standard
models have difficulty reproducing the observed severity and suddenness of economic
downturns and asset-price dislocations. Secondly, standard models struggle to generate
booms that are inherently fragile and prone to bust. To address these shortcomings,
some recent contributions add large and sudden bank runs,1 while others deviate from
rational expectations to model booms as episodes of over-optimism.2

Figures 1-2 summarize the financial crisis dynamics that motivate our study. Equity
market values fall dramatically and suddenly, especially for banks, while credit spreads
rise rapidly and substantially. On these dimensions, the US crises displayed in Figure
2 were more severe than the average crisis from the international sample of Figure 1.
Those US crises also featured a tremendous rise in asset market volatility, of particular
interest for our analysis. In 2008-09, for example, stock market volatility rose from 15% to
above 70%, which is far beyond the magnitudes possible in conventional macroeconomic
models. In addition to their severity and suddenness, the figures are suggestive of pre-
crisis “froth” in the sense that asset prices are high and rising prior to their crash, while
measures of risk and risk premia are low and sometimes falling prior to their spike.
Related evidence from the literature highlights the predictability of financial crises by
large credit and asset price booms that feature below-average credit spreads.3

To address these patterns, we embrace rational sentiment as an approach complemen-
tary to the existing literature. This paper makes two main contributions. First, we un-
cover a wide variety of novel sentiment-driven sunspot equilibria supported by standard
financial friction models. The fluctuations in these equilibria can be self-fulfilling: they
only occur because agents coordinate on them. Second, we demonstrate how sentiment
fluctuations alleviate some of the shortcomings for this class of models. Rational senti-

1For example, Gertler and Kiyotaki (2015) and Gertler et al. (2020) attempt to integrate bank runs
into a conventional financial accelerator model, in order to capture additional amplification and non-
linearity. Without runs or panic-like behavior, financial accelerator models have a difficult time inducing
the financial intermediary leverage needed to generate large amounts of amplification.

2For example, Krishnamurthy and Li (2024) and Maxted (2024) build an extrapolative sentiment process
on top of a relatively standard financial accelerator model. Agents’ excessive optimism in booms lowers
risk premia, erodes bank balance sheets, and creates fragility.

3See Reinhart and Rogoff (2009); Jordà et al. (2011, 2013, 2015a,b); Mian et al. (2017); López-Salido et al.
(2017); Baron and Xiong (2017); Krishnamurthy and Muir (2024).
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Figure 1: Patterns across banking crises, as defined in Baron et al. (2021), across 46 countries from 1870-
2016. This graph reproduces Figure 6A of Baron et al. (2021), showing average equity values (left axis) and
credit spreads (right axis) for both banks and non-financial corporations in the 5 years before and after
a crisis begins. All variables are normalized to zero in January of the crisis year. The text “N =” in the
caption refers to the number of crises for which a particular data series was available.

Figure 2: US asset markets surrounding the Great Depression (1930) and Great Financial Crisis (2008). The
“Stock Mkt” is the cumulative return on the US value-weighted stock market, normalized to 1 in January
of the crisis onset; “Stock Vol” measures monthly realized return volatility, computing using daily returns
within the past two months and then annualized; and “Baa-Aaa” refers to the Moody’s Baa minus Aaa
credit spread index in percentage points.

ment can generate both (i) large and sudden fluctuations, similar to bank runs (footnote
1), and (ii) booms that breed fragility, similar to the “behavioral sentiment” adopted by
some recent papers (footnote 2). The model without rational sentiment fails on these
dimensions.
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Model and mechanism. We study a simple stripped-down model with financial fric-
tions, similar to Kiyotaki and Moore (1997), Brunnermeier and Sannikov (2014), and
many others.4 There are two types of agents (“experts” and “households”) with identical
preferences but different levels of productivity when managing capital. Heterogeneous
productivity means the identity of capital holders matters for aggregate output. Ideally,
in a world with complete financial markets, experts would manage all capital and issue
sufficient equity to perfectly share with households any risks associated to capital. But in
our model, incomplete markets prevent agents from sharing those risks, so optimal capi-
tal holdings depend to some degree on risk and not only on productivities. There are no
other features: no ad-hoc collateral constraints, no default externalities, and no irrational
beliefs. And yet, this basic model can feature a tremendous amount of multiplicity that
has been overlooked in the literature.

Indeterminacy in this model comes from the combination of incomplete financial
markets and heterogeneous productivities. With these features, asset prices today are not
pinned down by “fundamentals”— namely the minimal set of state variables—and can
also depend on agents’ beliefs about the distribution of asset prices tomorrow. Different
beliefs deliver different equilibria. Of particular importance in our specific model is the
perceived dispersion in future asset prices, or price volatility.

The following story clarifies the mechanics. Suppose agents are fearful, anticipating
high asset-price volatility. Despite their productivity advantage, experts will only man-
age a fraction of aggregate capital, as capital price risk cannot be fully shared through
markets. Perceived volatility thus causes an inefficient capital allocation, hence low asset
prices. On the other hand, if low asset-price volatility is anticipated, experts will hold
a large share of capital, and asset prices will be high. Are both of these coordinated
volatility perceptions justified? In many models, only one perception of volatility could
be consistent with equilibrium, because future paths would otherwise be explosive.

But in our paper, many coordinated beliefs about volatility can satisfy equilibrium
conditions and remain non-explosive, mirroring the conventional idea that dynamic sta-
bility of equilibrium supports indeterminacy. Here, stability means that asset prices
eventually mean-revert, or “bounce back” from extreme values. Supposing the future
distribution of asset prices q is characterized by a first and second moment (µq, σ2

q ), then
a rise in σq (fear)—which depresses q—must be accompanied by an eventual rise in µq

(bounce-back beliefs). In our continuous-time setup, bounce-back beliefs are just bound-

4We work in continuous time, contributing to a burgeoning literature (He and Krishnamurthy, 2012,
2013, 2019; Moreira and Savov, 2017; Di Tella, 2017, 2019; Klimenko et al., 2017; Drechsler et al., 2018;
Caballero and Simsek, 2020; d’Avernas and Vandeweyer, 2023; Silva, 2024). For surveys, see Brunnermeier
and Sannikov (2016) and Hansen et al. (2024).
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ary conditions on µq at extreme states. Such boundary restrictions are both analytically-
convenient and mild; rich dynamics are admissible away from extreme states.

If volatility is dynamically stable, we can use sunspot shocks to govern agents’ beliefs
about volatility and create sentiment dynamics. A surprise increase in fear leads to a fire
sale, which temporarily depresses asset prices and output. Conversely, a decline in fear
raises asset prices, through coordinated purchases. These fear-driven dynamics are sus-
tainable so long as they are expected to eventually subside. A distinctive feature is that
sentiment dynamics are always characterized by time-varying endogenous uncertainty.

Overview of paper. While explaining our model above, we abstracted from the wealth
distribution between experts and households. Typically in the financial frictions liter-
ature, this wealth distribution is the key state variable modulating the dynamics. In
our analysis, the wealth distribution remains a state variable, but additional “sentiment”
state variables naturally arise as potential drivers of equilibrium. Mathematically, we
dispense with the assumption that equilibria be Markovian in the wealth distribution,
which removes an ad-hoc restriction on agents’ beliefs.5

Our main theoretical results provide an explicit construction and characterization of
a broad class of sentiment-driven equilibria (Section 2). As one might expect from deter-
ministic models, the existence of sunspot equilibria is tied to the stability properties of
the equilibrium dynamical system. For many models, such stability questions are settled
via linearized spectral analysis near steady state. What is the analog in our stochastic
nonlinear environment? To tackle this problem, we leverage tools from the “stochastic
stability” literature (analogous to Lyapunov stability for ODE systems). Conveniently,
our stability analysis boils down to boundary conditions on our dynamical system.

Sentiment-driven equilibria engender several new insights, related to the shortcom-
ings in existing models (Section 3). First, sentiment permits far higher volatility and risk
premia spikes, allowing us to address the suddenness and severity of financial crises.
Second, pre-crisis froth emerges with sentiment: asset-price booms and below-average
risk premia predict financial crises. By contrast, the same model without sentiment can-
not generate large increases in volatility or risk premia nor any pre-crisis froth. The
key flaw with the standard model is its dynamics are channeled through expert equity,
which is fundamentally slow-moving; sentiment critically decouples dynamics from ex-

5In a companion paper Khorrami and Mendo (2024), we study the possibility of multiple equilibria
in this model which are Markovian in the wealth distribution. While interesting, we show in that paper
how the resulting dynamics of these wealth-driven equilibria are approximately identical to the conven-
tional dynamics studied by Brunnermeier and Sannikov (2014) and others. Thus, resolving the literature’s
puzzles requires us to go beyond wealth-driven equilibria and explore sentiment-driven equilibria.
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pert equity. We summarize all these results via model-implied counterparts to the crisis
event studies in Figures 1-2. We also perform extensive quantitative comparisons be-
tween the model and data regarding pre- and post-crisis dynamics of GDP, credit, and
credit spreads. In illustrating the model’s properties, we are cautious of exploiting too
many degrees of freedom that arise as indeterminacies. In all cases, we either tie our
hands to some aspect of the data, pick a conservative specification, or perform extensive
sensitivity analysis. Thus, we deliver a “possibility result”: a host of crisis dynamics can
be explained via a simple, rational framework, so long as goes beyond the fundamental
equilibrium and considers sentiment equilibria.

Related literature. At a high level, the theoretical focus on financial frictions and
sunspots is not new to this paper. Several studies show how multiplicity emerges
through the interaction between asset valuations and borrowing constraints.6 Relative to
these papers, we study different financial frictions (equity-issuance constraints) that do
not feature any mechanical link between prices and constraints.

Bank runs, financial panics, and sudden stops are related to, but distinct from, our
self-fulfilled fluctuations.7 These phenomena similarly rely on financial frictions, are out-
comes of coordination, and produce large fluctuations relative to fundamentals. How-
ever, whereas bank runs and its cousins are liability-side phenomena, self-fulfilled fire
sales are asset-side phenomena. Furthermore, our mechanism does not require asset-
market illiquidity or maturity mismatch. Finally, whereas runs are exclusively about
downside risk, our sentiment fluctuations also generate interesting boom-bust cycles.

Given the absence of ad-hoc borrowing constraints or runs, our paper illustrates that
a much broader class of financial crisis models are subject to sunspots. We also do not
rely on more traditional multiplicity-inducing assumptions, such as overlapping gener-
ations,8 non-convexities in technology,9 imperfect information,10 or multiple assets.11

6For instance, bubbles can relax credit constraints, allowing greater investment and thus justifying the
existence of the bubble (Scheinkman and Weiss, 1986; Kocherlakota, 1992; Farhi and Tirole, 2012; Miao
and Wang, 2018; Liu and Wang, 2014). Self-fulfilling credit dynamics can also arise with unsecured lending
as opposed to collateralized (Gu et al., 2013; Azariadis et al., 2016).

7Mendo (2020) studies self-fulfilled panics that induce collapse of the financial sector. Gertler and
Kiyotaki (2015) and Gertler et al. (2020) study bank runs in a similar class of models.

8The classic studies on OLG and multiplicity are Azariadis (1981) and Cass and Shell (1983). A more
recent investigation, focusing on wealth redistribution across generations, is Farmer (2018).

9For example, see Azariadis and Drazen (1990) for multiplicity under threshold investment behavior.
See Farmer and Benhabib (1994) for a multiplicity under increasing returns to scale.

10Piketty (1997) and Azariadis and Smith (1998) obtain self-fulfilling dynamics in the presence of
screened/rationed credit. Benhabib and Wang (2015) and Benhabib et al. (2015, 2016, 2019) generate
sunspot fluctuations in dispersed information models.

11Hugonnier (2012), Gârleanu and Panageas (2021), and Khorrami and Zentefis (2025) all build “redis-
tributive” sunspots that shift valuations among multiple positive-net-supply assets.
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Our focus on fear and volatility as drivers of self-fulfilling fluctuations closely relates
to the “self-fulfilling risk panics” of Bacchetta et al. (2012). Benhabib et al. (2020) obtain
a similar type of fluctuation by examining economies with either collateral or liquidity
constraints, rather than the OLG setup of Bacchetta et al. (2012). Although we do not
rely on common multiplicity-inducing features like OLG or collateral constraints, we ex-
pound on the deeper connection to these papers in Section 1.3. Also relatedly, Khorrami
and Mendo (2025) and Lee and Dordal i Carreras (2024) obtain self-fulfilling risk in New
Keynesian models, which feature an endogenous mapping from asset prices to the real
economy as in this paper, but replace financial frictions with nominal rigidities.

1 Model

Information structure. Time t ≥ 0 is continuous. (We also study a discrete-time version
of the model in Online Appendix G.) There are two types of uncertainty in the economy,
modeled as two independent Brownian motions Z := (Z(1), Z(2)). All random processes
will be adapted to Z. As will be clear below, the first shock Z(1) represents a fundamental
shock in the sense that it directly impacts production possibilities, whereas the second
shock Z(2) is a sunspot shock that is extrinsic to any economic primitives but nevertheless
may impact endogenous objects. Later, we will also consider extrinsic Poisson jumps as
part of the information structure.

Technology and markets. There are two goods, a non-durable good (the numéraire,
“consumption”) and a durable good (“capital”) that produces the consumption good.
The aggregate supply of capital grows exogenously as

dKt = Kt[gdt + σdZ(1)
t ], (1)

where g and σ > 0 are exogenous constants. We add endogenous capital investment in
Section 2.3. The capital-quality shock σdZ(1) is a standard way to introduce fundamental
randomness in technology. Individual capital holdings evolve identically, except that
capital may be traded frictionlessly between agents in the market.12 The relative capital
price is qt and is determined in equilibrium.

12Individual capital is thus a choice variable: if an agent holds capital kt, its law of motion is

dkt = gktdt + σktdZ(1)
t + dΩt,

where the term dΩt corresponds to net purchases. To be clear, both g and σdZ(1)
t affect agents’ return-on-

capital, whereas the net purchases term dΩt does not.
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There are two types of agents, experts and households, who differ in their production
technologies. Experts produce ae units of the consumption good per unit of capital,
whereas households’ productivity is ah ∈ (0, ae).

Financial markets consist solely of an instantaneously-maturing, risk-free bond that
pays interest rate rt is in zero net supply. The key financial friction: agents cannot issue
equity when managing capital. It is inconsequential that the constraint be this extreme.
Partial equity issuance, as long as there is some limit, will generate similar results on
sunspot volatility (we discuss this further in Section 1.3).

Preferences and optimization. Given the stated assumptions, we can write the dynamic
budget constraint of an agent of type ` ∈ {e, h} (expert or household) as

dn`,t =
[
(n`,t − qtk`,t)rt − c`,t + a`k`,t

]
dt + qtk`,tdRt, (2)

where n` is the agent’s net worth, c` is consumption, and k` is capital holdings. The last
term dRt := d(qtKt)

qtKt
is the capital and price appreciation while holding capital.

Experts and households have time-separable logarithmic utility, with discount rates
ρe and ρh ≤ ρe, respectively. All agents have rational expectations and solve

sup
c`≥0, k`≥0, n`≥0

E
[ ∫ ∞

0
e−ρ`t log(c`,t)dt

]
(3)

subject to (2). Everything in optimization problem (3) is homogeneous in (c, k, n), so we
can think of the expert and household as representative agents within their class.

Let us briefly discuss the solvency constraint n`,t ≥ 0 in (3). This constraint says that
agents cannot borrow more than the market value of their capital, and since there are no
other assets besides capital, one can think of n`,t ≥ 0 as the “natural borrowing limit.”
We analyze some microfoundations for this solvency in Appendix A, to provide more
comfort that the solvency constraint is natural and minimal—i.e., to assure the reader
that no ad-hoc borrowing constraint is driving our results.

Finally, to guarantee a stationary wealth distribution, we also allow a type-switching
structure: experts retire and become households at rate δe, while households retire and
become experts at rate δh. Technically, the presence of type-switching alters the objective
function from (3), but under log utility optimal behavior is still as if solving (3)—we
show this in Appendix B.1. To acknowledge the fact that type-switching shifts wealth
across agent groups, which does not affect agents’ individual net worth evolution, let
Ne and Nh denote aggregate expert and household net worth. The dynamics of Ne
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and Nh include the effects of type-switching: dNe = Ne
dne
ne
− δeNedt + δhNhdt and dNh =

Nh
dnh
nh
− δhNhdt+ δeNedt. We reiterate that type-switching is unnecessary for our sunspot

results and only serves to obtain stationarity in case we set ρe = ρh (if ρe > ρh + σ2, the
wealth distribution will automatically be stationary even without type-switching). For
example, the reader may wish to shut down type-switching (δe = δh = 0) and instead
consider asymmetric discount rates (ρe > ρh + σ2), and this is completely fine.

The definition of competitive equilibrium is standard, following Brunnermeier and
Sannikov (2014). To write a formal definition, denote the set of experts by the interval
I = [0, ν], for some ν ∈ (0, 1) and index individual experts by i ∈ I. Similarly, denote
the set of households by J = (ν, 1] with index j. If a type-switching structure exists,
we necessarily have ν = δh

δe+δh
(i.e., the population size of experts is pinned down by

switching rates), and the indexes of retiring experts/households are implicitly swapped
with newly entering experts/households.

Definition 1. For any initial capital endowments {ki
e,0, kj

h,0 : i ∈ I, j ∈ J} such that∫
I

ki
e,0di +

∫
J

kj
h,0dj = K0, an equilibrium consists of stochastic processes—adapted to the

filtered probability space generated by {Zt : t ≥ 0}—for capital price qt, interest rate rt,
capital holdings (ki

e,t, kj
h,t), consumptions (ci

e,t, cj
h,t), and net worths (ni

e,t, nj
h,t), such that:

(i) initial net worths satisfy ni
e,0 = q0ki

e,0 and nj
h,0 = q0kj

h,0 for i ∈ I and j ∈ J;

(ii) taking processes for q and r as given, each expert i ∈ I and household j ∈ J solves
(3) subject to (2) and their solvency constraint;

(iii) consumption and capital markets clear at all dates, i.e.,∫
I

ci
e,tdi +

∫
J

cj
h,tdj = ae

∫
I

ki
e,tdi + ah

∫
J

kj
h,tdj (4)∫

I
ki

e,tdi +
∫

J
kj

h,tdj = Kt, (5)

where Kt follows (1).

1.1 Equilibrium characterization

We present a useful equilibrium characterization that aids all future analysis. First,
conjecture the following form for capital price dynamics:

dqt = qt[µq,tdt + σq,t · dZt]. (6)
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There are two potential avenues for random fluctuations. The standard term σq ·
(

1
0
)

represents amplification (or dampening) of fundamental shocks, as in Brunnermeier and
Sannikov (2014) and others. By contrast, the second element σq ·

(
0
1

)
measures sunspot

volatility that only exists because agents believe in it.
Given log utility and the scale-invariance of agents’ budget sets, individual optimiza-

tion problems are readily solvable. Optimal consumption satisfies the standard formula
c` = ρ`n`. Optimality conditions for capital holding by experts and households are

ae

q
+ g + µq + σσq ·

(
1
0
)
− r =

qke

ne
|σR|2 (7)

ah
q
+ g + µq + σσq ·

(
1
0
)
− r ≤ qkh

nh
|σR|2 (with equality if kh > 0), (8)

where

σR,t := σ
(

1
0
)
+ σq,t (9)

denotes the shock exposure of capital returns. (Note that experts’ optimality condition
(7) assumes the solution is interior, i.e., ke > 0. But this is clearly required in any
equilibrium given experts earn a strictly higher expected return than households.) From
these optimality conditions, notice that agents’ capital holdings decisions are uniquely
determined given the price process for q. The only additional optimality conditions are
the transversality conditions

lim
T→∞

E[e−ρ`T 1
c`,T

n`,T] = 0. (10)

However, using c` = ρ`n`, we see that (10) automatically holds. As a consequence of
(10), our equilibria will always be bubble-free.

Next, we aggregate. Due to financial frictions and productivity heterogeneity, both
the distribution of wealth and capital holdings will matter in equilibrium. However, be-
cause all experts (and households) make the same scaled consumption c`/n` and port-
folio choices k`/n`, the wealth and capital distributions may be summarized by experts’
wealth share and capital share

η :=
Ne

Ne + Nh
=

Ne

qK
and κ :=

∫
I

ki
edi

K
.

Given agents’ solvency and capital short-sales constraints, we must have η ∈ [0, 1] and
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κ ∈ [0, 1] in equilibrium. Substitute optimal consumption into goods market clearing (4),
divide by aggregate capital K, and use the definitions of η and κ, to obtain

qρ̄ = κae + (1− κ)ah, (PO)

where ρ̄(η) := ηρe + (1− η)ρh is the wealth-weighted average discount rate. Equation
(PO) connects asset price q to output efficiency κ, which we call a price-output relation.

Using the definitions of η and κ, experts’ and households’ portfolio shares can be
written qke

ne
= κ

η and qkh
nh

= 1−κ
1−η . Then, differencing the optimal portfolio conditions

(7)-(8), we obtain the risk-balance condition

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
. (RB)

Either experts manage the entire capital stock (κ = 1) or the excess return experts obtain
over households, (ae− ah)/q, represents fair compensation for differential risk exposure,

κ−η
η(1−η)

|σR|2. On the other hand, summing portfolio conditions (7)-(8), weighted by κ and
1− κ, and using (PO), yields an equation for the riskless rate:

r = ρ̄ + g + µq + σσq ·
(

1
0
)
−
(κ2

η
+

(1− κ)2

1− η

)
|σR|2. (11)

Finally, by applying Itô’s formula to experts’ wealth share η = Ne/(Ne + Nh), and
using agents’ net worth dynamics (2) along with contributions from type-switching,
wealth share dynamics are given by

dηt = µη,tdt + ση,t · dZt, given η0, (12)

where

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
|σR|2 + δh − (δe + δh)η (13)

ση = (κ − η)σR. (14)

The initial wealth distribution η0 =
∫

I
ni

e,0di
q0K0

=
∫

I
ki

e,0di
K0

is given due being solely a function
of the initial endowments of capital.

Lemma 1. Given η0 ∈ (0, 1), consider a process (ηt, qt, κt, rt)t≥0 with dynamics for qt and ηt

described by (6) and (12), respectively. If ηt ∈ [0, 1], κt ∈ [0, 1], and equations (PO), (RB), (11),
(13) and (14) hold for all t ≥ 0, then (ηt, qt, κt, rt)t≥0 corresponds to an equilibrium of Definition
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1. Moreover, any distinct pair of such processes corresponds to distinct equilibria.

Lemma 1 summarizes the full set of conditions characterizing equilibrium and is
proved in Appendix B.2. In the rest of the paper, we use this lemma as a tool to simplify
our search for equilibria. Lastly, we make some mild parameter restrictions that will be
applicable in the remainder of the paper.

Assumption 1. Parameters satisfy (i) 0 < ah
ρh

< ae
ρe

< +∞; (ii) σ2 < ρe(1− ah/ae); and (iii)
either σ2 < ρe − ρh, or δe, δh > 0.

Assumption 1 part (i) makes the modest assumption that the capital price is higher
if experts control 100% of wealth than if households control 100% of wealth. Part (ii),
meant to make the problem interesting, ensures experts sometimes hold all capital, i.e.,
κ = 1. If fundamental risk is σ2 ≥ ρe(1− ah/ae), experts can never hold the entire capital
stock, and the economy will always be in the region of inefficiency. Part (iii) ensures
household survival: if experts consume at a rate sufficiently higher than households, or
some type-switching exists, then experts do not asymptotically hold all wealth.

1.2 Types of equilibria

We categorize our equilibria into two types: fundamental and sunspot. Fundamental
equilibria should have the property that only the minimal set of state variables affects
observables. Because of financial frictions and productivity heterogeneity, the expert
wealth share η is a necessary state variable to summarize economic conditions. Other
objects (e.g., q, r, κ) are either prices or control variables, so in that sense η is the minimal
state variable needed in this class of models. In other words, a fundamental equilibrium
should only depend on η. Sunspot equilibria constitute all other equilibria.

Definition 2. A Fundamental Equilibrium (FE) is an equilibrium that is Markov in η. Any
other equilibrium is a Sentiment-driven Brownian Sunspot Equilibrium (S-BSE).

The literature universally focuses on the FE of this model, e.g., Brunnermeier and
Sannikov (2014). We explain these fundamental equilibria in Online Appendix E. The
present paper is devoted to the S-BSEs.13

13We add the qualifier “Sentiment-driven” (i.e., S-BSE) because there actually exists a sunspot equi-
librium that is Markovian in η, but only if fundamental risk is absent, σ = 0. We study this type of
equilibrium, which one might refer to as a Wealth-driven Brownian Sunspot Equilibrium (W-BSE), in a com-
panion paper (Khorrami and Mendo, 2024). In the context of the present paper, Definition 2 thus perfectly
classifies non-sunspot and sunspot equilibria if σ > 0.
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1.3 Benchmarks and discussion

Before proceeding to the main analysis, we analyze three benchmarks—frictionless eq-
uity issuance, homogeneous productivities, and zero fundamental uncertainty—that
clarify the underpinnings of sentiment-driven equilibria.

Frictionless equity issuance. Suppose any agent, when managing capital, could issue
unlimited equity to the market. In exchange for taking some exposure to the risk σR in
capital returns, these outside equity contracts promise an expected excess return σR · π
(here, π is the equilibrium risk price vector associated to the two shocks in Z). All
agents can participate as buyers in this market. Since equity-issuance is unconstrained,
it is straightforward to see that any capital owner must equate her expected excess re-
turns on capital to σR ·π. (If σR ·π were below an agent’s expected excess capital returns,
unlimited capital purchases financed by unlimited equity issuances would be an arbi-
trage; if σR ·π were above, the agent would prefer to sell all their capital and invest solely
in equity securities.) Experts always manage some capital, so

ae

q
+ g + µq + σσq ·

(
1
0
)
− r = σR · π.

However, the analogous equation cannot hold for households, since their productivity is
lower, ah < ae. Households will never manage capital in this economy, so κt = 1 at all
times, hence qt = ae/ρ̄(ηt) by equation (PO). That q is solely a function of η rules out
S-BSEs.14 Thus, it is critical that capital is traded, i.e., κ varies.

For our main results, the friction in equity markets need not be as stark as the baseline
model. Indeed, Online Appendix F extends the baseline model to allow “partial equity
issuance,” subject to a constraint parameterized by χ ∈ [0, 1]. In particular, suppose
any agent can issue some equity up to a limit: he/she can offload up to 1− χ fraction
of the risk associated to their capital stock as equity to a competitive financial market.
The baseline model corresponds to χ = 1 (i.e., zero issuance), while the frictionless
model outlined above corresponds to χ = 0 (i.e., unlimited issuance). We show that self-
fulfilling volatility is possible for any χ > 0, but as mentioned above, no self-fulfilling
volatility is possible if χ = 0.

Homogeneous productivities. Consider our economy with ae = ah = a. Based on

14In fact, q cannot be stochastic at all. Indeed, experts and households share identical risk preferences,
so households will purchase the outside equity of experts in an amount that is consistent with perfect
risk-sharing, meaning ση ≡ 0. Since qt = ae/ρ̄(ηt) is solely a function of η, which is deterministic, we have
σq ≡ 0 as well. Shocks can play no amplifying role with frictionless equity markets.
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equation (PO), equal productivities immediately implies qt = a/ρ̄(ηt). Again, q is solely
a function of η, which rules out S-BSEs. Critically, sentiment-driven equilibria require
real outcomes to depend on κ.

In fact, with equal productivities, equilibrium cannot support any endogenous de-
pendence on shocks, i.e., one can show σq ≡ 0 when ae = ah.15 This unveils a more
general point about the endogeneity of market incompleteness: one cannot necessarily
add unspanned extrinsic shocks to an economy and declare markets incomplete. Even
though this equal-productivity economy lacks insurance markets against Z(2) shocks, fi-
nancial markets are effectively complete, in the sense that the economic structure imposes
that Z(2) can have no impact on outcomes. What is required is a set of assumptions such
that Z(2) has “real effects” in which case financial market incompleteness will have some
bite. In our economy, all we require is ae > ah.16

Discussion: imperfect risk-sharing and productivity heterogeneity. Based on the
benchmarks above, let us explain the deep reasons why our model admits sentiment-
driven equilibria. The fact that we require financial frictions and productivity hetero-
geneity is not surprising—these features are required even in the “financial accelerator”
equilibria of Kiyotaki and Moore (1997) and Brunnermeier and Sannikov (2014). More
interestingly, sentiment-driven equilibria require nothing more.

First, with limited equity issuance and lack of markets for insurance against sunspot
shocks, capital is traded partly for risk-sharing purposes. In other words, risk can affect
the capital ownership distribution (i.e., σR can affect κ). Second, productive heterogene-
ity permits “misallocation”: the capital distribution can affect aggregate output, which
translates into capital prices (i.e., κ can affect q).

Of course, all these endogenous variables are determined simultaneously, but it may
be helpful to visualize, with the symbols of our model, the logic of multiplicity through
the following chain of causality:

σR =⇒ κ =⇒ q. (15)

Financial frictions modulate the first link (σR ⇒ κ), while productive heterogeneity mod-
15Plugging ae = ah into equation (RB) implies either κ = η or |σR| = 0. Either way, ση = (κ − η)σR = 0.

Then, applying Itô’s formula to qt = a/ρ̄(ηt), we obtain qσq = − ρe−ρh
ρ̄(η)

qση , which equals zero.
16Our model imposes a two-point productivity distribution, in line with the literature, but this is not

necessary for our arguments. In fact, there are an even richer set of possible equilibria in a model with a
richer productivity distribution. While the full argument is beyond the scope of this paper, the basic idea
is that one can reproduce exactly the dynamics at present by grouping agents into the “most productive”
agent versus a conglomerate of the less productive agents.
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ulates the second (κ ⇒ q). The current asset price q then depends on the distribution of
future asset prices through σR. But what determines σR? Nothing, as long as we have
both financial frictions and productive heterogeneity. S-BSEs, by removing the ad-hoc
restriction that equilibria be Markov in η, remove an artificial anchor for σR and allow
volatility to be coordination-driven.

Chain (15) also suggests a connection to the “self-fulfilling risk panics” of Bacchetta
et al. (2012), further analyzed by Benhabib et al. (2020). Bacchetta et al. (2012) empha-
size a negative relationship between asset prices and volatility, effectively collapsing the
causal chain in equation (15) to σR ⇒ q. But digging deeper, Benhabib et al. (2020)
explain that the key to risk panic equilibria is a causal dependence of the stochastic dis-
count factor (SDF) on asset prices. Bacchetta et al. (2012) obtain a price-SDF link via
OLG (see also Farmer, 2018, and Gârleanu and Panageas, 2021); Benhabib et al. (2020)
show how a price-SDF link can also arise due to collateral or liquidity constraints. Our
results are deeply connected—our price-output link (PO) necessarily implies a price-SDF
link—but distinguished by the fact we do not rely on the common multiplicity-inducing
features of OLG or ad-hoc borrowing constraints.

2 Sentiment-driven equilibria

We endeavor here to analyze a rich class of equilibria that are not Markov in η, the
S-BSEs. Below, we construct and provide detailed characterization of such equilibria.

Because the capital price q is the critical endogenous object (one may think of q as the
“co-state” variable), equilibria which are not Markov in η share the defining characteris-
tic that a variety of different asset prices can prevail for a given wealth distribution. Since
η captures all fundamental information in this economy, one can think of “sentiment” as
responsible for generating the multiplicity of asset prices corresponding to the same η.
This is why Definition 2 refers to this class of equilibria as Sentiment-driven BSEs.

To prepare the reader for our construction, note that it differs substantially from
the usual approach. The usual approach first analyzes the non-stochastic equilibria of
a model, identifies a fundamental indeterminacy, and then adds sunspot shocks that
essentially randomize over the multiplicity of fundamental equilibria (Azariadis, 1981;
Cass and Shell, 1983). We cannot take this route because the deterministic equilibrium
of our model is unique. To see this, assume σ = 0 and suppose agents coordinate on
σq = 0. From equation (RB), we must have κ = 1 (experts always hold all capital), and
from equation (PO), the capital price will be q = ae/ρ̄(η), a unique function of the wealth
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distribution. Our approach, instead, constructs a stochastic equilibrium and proves all
the equilibrium requirements hold, by using tools from “stochastic stability.”17

2.1 Construction of S-BSEs

Now, we provide a sketch of an explicit construction of an S-BSE. Remember the goal
from Lemma 1: given ηt, we want to find (µη,t, ση,t, µq,t, σq,t, qt, κt, rt) satisfying equations
(PO), (RB), (11), and (13)-(14) for all t ≥ 0 and such that ηt, κt ∈ [0, 1].

First, let us first count the number of equations and unknowns. The equations are
(PO), (RB), (11), (13), and (14)—these are 6 equations (recall that (14) involves two equa-
tions) that hold at each time t. Given ηt at a particular point in time, the unknowns are
the wealth share dynamics (µη, ση), the level and dynamics of capital prices (q, µq, σq),
the capital share κ, and the interest rate r—these are 9 unknowns (recall ση and σq are
2-by-1 vectors). Thus, we seem to have 3 degrees of freedom in constructing equilibrium.
A Fundamental Equilibrium, universally studied by the literature, additionally imposes
that equilibria be Markov in η. Such a Markovian restriction eliminates the 3 degrees of
freedom: applying Itô’s formula to q(η) delivers 3 additional conditions for σq and µq.
But in an S-BSE, qt is not simply a function of ηt, so the 3 Itô conditions are dropped.
Instead, (σq, µq) are determined by coordination.

Domain. The specific construction we outline below has the property that all equilibrium
objects are functions of (ηt, qt), but this is generalized in the formal proof. We are using
one degree of freedom in making q a “state variable” in the equilibrium. It turns out
that the relevant domain for (η, q) is

D := {(η, q) : 0 < η < 1, qL(η) < q ≤ qH(η)}, (16)

where qH(η) := ae/ρ̄(η)

qL(η) := [ηae + (1− η)ah]/ρ̄(η).

Why is this the relevant domain? From the price-output relation (PO), notice that qH

corresponds to the capital price when κ = 1, whereas qL corresponds to the capital price
when κ = η. Equilibrium must have κ ≤ 1 (Lemma 1) and κ > η, the latter because
a solution to equation (RB) will not exist otherwise. These restrictions are captured by

17For a simplified introduction to the mathematics of this method, Online Appendix H presents a
reduced-form example where deterministic stability suggests a unique equilibrium but where, never-
theless, a stochastic stability analysis shows that there are multiple stochastic equilibria.
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ensuring (η, q) remains in D. The shaded region in Figure 3 illustrates this set. For
reference, we also place the Markovian Fundamental Equilibrium (FE) with σ = 0.1.

Figure 3: Colormap of volatility |σR| as a function of (η, q), in the region D := {(η, q) : η ∈ (0, 1) and ηae +
(1− η)ah < qρ̄(η) ≤ ae}. Volatility is truncated for aesthetic reasons (since |σR| → ∞ as κ → η). Also
plotted is the Fundamental Eqm (FE) with σ = 0.1. Parameters: ρe = 0.07, ρh = 0.05, ae = 0.11, ah = 0.03.

Use all the equations. The first step in the construction is to reduce the system. Imagine
we know the values of (η, q, σq, µq). Price-output relation (PO) determines κ as a function
of (η, q) and nothing else, given by

κ(η, q) :=
qρ̄(η)− ah

ae − ah
. (17)

Substituting this result for κ, equation (11) then fully determines r. Equations (13)-(14),
after plugging in the result for κ, fully determine (ση, µη). At this point, given (η, q), the
remaining unknowns are (σq, µq) and the remaining equation is (RB).

The solution for (σq, µq) depends critically on whether capital is efficiently allocated
or not. When capital is efficiently allocated (i.e., κ = 1), we have q = qH(η) as an explicit
function of η. Hence, both σq and µq are determined by Itô’s formula.
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But when q < qH(η) (i.e., κ < 1), we have much more flexibility. Equation (RB) says

|σR| =

√
η(1− η)

κ(η, q)− η

ae − ah
q

, if q < qH(η). (18)

In other words, given (η, q), the level of return volatility is pinned down, verifying the
statement made earlier that putting q as a state variable uses one degree of freedom.
The level of |σR| is plotted in Figure 3 via the darkness of the shading; notice that |σR|
and q are inversely related. But notice also that equation (18) only restricts the norm of
σq = σR − σ

(
1
0
)
, not each of its components separately.

Similarly, there is as yet no restriction on µq despite using all 6 equilibrium equations.
All that remains is to show that (ηt, qt)t≥0 remains in D almost-surely, which puts some
mild restrictions on µq. Proving (ηt, qt)t≥0 remains in D is critical to ensure that no
optimality or market clearing conditions are violated along the proposed equilibrium
path. Specifically, equation (18) is only well-defined for κ > η, or equivalently q > qL(η),
while Lemma 1 also requires κ ≤ 1 and η ∈ [0, 1]. These inequalities only hold on D.

Boundary conditions. To ensure that (ηt, qt) remains in D, all we need to impose are
boundary conditions on µq. The idea is that (ηt, qt) can only escape D through its bound-
aries, and so µq is only restricted at these boundaries. In particular, we only need some
force strong enough to push (ηt, qt) back toward the interior of D. For example, when
q < qH(η), we can set µq to any C1 function with a boundary condition like, e.g.,

inf
η∈(0,1)

lim
q↘qL(η)

[
q− qL(η)

]
µq(η, q) = +∞. (19)

Condition (19) says that the drift of q diverges fast enough in order to prevent q from
hitting qL(η). But actually the drift µq diverges slightly above qL(η). The conditions
at the upper boundary qH(η) are slightly more complicated because the economy is
actually allowed to visit this upper boundary. However, a similar indeterminacy exists
there, namely that (η, q) can remain stuck at the efficient level (η, qH(η)) for any amount
of time before re-entering the interior of D. In short, equilibrium only imposes (some)
boundary conditions on µq and leaves it indeterminate on most of D. For instance, it is
not even required that µq be solely a function of (η, q) on D, and in fact we utilize that
flexibility in our later examples.

Methodologically, our formal proof employs stochastic stability theory to show that
this construction yields a non-degenerate stationary distribution for (ηt, qt)t≥0. Ap-
pendix B.4 states and proves the appropriate version of a stochastic stability lemma
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that we use. In particular, the key object is the infinitesimal generator L of the joint
process (ηt, qt)t≥0 induced by equilibrium. And the key task is to find a positive (Lya-
punov) function v, which diverges at the boundaries of D, such that L v → −∞ at the
boundaries of D. This mathematical condition exactly captures the intuition that bound-
ary conditions on the dynamics are sufficient for stationarity. (The ability to leverage
stochastic stability theory to analyze boundary conditions is precisely the simplification
offered by our continuous-time setup. That said, Online Appendix G also constructs an
example sentiment-driven equilibrium in a discrete-time version of our model.)

Theorem 1 (Existence). Let Assumption 1 hold. Then, there exists a family of S-BSEs in which
(ηt, qt)t≥0 remains in D almost-surely and possesses a non-degenerate stationary distribution.

This family of equilibria is indexed as follows. Let (yt)t≥0 be any sufficiently well-behaved
exogenous, stationary, Markov diffusion. Let D◦ ⊂ D be any sub-domain not touching any
boundary, i.e., such that dist(D◦, ∂D) > 0. Let ϑ(η, q, y) ∈ [0, 1] and m(η, q, y) be any C1

functions. Then, an S-BSE in this family exists in which

(i) on D◦, the share of return variance |σR|2 due to the fundamental shock is ϑ(η, q, y)

(ii) on D◦, the drift of q is m(η, q, y)

Furthermore, this S-BSE can feature an arbitrary exit rate from the efficient region {κ = 1} to
the inefficient region {κ < 1}, in the sense that the expected first exit time T(η, q, y) can be any
solution to equation (B.16), whose coefficients are indeterminate, in the appendix.

Theorem 1 is formally proved in Appendix B.3 with an explicit S-BSE construction
that addresses several of the minor technical issues raised in the preceding discussion.
Because the proof is constructive, we obtain a complete characterization of the indeter-
minacies in equilibrium, which is why the theorem delivers a “family of equilibria.”

The first indeterminacy is the source of volatility. While |σR| is pinned down given
(η, q), from equation (18), the two components σ

(1)
R and σ

(2)
R are not. The reason: when

trading, agents only care about total return variance, not its source. Asset prices and
economic activity can be either closely linked to fundamentals, or completely decoupled
from them, and this decoupling can be time-varying in arbitrary ways.

The second indeterminacy is the degree of mean-reversion. While µq is pinned down at
the boundaries of D, as in equation (19), its values in the interior of D are indeterminate.
The reason: optimal capital holdings are a function of the risk premium. This is clearly
visible in the optimal portfolio FOCs (7)-(8), where only the spread µq− r appears. Con-
sequently, even given a price q and diffusion σq, only the spread µq − r is pinned down
in equilibrium; µq and r are not separately determined. For example, asset prices could
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behave like a random walk (corresponding to µq ≈ 0 in the interior), with just enough
mean-reversion in extreme states to keep things stationary; in such a design, extreme
states become arbitrarily close to reflecting boundaries. Alternatively, fluctuations could
be much more transitory in nature. The indeterminacy in mean-reversion also manifests
in the efficient region {κ = 1}, because the rate at which the economy re-enters the
inefficient region {κ < 1} is arbitrary, in a sense made precise by the theorem.

A key property of our S-BSEs is that they permit much larger volatility than conven-
tional equilibria. To see this, refer back to Figure 3, paying attention to the level of return
volatility |σR| (indicated by shading). Notice how the Fundamental Equilibrium attains
only 10-20% return volatility, whereas the S-BSE can seemingly attain much higher lev-
els when q is very low. In fact, equation (18) shows that |σR| ↗ +∞ as q ↘ qL(η)

(equivalently, κ ↘ η). The next result summarizes the range of possible q and |σR|.

Corollary 1 (Unbounded volatility). Given wealth share η ∈ (0, 1), let Q(η) denote the set
of possible S-BSE values of q, and let V(η) denote the associated set of possible S-BSE values of
return variance |σR(η, q)|2. Then, Q(η) is an interval with infQ(η) = qL(η) and supQ(η) =
qH(η), while V(η) consists of at most two intervals, with

infV(η) = min
[
ηρ̄(η)

ae − ah
ae

, σ2(ρ̄(η)/ρe)
2]

supV(η) = +∞.

We conclude this section by providing two classes of examples for the indeterminate
drift µq and then summarizing our results with a remark.

Example 1 (Reflecting boundaries). As a first example, let us introduce upper and lower
reflecting barriers q(η) ≤ qH(η) and q(η) > qL(η), where q and q can be arbitrary
functions. These reflecting barriers keep qt ∈

[
q(ηt), q(ηt)

]
almost-surely and affect

no other equation in the model.18 Now, set µq = 0 for all q ∈
(
q(ηt), q(ηt)

)
, so that

qt behaves exactly like a random walk until it hits one of the reflecting barriers. This

18Formally, reflection introduces a new term to price dynamics:

dqt = qt[µq,tdt + σq,t · dZt + dPt − dPt],

where P and P are the barrier processes that increase only to keep qt ≥ q(ηt) or qt ≤ q(ηt), respectively.
Let P := P− P. Absence of arbitrage requires the riskless bond return to be rtdt + dPt, such that the excess
return on capital is unaffected by dPt (c.f., Karatzas and Shreve, 1998, Appendix B). Consequently, agents’
FOCs on capital holding remain unaffected, and both the risk-balance condition (RB) and equation (11)
for rt still hold. Finally, the reflections have no impact on the dynamics of ηt, which still take the diffusive
form (12). Indeed, excess capital returns feature no components related to dPt component, so expert and
household return-on-wealth contain identical contributions from dPt, implying dηt contains no dPt term.
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construction constitutes a legitimate S-BSE. An example with three different reflecting
lower boundaries q(η) is displayed in Figure 4. The figure makes clear that the possibility
of extreme volatility is strongly influenced by the level of the lower barrier.

Figure 4: Colormap of volatility |σR| as a function of (η, q). In each panel, the solid red line denotes
the lower reflecting boundary q(η), and the light pink shaded area denotes the subset of D which is
inaccessible. Parameters: ρe = 0.07, ρh = 0.05, ae = 0.11, ah = 0.03.

Example 2 (Interest rate). Our second example sets the drift µq via the interest rate
r. Recall that these objects are only determinate insofar as their spread µq − r is pinned
down in the interior of D. In the inefficient region, let r follow any exogenous, stationary
process of the form:

drt = µr(rt)dt + σr(rt) · dZt, when κt < 1.

In addition, augment the dynamics with a lower reflecting barrier q(η) as in Example 1.
Given r, define µq by equation (11) for all {(η, q) : 0 < η < 1, q(η) < q < qH(η)}, i.e.,
in the inefficient region but above the reflecting barrier. This construction constitutes a
legitimate S-BSE. (In the efficient region, by contrast, r is pinned down by equation (11),
since µq is pinned down by Itô’s formula on q = qH(η).)
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Remark 1 (Dynamics and indeterminacies). Summarizing the results, indeterminacies arise
because beliefs about capital price dynamics influence real outcomes such as capital allocation.
In this model we have two prices—capital price q and interest rate r—and two (non-redundant)
market clearing conditions. However, we need to solve not only for current prices but also for
future capital price behavior, which is summarized by the diffusion σq ∈ R2 and drift µq ∈ R

terms.19 Optimality imposes a tight (negative) link between q and |σq|, while long-run stability
imposes some mild conditions on µq in extreme states. Besides those restrictions, (σq, µq) are
indeterminate. We map these three indeterminacies to total return volatility (Corollary 1), the
source of volatility (point (i) of Theorem 1), and the persistence of sentiment fluctuations (point
(ii) of Theorem 1).

2.2 Economic intuition behind S-BSEs

Next, we explain our S-BSEs more intuitively. We first offer an interpretation of our equi-
librium as driven by uncertainty shocks. Then, we take a dynamical-system perspective to
understand why self-fulfilling volatility is possible.

Uncertainty shocks. Given a wealth distribution η and a level of return volatility |σR|,
the capital market is equilibrated at each time via the risk-balance condition (RB) and
the price-output relation (PO), restated here for convenience:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
(RB)

qρ̄ = κae + (1− κ)ah. (PO)

The left panel of Figure 5 shows how the intersection of these two curves determines
the capital allocation κ and the capital price q. The downward-sloping risk-balance (RB)
can be thought of as experts’ relative capital demand: for a fixed level of wealth η and
return volatility |σR|, experts will only hold more capital if it is cheaper, thereby offering
a higher expected return. (Of course, households also want to buy capital when it is
cheaper, but this force is relatively stronger for experts because of their productivity
advantage.) The upward-sloping price-output (PO) is a capital supply curve: experts’
capital provision raises allocative efficiency and capital valuations.

19The logic in a discrete time model is analogous: the indeterminacies will be associated to the dis-
tribution of capital price tomorrow. This distribution is an infinite dimensional object, which makes it
challenging to prove the existence of our sentiment-driven equilibria in discrete time models. Online Ap-
pendix G provides a discrete-time example of a sentiment-driven equilibrium by specializing to a binomial
tree for capital prices. We purposely design this binomial example with a trading interval ∆ such that our
Brownian model is recovered as ∆→ 0.
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Figure 5: An uncertainty shock. Both panels plot the risk-balance condition (RB) and price-output relation
(PO) for a fixed level of η = 0.2. The horizontal lines labeled q̄ and q refer to maximal and minimal
values of the capital price, corresponding to an efficient capital allocation (κ = 1) and an infinite-volatility
allocation (κ = η), respectively. Left panel: equilibrium with |σR| = 0.13. Right panel: equilibrium after a
shift to |σR| = 0.20. Other parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, and σ = 0.10.

But whereas η is a state variable that can be rightly treated as fixed in this static sense,
return volatility |σR| is not. The right panel of Figure 5 shows what changes if there is
a sudden rise in fear, manifested as higher perceived volatility |σR|. Experts, being risk-
averse, are less willing to hold capital when volatility is high. This is illustrated as a
leftward shift in the risk-balance curve from the solid to the dashed line. After this “fire
sale,” capital is allocated less efficiently, and asset prices are lower.

So far, nothing rules out this arbitrary rise in fear, and |σR| appears indeterminate.
Mathematically, fixing the state variable η, equations (RB) and (PO) constitute two equa-
tions in the three unknowns (κ, q, |σR|). The indeterminacy in |σR| translates into an
indeterminacy in q, which can be seen by combining (RB) and (PO) to eliminate κ and
obtain the negative price-variance association:

|σR|2 =
η(1− η)(ae − ah)

2

qρ̄(η)− ηae − (1− η)ah

1
q

when κ < 1. (20)

In our construction leading up to Theorem 1, we treated (η, q) as state variables and
determined all other equilibrium objects as functions of (η, q). The preceding story
about fear suggests that one can also think of S-BSEs as being driven by uncertainty
shocks—time-varying beliefs about volatility |σR|—an interpretation which is supported
by the one-to-one mapping between q and |σR| in equation (20). To see this graphically,
refer back to Figure 3: the shading, representing |σR|, darkens monotonically as q falls.

Bounce-back beliefs and dynamic stability. Based on the static conditions (RB) and
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(PO), equilibrium seems to support a multiplicity of prices q for a fixed η. To understand
the beliefs that sustain this multiplicity, it helps to take a dynamical-systems perspective.

Let us think of (ηt, qt)t≥0 as a stochastic dynamical system. As in deterministic dy-
namical systems, a pair (ηt, qt) will only be an equilibrium if it does not lead to explosive
paths. Thus, beliefs must be such that (ηt, qt) will mean-revert, or bounce back, from ex-
treme states. What does this entail?

To fix ideas, consider the following explosive path. Suppose a fear shock raises
volatility |σq| and lowers asset prices q. Under higher volatility, any subsequent fear
shocks would have a larger direct impact on q, further raise volatility |σq|, and so on, ad
infinitum. Thus, with enough such fear shocks, we will have q↘ qL(η) and |σq| ↗ +∞.

For this fear-driven path to be an equilibrium, agents must believe that, at least even-
tually, q will recover and |σq| will fall. In other words, agents must believe µq will
increase enough to buoy q from its low level. This is an example of what we label
bounce-back beliefs. Bounce-back beliefs can be justified because µq is indeterminate, as
established in Theorem 1.

Translating agents’ bounce-back beliefs into specific mathematical conditions on µq is
straightforward. Because (ηt, qt)t≥0 evolves in a diffusive fashion, stability criteria conve-
niently boil down to boundary behavior of the dynamical system. Imposing conditions
on µq at the boundaries of the domain D (i.e., the triangle in Figure 3) is sufficient to
ensure a stochastically stable system. For example, we can impose that µq → +∞ if q
falls too low, and µq → −∞ if q rises too high.

In a sense, the mean-reversion embedded in bounce-back beliefs is precisely the
mechanism of self-fulfillment in our model. Fear can push asset prices very low precisely
because a recovery is expected. Prices can rise in a sentiment-driven boom precisely be-
cause agents know the boom will eventually subside. But if the only requirement is that
mean-reversion eventually takes hold, there remains significant scope for different types
of dynamics. The rise in fear can come from a fundamental or sunspot shock, and it can
be very persistent or very transient.

2.3 Two generalizations: jumps and investment

In the analysis so far, self-fulfilling fear is captured fully by return variance, and capital
growth is completely exogenous. Here, we relax both of these assumptions, allowing
sunspot jumps and capital investment. Later, we use this enriched model in a quantita-
tive exercise. More details on the equilibrium characterization for this generalized model
are contained in Online Appendix B.6.
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We model capital investment with standard “q-theory” assumptions as in Hayashi
(1982) Suppose that, when any individual is managing capital, his capital evolves as

dkt

kt
= (g + ιt − δ)dt + σdZ(1)

t , (21)

where g is exogenous growth, ιt is endogenous growth, and δ is the depreciation rate.
Let Φ(ι) be a convex adjustment cost function, so that Φ(ι)k of investment expenditures
creates ιk of new capital. For private agents, ι only affects the expected return on capital,
so they choose investment optimally to maximize this expected return, i.e., maxι qι −
Φ(ι), leading to the q-theory FOC

qt = Φ′(ιt) (22)

In particular, all agents choose the same investment rate by matching its marginal cost
to the traded capital price. Because Φ(·) is convex, let the unique solution to (22) be
ιt = ι(qt) := (Φ′)−1(qt). Note that ι(·) is strictly increasing.

Sunspot jumps enter the dynamics of the capital price. Consider a class of solutions
taking the form

dqt

qt−
= µq,t−dt + σq,t− · dZt − `q,t−dJt,

where J is a Poisson process with intensity λt. We allow the jump intensity to be endoge-
nous and time-varying. For simplicity, we restrict attention to equilibria where the jump
size `q is pre-determined, in particular a function of (η, q, λ) and potentially other vari-
ables describing the state of the system, and we focus on adverse jumps with `q ≥ 0. A
similar type of “exogenous liquidity shock” is studied in Krishnamurthy and Li (2024).

These modifications lead to the following changes. First, we now have an endogenous
growth rate, with aggregate capital dynamics

dKt

Kt
= G(qt)dt + σdZ(1)

t , where G(q) := g + ι(q)− δ. (23)

This turns out to only impact the expression for interest rate r, with g replaced by G(q).
Second, the goods market clearing condition now includes investment, which modi-

fies the price-output relation from (PO) to

ρ̄(ηt)qt + Φ(ι(qt)) = κtae + (1− κt)ah. (PO-inv)

24



Despite the presence of jumps, log utility agents still consume a constant fraction of
wealth, explaining why aggregate consumption per unit of capital is still ρ̄q. So long as
Φ(·) is increasing for the relevant set of equilibrium investment rates, we have Φ(ι(·)) in-
creasing. In that case, equation (PO-inv) is similar to (PO) in that both define increasing
mappings from the capital distribution κ to its price q, holding fixed the wealth distri-
bution η. Thus, a core channel behind our results, that coordinated trade moves asset
prices, remains qualitatively unaffected.

Third, the risk-balance condition (RB) is modified to read

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

(
|σR|2 +

λ`2
q(

1− κ
η `q
)(

1− 1−κ
1−η `q

))]. (RBJ)

The additional terms involving `q arise because there is a jump risk premium. By adding
a new source of risk, we have an additional degree of freedom. The risk-balance con-
dition disciplines overall risk—the term in parentheses of (RBJ) is pinned down given
(η, q)—but the split between the Brownian and Poisson shocks is indeterminate. We thus
have tremendous flexibility in our choice of `q.

To complete the construction of equilibrium, recall that we must ensure that (η, q)
remain in the equilibrium domain D (i.e., the shaded region in Figure 3). But this is
easy: just set `q = 0 near the boundaries of D. Doing this, the stability analysis remains
unchanged from Theorem 1, since near the boundaries the economy behaves as if it is
only hit by Brownian shocks. The only other consideration is that a price jump cannot be
so large as to exit the equilibrium domain D, i.e., price crashes cannot send experts into
bankruptcy or induce such large fire sales that households become the levered entity.

3 Resolving puzzles with sentiment

We have just demonstrated that sunspot equilibria, which are endemic to this class of
models, in principle support rich dynamics. Now, we solve some concrete examples to
illustrate several substantive results. We show how our framework can help resolve the
two puzzles outlined in the introduction and shown in Figures 1-2: (i) the severity and
suddenness of financial crises; and (ii) pre-crisis frothiness in asset markets. As a com-
parison, we show how the economy without sentiment performs poorly on these dimen-
sions. Moreover, the qualitative differences in crisis dynamics between our sentiment
equilibria and the fundamental equilibrium hold across a wide variety of specifications
for the indeterminate objects. After that, we calibrate our model and compare it to crisis
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data. We show this framework can—without any information friction, non-rational belief
updating, or additional bells and whistles considered in the literature—quantitatively
replicate various aspects of pre- and post-crisis dynamics.

3.1 Example economies

We construct example economies to compare our model dynamics to the data. To do
this, we must take a stand on a few variables that are not pinned down uniquely. Such
flexibility is always a concern in models with multiple equilibria. Our general strategy is
to, where possible, make choices that are either minimal or constrained by data. In cases
where a data counterpart is unavailable, we perform extensive sensitivity analyses.

We follow the construction outlined prior to Theorem 1, so that the state vector in-
cludes (η, q), the expert wealth share and the capital price. As summarized in Remark 1,
we know that this construction pins down the price volatility uniquely (|σq|), but leaves
open the source of volatility (σ(1)

q versus σ
(2)
q ), the price drift (µq away from the bound-

aries of D), and the exit rate from the efficient region. We make the following choices
for these objects.

1. Drift in the interior. For the drift µq, we follow Example 2. In the interior of D, let rt

follow the exogenous process

drt = λr(r̄− rt)dt + σr

(
θ√

1− θ2

)
· dZt, if (ηt, qt) ∈ int(D). (24)

By forcing r to follow (24), we effectively pick µq by equation (11). An advantage of
this approach is that we can use data on the interest rate to calibrate the parameters
(r̄, λr, σr, θ). We make one of two choices here:

(i) Our baseline sets σr = 0. In this case, rt → r̄ deterministically at rate λr when κt <

1. By minimizing risk-free rate volatility, we can show that our model dynamics
do not rely on specific types of time-variation in r or µq.

(ii) Alternatively, we pick (r̄, λr, |σr|) to match interest rate data. We pick these pa-
rameters to match the unconditional mean (0.014), variance (0.0232), and annual
autocorrelation (0.94) of the 3-month US real rate. We perform sensitivity analy-
ses on θ and sign(σr), i.e., to what extent interest rates are driven by fundamental
shocks and whether real rates are pro- or counter-cyclical.
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2. Drift at the boundaries. Near the lower boundary qL(η), we must make a choice for
“bounce-back beliefs.” We follow Example 1 in assuming a reflecting barrier q(η), such
that q ≥ q(η) always. We set this reflecting barrier by q(η) := qL(η) +

¯
κ(1− η) ae−ah

ρ̄(η)
,

where
¯
κ is a free parameter. This barrier keeps κt ≥ ¯

κ for all t. Numerically, our baseline
sets

¯
κ = 0.01, so that the barrier is just above qL. This choice is, in some sense, a minimal

one, because it affects the dynamics infrequently, only in the very extreme states.20

The economy is allowed to visit the upper boundary q = qH(η), because this is where
capital is efficiently allocated (κ = 1). However, the expected time until the economy
exits the efficient region is indeterminate. As a baseline, we suppose an exit rate such
that the economy is efficient approximately 10% of the time. We also perform sensitivity
analysis on this exit rate.

3. Source of volatility. Let ϑ be the fraction of return variance from the fundamental
shock, i.e., (σ(1)

R )2 = ϑ|σR|2. Our baseline assumes ϑ = 0.5 in the interior of D so that the
fundamental and sunspot shocks contribute equally to return volatility. We also perform
sensitivity on ϑ.

Comparison to Fundamental Equilibrium (FE). We compare the dynamics from an S-
BSE to those in a FE. Whenever we make such a comparison, we hold all deep parameters
fixed (i.e., ae, ah, ρe, ρh, δe, δh, σ). However, recall a FE constrains all objects like q, κ, r, etc.,
to be functions of η, and so this equilibrium lacks the degrees of freedom discussed
above for the S-BSE. Online Appendix E provides more detail on the solution to the FE.

Comparison to higher bounce-back beliefs. We also explore an S-BSE where bounce-
back beliefs kick in significantly earlier. In particular, continue to assume a reflecting
lower barrier q(η) = qL(η) +

¯
κ(1− η) ae−ah

ρ̄(η)
, but increase its level to

¯
κ = 0.6. Effectively,

this prevents fire sales from being too severe (i.e., κt ≥ 0.6 for all t).

3.2 Financial crisis event studies

We construct model-implied event studies, analogously to the data versions in Figures
1-2. As a baseline definition, a “crisis” is defined as the bottom 3rd percentile of year-
to-year log output declines in our simulation. Figure 6 presents the event study results
for the capital price q, the expert wealth share η, the weighted-average risk premium
κµR,e + (1− κ)µR,h − r, and return volatility |σR|.

20In fact, qt hits this reflecting boundary at q(ηt) on a measure zero set of time-points.
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Figure 6: Event studies around financial crises. Crises are defined as the bottom 3rd percentile of year-to-
year log output declines, subject to only one crisis occurring in a 6-year window. Data is generated via
a 10,000 year simulation at the daily frequency, with the outcomes above then averaged to the monthly
level. The solid blue line is the mean path from the S-BSE, while the dot-dashed red line is the mean
path from the FE. All variables are re-normalized around their unconditional average (the thin horizontal
line). The paths in the top panels (q and η) are rescaled by their t = 0 values to be in units of percentage
changes, and then shifted so that 1 represents the unconditional mean. The paths in the bottom panels
(κµR,e + (1− κ)µR,h − r and |σR|) are in raw units and plotted as deviations from their historical mean.
Parameters: ρe = 0.02, ρh = 0.015, ae = 0.11, ah = 0.03, σ = 0.05, g = 0.01. Type-switching parameters:
δh = 0.01 and δe = 0.015. Risk-free rate parameters: rt follows (24) with parameters r̄ = 0.014, λr =
− log(0.94), and σr = 0. Variance share parameter: in the interior of D, ϑ = 0.5 is the fraction of return
variance |σR|2 due to the fundamental shock.

The S-BSE (blue lines) produces severe, sudden crises with pre-crisis froth. The sud-
denness and severity are captured by the large swings in all variables at crisis onset
(t = 0). On average, asset prices q and expert wealth η both drop about 20% in the year
of crisis. Conversely, the risk premium κµR,e + (1− κ)µR,h − r and volatility |σR| rise
on average by about 5% and 10%, respectively, in this same year. While our model is
particularly simple, and we do not claim to provide a quantitative resolution of the puz-
zles, these magnitudes are in the ballpark of patterns from empirical crises. Pre-crisis
frothiness is captured by the fact that conditions are, by and large, better-than-average
and improving in the years leading up to crisis. The capital price is above-average and
rising; expert’s equity is near-average and also rising; the risk premium and volatility
are both below-average and falling pre-crisis. Warning signs of an impending crisis are
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not visible anywhere.
None of these patterns arise in the standard Fundamental Equilibrium (FE). Prices

fall significantly less and in a gradual fashion. Risk premia and volatility rise by an
order of magnitude less in the FE than in the S-BSE. This is all despite the fact that
expert wealth η declines significantly in the FE. Finally, there is an absence of pre-crisis
froth: all pre-crisis indicators are worse-than-average (q and η are below-average, while
κµR,e + (1− κ)µR,h − r and |σR| are above-average).

Importantly, sentiment-driven crises display significant declines in expert wealth η,
as happens empirically for banks (Baron et al., 2021). One question is how this finding
emerges given our emphasis throughout the paper on the “decoupling” of dynamics
from η. To reconcile decoupling with the fact that η crashes in crisis, recall the shock
exposure ση = (κ− η)σR. Experts’ balance sheets are always disproportionately exposed
to capital return shocks. If a non-fundamental fire sale emerges, for instance due to a
“fear” shock, the decline in q causes η to fall as well.

Why can the S-BSE produce dynamics so different from the FE? What is important
is that the economy visit extreme states having high volatility and low asset prices. The
stationary distribution of the S-BSE, plotted in Figure 7, shows how the economy spends
most of its time below the FE (the solid red line), and potentially far below. This is the
essential aspect of “decoupling” that matters to deliver the key results.
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Figure 7: Stationary distribution of (η, q) in the S-BSE. Darker colors represent higher relative frequencies
in the histogram. Parameters are the same as Figure 6.

Realistic crisis dynamics seem to depend on reaching extreme values of volatility and
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risk premia. To confirm this hypothesis, we now implement the alternative bounce-back
belief that prevents extreme fire sales. Specifically, we compute an S-BSE where the
bounce-back belief is the lower reflecting barrier q(η) := (1− η) ¯

κae+(1−
¯
κ)ah

ρh
+ η ae

ρe
, with

¯
κ = 0.6. To visualize how this truncates the equilibrium state space, see the stationary
distribution in Figure 8. The S-BSE now resides frequently above the FE, a region with
higher asset prices and lower volatility. Consequently, the financial crises are much tamer
in this equilibrium; now, the FE and S-BSE are not so different, as the event studies in
Figure 9 show. Preventing the economy from reaching extreme states rules out severe
crises with volatility and risk premium spikes.

0

0.5

1

1.5

2

2.5

10
4

Figure 8: Stationary distribution of (η, q) in the S-BSE with higher bounce-back beliefs. Darker colors represent
higher relative frequencies in the histogram. The bounce-back belief is a lower reflecting barrier at qL(η) +

0.6(1− η) ae−ah
ρ̄(η)

. Parameters are otherwise the same as Figure 6.

We perform several robustness exercises in Online Appendix C.2. There, we show
that the critical success of the S-BSE in reproducing the salient features of a crisis persists
under several alternatives. First, we define a financial crisis based on large drops in ηt

rather than output, more similar to Baron et al. (2021). Second, we alter the calibration of
the process for rt (i.e., we allow a more volatile interest rate, allow it to be either pro- or
counter-cyclical, and allow it to be driven by either the fundamental or sunspot shock).
Third, we shut down the sunspot shock altogether, so that all dynamics are driven by
fundamental shocks. Fourth, we re-calibrate to a slower exit rate from the efficient region
κ = 1, so that the efficient capital allocation emerges more often. None of these lead to
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Figure 9: Event studies with higher bounce-back beliefs. Crises are defined as the bottom 3rd percentile of
year-to-year log output declines, subject to only one crisis occurring in a 6-year window. The bounce-back
belief is a lower reflecting barrier at qL(η) + 0.6(1− η) ae−ah

ρ̄(η)
. All other details are identical to Figure 6.

significantly different results. Critically, all of these alternative S-BSEs permit volatility
and risk premia to reach extreme values that the FE does not allow.

3.3 Calibrated quantitative example with jumps and investment

We now study the generalized version of the model discussed in Section 2.3, which
includes capital investment and the possibility of sunspot jump shocks. We use this
enriched setting to match some empirical targets. While the goals of this paper are not
primarily quantitative, we view the exercise in this section as a “possibility result”: we
can design a sentiment process to match a litany of crisis and non-crisis moments that
are often viewed jointly as puzzling.

Model specification. We adopt quadratic adjustment costs Φ(ι) = ι− γ + χ
2 (ι− δ)2. In

that case, the optimal investment decision satisfying (22) is ι(q) = δ + q−1
χ .

For jumps, the two key objects are the jump arrival rate process λt and the jump size
`q,t. We assume λt passes through three states: normal, quiet, and panic. In the normal
and quiet states, the arrival rate takes constant values of λnormal and λquiet, respectively.
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In the panic state, λt takes a value in the interval [λpanic
L , λ

panic
H ], depending on the capital

price drop generated when the process entered the panic state. In particular, we assign
λ

panic
L to the lowest possible jump triggering a panic and λ

panic
H to the highest possible

such jump, linearly interpolating in between. Then, λt remains fixed during all the span
of each visit to the panic state. The transitions between normal, quiet, and panic states
occur at constant rates, independently of all other random variables, with one exception:
the transition from quiet to panic happens whenever the capital price falls in the quiet
state due to a sunspot jump shock.

The specification of jump sizes is described mathematically in Online Appendix C.3
but is easily understood verbally. For each (η, q, λ), there is a maximum theoretical jump
size `max

q (η, q, λ). Beyond that constraint, the model permits tremendous freedom. We
specify jumps `q to be some exogenous fraction of this maximum jump size, assuming
the result is bigger than a minimum level, and assuming κ is above some minimal level.
This jump fraction, the minimal jump size, and the minimal κ are all permitted to depend
on whether the latent state is normal, quiet, or panic.

Finally, we introduce two assets that proxy for liquidity and credit risk, in order to
speak more closely to existing empirical studies. Both assets are assumed to be in zero
net supply and only traded by experts, and so they do not alter any aspect of equilibrium.

The first asset is a liquidity asset. It loses fraction α of its value when a “liquidity
event" is realized, defined as a jump of `q,t−dJt > 0 that triggers a drop in capital price.
In equilibrium, the premium such an assets pays over the risk free rate would be

LiqPrem = 1{`q>0}
λα

1− κ
η `q

(25)

We calibrate the loss to α = 0.05, which corresponds to the effective liquidation loss in
the data of the 2008 crisis (Krishnamurthy and Li, 2024).

The second asset is a credit asset. Conditional on a “liquidity event", this asset “de-
faults” with exogenous probability π on a large fraction of its value (incurring a loss-
given-default of m0 +m1`q) and experiences a small decline otherwise (losing m2 fraction
of its value). In equilibrium, the spread this asset pays over the risk-free rate is

CredSpread = 1{`q>0}
λ

1− κ
η `q

[
π(m0 + m1`q) + (1− π)m2

]
(26)

In Online Appendix C.3, we calibrate the parameters π, m0, m1, and m2 to various data
on average default rates, average loss-given-default, and the 2008 financial crisis loss-
given-default data in the US, following Krishnamurthy and Li (2024).
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Calibration. The full model calibration is contained in Online Appendix C.3. There, we
also show how the model performs on various unconditional macro-financial moments
in the US, including data on consumption, investment, output, liquidity premia, stock
returns, bank equity returns, and bank leverage. While our calibration features excess
consumption and output volatility, relative to the data, this is needed to generate more
realistic outcomes for stock returns, which we match relatively well. For example, the
average return and return volatility of financial stocks, proxied by experts’ equity, are
10.5% and 39% in our model, respectively, compared to 8.8% and 37% in the data. Be-
cause the model matches return data relatively well, it also matches investment growth
and volatility well.

The most important tests of our model relate to pre- and post-crisis data on GDP,
credit-to-GDP, and credit spreads, as well as the predictability of crises. Quantitatively,
the model matches these dynamics quite well (Tables C.4-C.5). To give the reader a sense
of the magnitudes for these outcomes, Figure 10 plots crisis event studies for various
objects of interest. Visible in the figures are the severe downturn in economic activity,
sharply negative returns, and spikes in risk premia, volatility, and credit spreads. In
addition, we can see evidence of “frothy” behavior pre-crisis, as we elaborate on below.

The top left panel shows GDP growing faster than average in the years prior to a
crisis, with a sharp drop upon the arrival of a crisis, and a slow recovery afterward. The
11% drop in the crisis year is close to the 9.3% observed empirically (Reinhart and Ro-
goff, 2009, p.230). Model-implied GDP is 7% below trend 2-3 years post-crisis, compared
to 6.5% empirically (from averages of results in Krishnamurthy and Muir, 2024; Sufi and
Taylor, 2022; Schularick and Taylor, 2012). A similar pattern is seen in the credit-to-GDP
ratio, defining credit as experts’ liabilities, i.e., Credit =

(
κ − η

)
qK, following Krishna-

murthy and Li (2024). (This credit-to-GDP series is plotted as standard deviations away
from its non-crisis mean, and its behavior is sharper than in the data, e.g., Baron et al.,
2021, likely because our model measure is purely short-term debt.)

The third panel illustrates the behavior of financial and non-financial (log) returns.
In the model, we proxy financial returns with the return on expert’s equity and non-
financial return with the return on capital (using the capital-weighted average of divi-
dend yield between experts and households). We plot these returns as deviations from
their unconditional averages outside of crisis windows, and normalize the resulting dif-
ference to equal zero in the month before crisis. The boom-bust pattern is clear, with
large positive pre-crisis returns, followed by a -50% return at crisis onset, and a long-
lasting depression (minimal recovery after 5 years). This closely matches data: according
to Baron et al. (2021), replicated in our Figure 1, the average financial crisis features a
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Figure 10: Crisis event studies. Crises are defined as the bottom 3.5th percentile of month-to-month log
output declines, conditional on no other crisis in the previous 7 years. In all panels, the dotted line
represents the unconditional mean (outside of crisis window observations). The calibration is in Table C.1.
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-46.2% peak-to-trough bank equity decline, with no bank equity rebound after 5 years.
Furthermore, our event studies show a financial equity decline that fully materializes
even as GDP just begins to drop, in line with their empirical findings.

The fourth panel illustrates the behavior of the credit spread. (Not displayed, the liq-
uidity premium measure displays similar behavior.) The 1-year spread increase around
crisis is 0.73 standard deviations in the model, compared to between 0.48 and 0.68 in
the data (Krishnamurthy and Muir, 2024, Table VII). Some pre-crisis frothiness of credit
spreads is present, but slightly more modest than in the data; as one example, in the two
years before crisis, spreads are -0.14 standard deviations below their mean in the model,
with the corresponding numbers between -0.15 and -0.43 in the data (Krishnamurthy
and Muir, 2024, Table VII). That said, the pre-crisis froth is a robust phenomenon, and
importantly froth predicts crises. For example, using below-median credit spreads as the
predictor variable, the model implies a 17% higher probability of crisis in the next 5
years, with a corresponding number being 21% in the data (Krishnamurthy and Muir,
2024, Table VII). Crisis predictability rises if both high credit and low spreads happen
at the same time, both in the model and data (Schularick and Taylor, 2012; Baron and
Xiong, 2017; Krishnamurthy and Muir, 2024). After the crisis, spreads tend to mean-
revert at a rate in line with the data (half-life of 3.1 years in the model versus between
2.5-3.5 years in the data, according to Muir, 2017, and Krishnamurthy and Muir, 2024).

The fifth and sixth panels display the model-implied local risk premium (again us-
ing the capital-weighted average of expert and household dividends) and capital return
volatility (defined as

√
|σR|2 + λ`2

q). The shaded areas correspond to the risk premium
and volatility, respectively, associated to Brownian risk. There is a very large and sud-
den spike in these objects upon crisis—the risk premium rises to exceed 15% per annum,
while the volatility rises from 13% to 30% per annum. This is about half the magnitude
of the volatility spike in Figure 2. Pre-crisis froth is also evident, with both measures
slightly below their mean before crises.

4 Conclusion

We have shown that macroeconomic models with financial frictions may inherently per-
mit sunspot volatility. The types of models we study are extremely common in macroe-
conomics, so this phenomenon cannot be ignored.

On the bright side, our paper demonstrates how a fully-rational notion of “senti-
ments” can be a powerful input into macro-finance dynamics. Time-varying uncertainty
drives all dynamics in our sentiment-driven fluctuations. Sharp volatility spikes and
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belief-driven boom-bust cycles are among the many interesting possibilities raised by
our framework. While ours is not a full-blown quantitative analysis, we show that ratio-
nal sentiment can bring the model closer to data on these dimensions.

On the hazier side, our results suggest a modicum of caution. Many researchers
employ numerical techniques to solve and analyze DSGE models that are built upon the
core frictions in our paper—these procedures implicitly select an equilibrium, without
any explicit justification. A deeper analysis of refinements, perhaps leveraging global-
games approaches or adaptive learning, still remains to be done.

What about policy?21 Caveated by the need for further study on refinements, we can
offer some initial thoughts. Some traditional policies become less effective in sunspot
equilibria. For example, deposit insurance has less bite because run-like behavior can
occur solely due to fire-sale coordination, i.e., on the asset side rather than the liabil-
ity side. Sunspot equilibria also decouple financial crises from bank balance sheets and
wealth, which defangs capital requirements, bailouts, and the like. On the other hand,
policies that manipulate beliefs can be effective. Future research might better explain
which policy designs have the power to manipulate beliefs in this way. Given the frame-
work we study relies on fire sales, asset purchases (or future commitments to them) are
one interesting candidate.
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A Solvency constraint as the natural borrowing limit

A.1 Solvency constraint

Here, we discuss the solvency constraint nt ≥ 0, which serves as the natural borrowing
limit in our framework. The idea of a natural borrowing limit is that agents can borrow
at most the present-value of their future income if they want to consume non-negative
amounts and also not run a Ponzi scheme (see, e.g., Aiyagari, 1994). In our context, the
only asset is capital, and the stream of its future dividends represents future income.
Thus, if the income stream is valued at qtkt for kt units of capital holdings, it is sensible
that an agent should be able to borrow at most this amount: bt ≤ qtkt. Since net worth
is defined as assets minus liabilities, nt = qtkt − bt, this implies nt ≥ 0.

Below, we explore two microfoundations for the solvency constraint nt ≥ 0, which
clarifies that this constraint is “natural” in some sense. We allow the possibility of zero
fundamental volatility, σ = 0, for generality. Our two microfoundations assume that
unsecured debts must be repaid eventually. That is, an asymptotic No-Ponzi condition
holds, as well as a condition that rules out infinite indebtedness along the way.

To set up the environment and the constraints, consider an agent with net worth nt

who may choose any consumption and trading strategy {ct, kt}t≥0 that satisfies appro-
priate mild integrability conditions. The dynamic budget constraint of this agent takes
the form

dnt =
[
rtnt − ct + qtkt(µR,t − rt)

]
dt + qtktσR,t · dZt, n0 given, (A.1)

where µR,t is that agent’s expected return on capital (which differs between experts and
households). Given these trading opportunities, let Mt be the state-price density faced
by this agent:

Mt = exp
[
−
∫ t

0

(
rs +

1
2
|πs|2

)
ds−

∫ t

0
πs · dZs

]
, (A.2)

where σR,t · πt = µR,t − rt. (A.3)
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Note that equation (A.3) defines πt as the agent’s market price of risk process, which
again is agent-specific in our model. Because we will refer to it very often, define the
exponential local martingale

M̃t := exp
[
− 1

2

∫ t

0
|πs|2ds−

∫ t

0
πs · dZs

]
. (A.4)

The process M̃t, provided it is a true martingale, will be used to define the risk-neutral
probability measure P̃. (In an infinite-horizon model, there is some additional subtlety
to the construction of the risk-neutral measure, which we will explain in the proof of
Lemma A.2 below.)

Given this environment, we consider two different formulations of the asymptotic
No-Ponzi condition. In the first formulation, we assume that agents must obey

lim inf
T→∞

MTnT ≥ 0 P-almost-surely. (NPC-1)

(this is weaker than the condition lim infT→∞ nT ≥ 0 because of the fact that MT > 0). In
the second formulation, we assume that agents obey

lim inf
T→∞

e−
∫ T

0 rtdtnT ≥ 0 P̃-almost-surely, (NPC-2)

where P̃ denotes the risk-neutral probability measure. The intuitive idea behind con-
straints (NPC-1) and (NPC-2) is as follows. By taking expectations of (NPC-1) and
(NPC-2), we have that Et[M∞n∞] ≥ 0 and Ẽt[e−

∫ ∞
0 rtdtn∞] ≥ 0, respectively. Therefore,

these constraints imply that the present-value of unsecured debts must vanish eventu-
ally, ruling out arbitrarily large debts asymptotically. However, by themselves, neither
(NPC-1) nor (NPC-2) is sufficient to induce the solvency constraint nt ≥ 0.

We impose, in addition, a uniform lower bound on net worth, but with two different
functional forms. In the first formulation, we impose a lower bound on the present-value
of net worth,

Mtnt ≥ −n, (NLB-1)

where n can be arbitrarily large but finite. In the second microfoundation, we impose a
lower bound on net worth directly,

e−
∫ t

0 rsdsnt ≥ −n, (NLB-2)
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where again n can be arbitrarily large but finite. Allowing n to be arbitrarily large
permits any trading strategy that doesn’t leave the agent infinitely indebted. Constraints
(NLB-1)-(NLB-2) are examples of the requirement that portfolios be “tame” (see Karatzas
and Shreve, 1998, Chapter 1, Definition 2.4). In dynamic trading models, the point of
tame portfolios is to rule out certain trivial arbitrage opportunities like “doubling strate-
gies” (c.f., Karatzas and Shreve, 1998, Chapter 1, Example 2.3). Thus, no equilibrium
could exist without a requirement like (NLB-1) or (NLB-2), which is why we view these
constraints as a minimal requirement.22

Now, we provide two proofs that the solvency constraint holds.

Lemma A.1. Let (NPC-1) and (NLB-1) hold. Then, every agent must obey nt ≥ 0.

Lemma A.2. Let (NPC-2) and (NLB-2) hold. Suppose M̃t is a martingale. Then, every agent
must obey nt ≥ 0.

Remark 2. We make a brief remark about the assumption that M̃t be a martingale in the latter
lemma. This assumption should be regarded as relatively minor. Indeed, a sufficient condition
for M̃t to be a martingale is that supt |πt| < ∞, i.e., risk prices be uniformly bounded. It is
straightforward to verify that equilibrium risk prices only diverge at the boundary where η → 0
and κ/η → +∞, so what we need is for state dynamics prevent the economy from approaching
this boundary.23 This can be done: an example of such an equilibrium construction is presented
in Proposition D.1, in which risk prices are indeed uniformly bounded.

Proof of Lemma A.1. The general strategy of the proof is to derive a static budget con-
straint, and then use this budget constraint to prove that nt ≥ 0.

Apply Itô’s formula to the process

Ht := Mtnt +
∫ t

0
Mscsds,

22An alternative constraint that achieves the same result as (NLB-2) is to impose an integrability condi-
tion on the trading strategies agents can do:

Ẽ
[ ∫ ∞

0
e−2

∫ t
0 rsds(qtkt)

2|σR,t|2dt
]
< ∞,

where Ẽ represents the risk-neutral expectation in the model. Dybvig and Huang (1988), Theorems 4 and
5, prove that the lower bound (NLB-2) and the integrability condition above are essentially equivalent in
this environment: they both rule out arbitrage and permit essentially the same trading strategies. We
work with the uniform net worth lower bound because it translates better into our infinite-horizon proofs.

23Indeed, (squared) expert risk prices are given by |π|2 = ( κ
η )

2|σR|2, which after using the equilibrium

value of |σR|2 when κ < 1 gives us |π|2 = ( κ
η )

2 η(1−η)
κ−η

ae−ah
q . This is bounded except at the boundary η → 0

and κ → κ̄ > 0. At this boundary, the risk price behaves like |π|2 ∼ η−1C̄, where C̄ := κ̄(ae−ah)
ah+κ̄(ae−ah)

ρh.
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then use the dynamic budget constraint (A.1) and equation (A.3) for πt, to obtain

HT − Ht = MTnT −Mtnt +
∫ T

t
Mscsds =

∫ T

t
Ms

(
qsksσR,s − nsπs

)
· dZs. (A.5)

This shows that Ht is a local martingale. Furthermore, the lower bound (NLB-1) and the
non-negativity of consumption imply Ht ≥ −n and so Ht is a super-martingale. Taking
time-t expectations of (A.5), we thus have

Et

[
MTnT

]
+ Et

[ ∫ T

t
Mscsds

]
≤ Mtnt. (A.6)

Because consumption is non-negative, the monotone convergence theorem implies

lim
T→∞

Et

[ ∫ T

t
Mscsds

]
= Et

[ ∫ ∞

t
Mscsds

]
.

For the terminal wealth term, the lower bound (NLB-1) implies (MTnT)T≥∞ is a uni-
formly lower-bounded family of random variables, so by Fatou’s lemma we have

lim inf
T→∞

Et

[
MTnT

]
≥ Et

[
lim inf

T→∞
MTnT

]
.

Using asymptotic No-Ponzi condition (NPC-1), the right-hand-side term is non-negative.
Using these limiting results in (A.6), we have

Et

[ ∫ ∞

t
Mscsds

]
≤ Mtnt. (A.7)

Equation (A.7) is the usual “static” budget constraint. From (A.7), the fact that con-
sumption is non-negative, and the fact that the state-price density is strictly positive, we
immediately obtain nt ≥ 0. Since time t was arbitrary, this must hold for all times.

Proof of Lemma A.2. This proof proceeds slightly differently than Lemma A.1. Indeed,
since there is no obvious lower bound that can be applied to MTnT in equation (A.6),
the proof becomes more technical and complex. The general strategy is to examine the
dynamics of e−

∫ t
0 rsdsnt, which is lower-bounded, rather than Mtnt.

There are two complications. First, to continue to use martingale methods, we must
examine the dynamics of e−

∫ t
0 rsdsnt under the risk-neutral measure P̃ rather than the

true probability P. This is where the assumption that M̃t is a martingale, hence a valid
change-of-measure, comes into play. Second, because our model is infinite-horizon, P̃
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and P may be mutually singular asymptotically on the limiting sigma-algebra F∞, even
though P̃ and P are equivalent on every finite horizon. For this reason, the No-Ponzi
condition (NPC-2) is written purposefully under P̃.

First, we define a probability measure P̃ following the recipe of Chapter 1.7 in
Karatzas and Shreve (1998). Using M̃t as a change-of-measure, we set

P̃(A) := E[M̃T1A]; A ∈ FT, 0 ≤ T < ∞. (A.8)

As proven in Chapter 1.7, Proposition 7.4 of Karatzas and Shreve (1998), the probability
P̃ is equivalent to P on FT for each T ≥ 0 (i.e., a set in FT is a P̃-null set if and only if it
is a P-null set). Furthermore, the process

Z̃t := Zt +
∫ t

0
πsds

is a Brownian motion on under P̃.
Consider now the process

Ht := e−
∫ t

0 rsdsnt +
∫ t

0
e−
∫ s

0 ruducsds,

which follows

dHt = e−
∫ t

0 rsds
(

qtktσR,t

)
· dZ̃t. (A.9)

By the non-negativity of consumption and the lower bound (NLB-2), we have that Ht ≥
−n, so Ht is a P̃-super-martingale. Taking time-t risk-neutral expectations of HT − Ht,
we thus have

Ẽt

[
e−
∫ T

0 rsdsnT

]
+ Ẽt

[ ∫ T

t
e−
∫ s

0 ruducsds
]
≤ e−

∫ t
0 rsdsnt. (A.10)

Because consumption is non-negative, the monotone convergence theorem implies

lim
T→∞

Ẽt

[ ∫ T

t
e−
∫ s

0 ruducsds
]
= Ẽt

[ ∫ ∞

t
e−
∫ s

0 ruducsds
]
.

For the terminal wealth term, the lower bound (NLB-2) implies (e−
∫ T

0 rsdsnT)T≥∞ is a
uniformly lower-bounded family of random variables. Because P̃ and P are equivalent
on all finite horizons, the almost-sure lower-bound holds both under P̃ and P, so by
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Fatou’s lemma we have

lim inf
T→∞

Ẽt

[
e−
∫ T

0 rsdsnT

]
≥ Ẽt

[
lim inf

T→∞
e−
∫ T

0 rsdsnT

]
.

Using asymptotic No-Ponzi condition (NPC-2), the right-hand-side term is non-negative.
Using these limiting results in (A.10), we have

Ẽt

[ ∫ ∞

t
e−
∫ s

0 ruducsds
]
≤ e−

∫ t
0 rsdsnt. (A.11)

Equation (A.11) is the usual “static” budget constraint. From (A.11), and the fact that
consumption is non-negative, we immediately obtain nt ≥ 0.

A.2 Application: zero fundamental uncertainty case

One of the most striking results we will present is that non-fundamental equilibria can
emerge even if σ = 0. While one could regard this as a limiting case as σ → 0, some
readers may expect a discontinuity in the results when σ literally equals 0. With no
borrowing frictions, the riskless bond market seems to be enough to make financial
markets complete when σ = 0, and so the First Welfare Theorem holds. Under the First
Welfare Theorem, we would have generic equilibrium uniqueness.

For our economy, whether or not the financial market is complete or incomplete
is actually endogenous and depends on whether asset prices qt are volatile. Imagine
an individual expert operating in a world where σq 6= 0. For him, equity-issuance
constraints matter because outside equity is the only way to hedge capital price shocks.
As stated by Chiappori and Guesnerie (1991), “the existence of a complete set of initial
markets is not enough...Insurance markets against sunspot should also be introduced to
allow full insurance.”

But is this statement vacuous? Why can’t a researcher take any economic model and
make its financial markets incomplete by simply conjecturing its asset price dynamics
depend on some extrinsic shocks? The answer, suggested by our discussion in Section
1.3, is that the structure of most economies rules out any dependence of asset prices
on extrinsic shocks. For example, we showed that q cannot be stochastic with ae = ah.
In such cases, even if extrinsic shocks are strictly speaking uninsurable, markets are
effectively complete because equilibrium cannot support extrinsic shocks to asset prices.

An alternative line of thinking suggests agents should ignore shocks to q when σ =

0. Whereas fundamental shocks directly impact capital, extrinsic shocks to prices only
affect net worth “on paper.” For example, consider the following buy-and-hold strategy:
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borrow using the riskless bond market; use the proceeds to purchase capital; use the cash
flows from capital to repay debts over time; ignore any capital price fluctuations and
never sell the capital; and consume after all debts are repaid. Assuming no exogenous
growth (g = 0) for simplicity, this trading strategy has cash flows {ae − rtbt}t≥0, where
the debt balance bt satisfies dbt = −(ae − rtbt − ct)dt with b0 = q0. The consumption
associated with this strategy is ct = 1t>τae, where τ := inf{t : bt ≥ 0} is the time when
all debts are repaid. Since this consumption is non-negative, and zero initial investment
was made, this is an arbitrage if it is feasible. Furthermore, if all experts behaved in this
way, capital prices would not be volatile or ever fall below their efficient value.

The general problem with such strategies that “ignore market prices” is that debts
can become arbitrarily large. When the interest rate rises, the example strategy above
produces negative cash flows. Agents must increase their borrowing to continue holding
capital. With positive probability, this happens so often and for so long that either debts
approach infinity, or default occurs eventually. If markets impose the requirements that
net worth remains lower bounded and all debts are eventually repaid, such a strategy is
ruled out. This is the content of the previous section, where we showed more generally
that a net worth lower bound and a No-Ponzi constraint are equivalent to a solvency
constraint nt ≥ 0 that rules out all arbitrage trades. In other words, the “ignore market
prices” trade is not feasible, so sentiment equilibria are not ruled out even if σ = 0.

B Proofs for Sections 1-2

B.1 Irrelevance of type-switching for optimal behavior

The objective function with type-switching technically differs from (3), because agents
understand that at a future exponentially-distributed time, they will switch occupations.
Mathematically, the objective functions and indirect utilities satisfy the recursions, for
each type-j (expert or household) agent

Vj,t = sup
cj≥0,kj≥0,nj≥0

E
[ ∫ Tj

0
e−ρjs log(cj,t+s)ds + e−ρjTV−j,t+Tj

]
, Tj ∼ exp(δj)

Standard homogeneity arguments imply that indirect utilities take the additively-separable
form Vj,t = ρ−1

j log(nj,t) + ξ j,t, for processes ξ j,t that only depend on aggregates (i.e., not
on individual net worth). Write dξ j,t = µξ,j,tdt + σξ,j,t · dZt. Then, the HJB equations
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associated with these equations are

ρjVj = max
c,k≥0

log(c) + (∂nVj)[rn− c + qk(µR,j − r)] +
1
2
(∂nnVj)(qk)2|σR|2 + µξ,j + δe[V−j −Vj]

where µR,j is the expected returns on capital for type j. Using the form of Vj, the HJB
equations become

log(n) + ρjξ j = max
c,k≥0

log(c) + ρ−1
j [r− c

n
+

qk
n
(µR,j − r)]− 1

2
(

qk
n
)2|σR|2 + µξ,j + δe[ξ−j − ξ j]

Optimal choices take the familiar log-utility forms: consumptions are cj = ρjnj; portfo-

lios are
qkj
nj

= [
µR,j−r
|σR|2

]+. Most importantly, these choices are independent of the switching
parameters δj. To fully verify that this is correct, we must substitute the optimality con-
ditions back into the HJB equations and check that we recover equations for ξe and ξh

that only depend on aggregate variables (e.g., capital price q, interest rate r, etc.). Doing
this, we obtain

ρjξ j = log(ρj) + ρ−1
j [r− ρj +

1
2
(
[µR,j − r]+

|σR|
)2] + µξ,j + δj[ξ−j − ξ j],

which verifies the conjecture, as all terms either pertain to the ξ processes or aggregate
variables. �

B.2 Proof of Lemma 1

We are given η0 and conditions (PO), (RB), (11), and (13)-(14). We need to check condi-
tions (i)-(iii) of Definition 1. Condition (i) holds by the definition of η0.

For condition (ii), note that standard martingale techniques can be applied to verify
that individual optimality, subject to the dynamic budget constraint (2), is equivalent
to the following conditions holding: c` = ρ`n`; the portfolio conditions (7)-(8); and the
transversality conditions in (10). We must verify that these conditions hold. Given qt, ηt,
κt, and individual net worths ni

e,t and nj
h,t, let us set

ci
e,t = ρeni

e,t and ki
e,t =

κt

qtηt
ni

e,t, for i ∈ I (B.1)

cj
h,t = ρhnj

h,t and kj
h,t =

1− κt

qt(1− ηt)
nj

h,t, for j ∈ J. (B.2)

If we do this, then clearly the optimal consumption-wealth ratio holds. Similarly, after
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substituting the suggested capital holdings from (B.1)-(B.2), the optimal portfolio con-
ditions (7)-(8) become a linear transformation of equations (RB) and (11)—i.e., equation
(RB) is the difference between (7) and (8), while (11) is the sum of κ times (7) plus 1− κ

times (8). Thus, given (RB) and (11), equations (7)-(8) hold as well. Finally, after substi-
tuting the proposals in (B.1)-(B.2) into the transversality conditions in (10), we see that
these hold automatically.

For condition (iii), note that κ ∈ [0, 1] automatically implies capital market clearing
(5). Similarly, substituting c` = ρ`n` and the definitions of κ and η into (PO), we obtain
goods market clearing (4).

Thus, we have constructed an equilibrium of Definition 1. Note that (13)-(14) have not
been used in this construction, but they are direct consequences (by Itô’s formula) of η’s
definition. The final statement of the lemma is clearly true. Indeed, (qt, rt) are directly
involved in Definition 1, while the objects (ηt, κt) constitute two summary statistics of the
distribution of net worth and capital {ni

e,t, nj
h,t, ki

e,t, kj
h,t : i ∈ I, j ∈ J}. Thus, two distinct

values of (ηt, qt, κt, rt)t≥0 cannot correspond to the same equilibrium of Definition 1. �

B.3 Proof of Theorem 1

Step 0: Reduce the system. We will start by eliminating (r, κ, ση, µη) from the system of
endogenous objects, given (η, q, σq, µq). First, price-output relation (PO) determines κ as
a function of (η, q) and nothing else, given by

κ(η, q) :=
qρ̄(η)− ah

ae − ah
. (B.3)

Second, substituting this result for κ, equation (11) fully determines r, given knowledge
of (η, q, σq, µq). Third, equations (13)-(14), after plugging in the result for κ, fully de-
termine (ση, µη), given knowledge of (η, q, σq). Thus, given (η, q), the choice of (σq, µq)

needs to ensure that (RB) holds and that the dynamics of (ηt, qt) remain inside the do-
main D := {(η, q) : 0 < η < 1, qL(η) < q ≤ qH(η)}, as defined by (16) in text.

The remainder of the proof is entirely devoted to addressing the boundaries of D.
Indeed, given (η, q) ∈ D◦ (the interior of D), we can set σq according to (B.6) below
and set µq to any real number. This is not to suggest that the boundary points are
inconsequential; on the contrary, without ensuring that the system (ηt, qt)t≥0 remains
in D, the solution constructed in the interior D◦ would not be part of an equilibrium.
Unfortunately, the choice of (σq, µq) is more delicate at the boundary ∂D. Furthermore,
verifying that (ηt, qt)t≥0 remains in D is non-trivial and requires a detailed analysis.
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Step 1: Define perturbed domain. To facilitate analysis, it will be convenient to analyze
a slightly modified system instead of (η, q), and on a perturbed domain. The purpose
of this perturbation will be threefold. First, as q approaches the lower boundary of
D, volatility σq necessarily grows without bound; by perturbing this boundary slightly
upward, we prevent unbounded volatilities, allowing us to use standard diffusion theory.
Second, as q approaches the upper boundary of D, there will exist a wealth level η∗ such
that κ = 1 cannot possibly occur on {η ≤ η∗} but can occur on {η > η∗}; by rotating
this upper boundary around any wealth share above η∗, we streamline our arguments.
Third, our perturbed domain will be an open set, which is easier to work with. See
Figure B.1 below for a visual of the domain perturbation. By the end of this step, it will
become clear that if our modified system (η, x) remains in perturbed domain X , then the
original system (η, q) remains in the original domain D. Furthermore, after constructing
an equilibrium in this perturbed domain, it will be clear that we are able to consider the
limit of a sequence of such equilibria as the perturbations vanish, and so we can also
construct an equilibrium on the full domain D (although this is not what Theorem 1
requires us to prove).

First, define the following auxiliary functions that we use to perturb the domain
boundaries. Fix εα, εβ ∈ (0, ae−ah

ρh
). Let α(·) be an increasing, continuously differentiable

function such that α(0) = 0, α′(0) > 0, and α(1) = εα. Let β(·) be an increasing,
continuously differentiable function such that β(η) = 0 for all η ≤ η∗ and β(1) = εβ/η∗,
where

η∗ :=
ρh
ρe

(1− ah/ae

σ2 ρe − 1 +
ρh
ρe

)−1
. (B.4)

Note that η∗ < 1 by Assumption 1, part (ii). This threshold η∗ is the one mentioned
above, where equilibrium does not permit κ = 1 for any η ≤ η∗.

Next, recall the following upper and lower bounds for the capital price,

qH(η) := ae/ρ̄(η)

qL(η) := ā(η)/ρ̄(η),

where ā(η) := ηρe +(1− η)ρh. Using (B.3), one notices that qH corresponds to the capital
price when κ = 1, whereas qL corresponds to the capital price when κ = η. Construct
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the following perturbed upper and lower bounds by putting

qH
β (η) := qH(η) + β(η)

qL
α(η) := qL(η) + α(η).

Using these functions, define the perturbed domain (which is an open set)

X :=
{
(η, x) : η ∈ (0, 1) and qL

α(η) < x < qH
β (η)

}
.

Note that, boundaries aside, X will coincide with D as εα → 0 and εβ → 0. For reference,
the perturbed domain X is displayed in Figure B.1.

Figure B.1: The perturbed do-
main X is shown as the shaded
region surrounded by solid
black lines. The original do-
main D is the region defined by
the dashed lines. The perturba-
tion functions α and β are cho-
sen to be linear functions, with
εα = 0.2 and εβ = 0.05. Pa-
rameters: ρe = 0.07, ρh = 0.05,
ae = 0.11, ah = 0.03, σ = 0.1.

We will define a stochastic process xt such that the capital price q coincides with x
when it lies below qH, i.e.,

qt = min
[

xt, qH(ηt)
]
. (B.5)

By (B.5), we may analyze the dynamical system (ηt, xt)t≥0 rather than (ηt, qt)t≥0. Fur-
thermore, to prove the claim that (ηt, qt)t≥0 remains in D almost-surely, it suffices to
prove (ηt, xt)t≥0 remains in X almost-surely (Step 6 below).

Step 2: Allow auxiliary state variables. We introduce some auxiliary state variables here, be-
cause several of the indeterminate objects to follow can depend arbitrarily on them. We
assume yt satisfies an exogenous, stationary Markov diffusion dyt = µy(yt)dt + σy(yt) ·
dZt on the N-dimensional domain Y . Moreover, we assume the process is sufficiently
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well-behaved in the sense that it possesses an appropriate “Lyapunov” function. To write
this condition, first define the infinitesimal generator L y of yt, where for any C2 function
f : Y 7→ R,

L y f = µy∂y f +
1
2
|σy|2∂yy f .

Assume there exists a non-negative C2 function vy : Y 7→ R+, such that lim infy→∂Y vy =

+∞ and such that L yvy ≤ 0 on Y . The implication of this assumption is that (yt)t≥0 is a
recurrent process (see Lemma 3.9 of Khasminskii (2011)). Together, the endogenous and
exogenous states (ηt, xt, yt) exist in the domain X ×Y .

Step 3: Construct σq so that (RB) is satisfied. First consider {x < qH(η)} so that q = x. Note
that this case corresponds to κ < 1. Let ϑ(η, x, y) : X × Y 7→ [0, 1] be any C1 function,
whose dependence on y vanishes for all (η, x) close enough to the boundary ∂X . Put

σq =


√

ϑ
η(1−η)

κ−η
ae−ah

q − σ√
(1− ϑ) η(1−η)

κ−η
ae−ah

q

 , if x < qH(η). (B.6)

Substituting (B.6), one can verify that the second term of condition (RB) is zero. Im-
portantly, the definitions of qL

α and qH
β imply that σq is bounded on X ∩ {x < qH(η)}.

Indeed, because of α′(0) > 0, the slowest possible rate that κ → 0 as η → 0 is lower-
bounded away from 1, i.e., lim infη→0,(η,x)∈X κ/η > 1. And because α(1) > 0, we have
κ = 1 for all η near enough to 1; thus η is bounded away from 1 on {x < qH(η)}.

Next consider {x ≥ qH(η)} so that q = qH(η). Note that this case corresponds to
κ = 1. Since q is an explicit function of η, we use Itô’s formula to compute ( 1

0 ) · σq =

−ση ρ̄′/ρ̄, which after substituting equation (14) for ση delivers

σq =

− (1−η)(ρe−ρh)/ρ̄
1+(1−η)(ρe−ρh)/ρ̄

σ

0

 , if x ≥ qH(η). (B.7)

Note that (B.7) will be consistent with (RB) as long as (ηt, xt)t≥0 remains in X almost-
surely, which will be verified in Step 6.24

Note finally that σq defined in (B.6)-(B.7) is solely a function of (η, x, y), so sometimes

24Plugging q = ae/ρ̄ into the second term of equation (RB), we require |σR|2 ≤ ηρ̄(η)(1− ah/ae). On the
other hand, (B.7) implies |σR|2 = σ2(ρ̄/ρe)2. Combining these, we require η ≥ η∗ when x ≥ qH(η), where
η∗ is defined in (B.4). Therefore, for all η < η∗, equilibrium insists x < qH(η). As long as (η, x) ∈ X , this
will hold, because of the way X is defined as an open set.
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we will write σq(η, x, y). Similarly, with σq in hand, we now have µη and ση as functions
of (η, x, y) alone. However, notice that, by the assumption made on ϑ, the dependence
of (σq, ση, µη) on y vanishes as (η, x) approaches ∂X .

Step 4: Construct µq. Similar to σq, separately consider {x < qH(η)} and {x ≥ qH(η)}.
On {x ≥ qH(η)}, since q = qH(η) is an explicit function of η, we set µq via Itô’s formula.
On {x < qH(η)}, we have no equilibrium considerations restricting µq. Thus, we will
put µq = mq, where mq is any function in classM, defined as follows. Let ε > 0 be small
enough. A function m : X ×Y 7→ R is a member ofM if m is C1; if m is independent of
y ∈ Y for all (η, x) close enough to the boundary ∂X ; and if m possesses the following
boundary conditions:

inf
η∈(0,1)

lim
x↘qL

α (η)

(
x− qL

α(η)
)

m(η, x, y) = +∞ (B.8)

sup
η∈(0,1)

lim
x↗qH

β (η)

(
qH

β (η)− x
)

m(η, x, y) = −∞ (B.9)

for any x ∈ (qL
α(0), qH

β (0)), lim
η↘0
|m(η, x, y)| < +∞ (B.10)

for any x ∈ (qL
α(1), qH

β (1)), lim
η↗1
|m(η, x, y)| < +∞. (B.11)

Because of the condition that m is independent of y close enough to the boundary ∂X ,
the boundary conditions above automatically apply for all possible y ∈ Y . Collecting
these results

µq(η, x, y) =

mq(η, x, y), if x < qH(η);
ρe−ρh
ρ̄(η)2 [−ρ̄(η)µη(η, x) + |ση(η, x)|2], if x ≥ qH(η).

(B.12)

Note that µq is indeterminate almost everywhere in the inefficient region (κ < 1), in the
following sense: mq only needs to satisfy the boundary conditions (B.8)-(B.11), but these
boundary conditions constitute a zero-measure subset of X . Furthermore, we clearly
can allow the dependence of mq(η, x, y) on y to extend to an arbitrarily large subset of
X , so long as the dependence vanishes at ∂X .

Step 5: Construct dynamics of x in the efficient region. The dynamics of xt are specified as
follows. Denote its diffusion and drift coefficients by (xσx, xµx), where σx and µx are
functions of (η, x, y) to be specified shortly. By (B.5), in the region when x < qH(η), we
must put σx = σq and µx = µq. But when x ≥ qH(η), then (σx, µx) are unrestricted. We
set them arbitrarily, subject to the constraint that they induce stationarity.

13



To this end, let σ̃x : X × Y 7→ R+ be any positive, bounded, C1 function, whose
dependence on y vanishes as (η, x) approaches the boundary of X . Put

σx(η, x, y) =

σq(η, x, y), if x < qH(η);

σ̃x(η, x, y), if x ≥ qH(η).

Note that σx is bounded (recall σq is bounded, and σ̃x is assumed bounded).
Similarly, for the drift, let mx : X ×Y 7→ R be any function in classM defined above

(note: mx need not coincide with mq above). Put

µx(η, x, y) =

µq(η, x, y), if x < qH(η);

mx(η, x, y), if x ≥ qH(η).

Thus, µx satisfies boundary conditions (B.8)-(B.11) on all boundaries of X . At this point,
let us observe the following important property: while (σx, ση, µx, µη) can all potentially
depend on the auxiliary state variable y, this dependence vanishes as (η, x) approaches
the boundary ∂X .

Step 6: Verify stationarity. We demonstrate the time-paths (ηt, xt)t≥0 remain in X almost-
surely and admit a stationary distribution.

Corresponding to the SDEs induced by (ση, σx, σy, µη, µx, µy), define the infinitesimal
generator L η,x,y, where for any C2 function f : X ×Y 7→ R,

L η,x,y f = µη∂η f + (xµx)∂x f +
1
2
|ση|2∂ηη f +

1
2
|xσx|2∂xx f + xσx · ση∂ηx f (B.13)

+ µy∂y f +
1
2
|σy|2∂yy f + ση · σy∂ηy f + xσx · σy∂xy f

The key to the remainder of the proof will be to analyze the behavior of L η,x,y near the
boundary of the domain X ×Y .

The first observation is that, using standard arguments, we can construct a process
(ηt, xt, yt)0≤t≤τ up until the “first exit time” τ from the domain X × Y .25 Our goal is to

25This procedure goes as follows. Let {Xn × Yn}n≥1 be an increasing sequence of open sets, whose
closures are contained in X × Y , such that ∪n≥1Xn × Yn = X × Y . Note that (ση , σx, σy, µη , µx, µy) are
bounded on Xn × Yn for each n. Consequently, despite the (potential) discontinuity in (ση , σx, µη , µx) at
the one-dimensional subset {x = qH(η)}, there exists a unique weak solution (η̃n

t , x̃n
t , ỹn

t )0≤t≤τn , up to
first exit time τn := inf{t : (ηt, xt, yt) 6∈ Xn × Yn}, to the SDEs defined by the infinitesimal generator
L η,x,y. See Krylov (1969, 2004) for weak existence and uniqueness in the presence of drift and diffusion
discontinuities. We thus define (ηt, xt, yt)0≤t≤τ up to exit time τ := limn→∞ τn, by piecing (η̃n

t , x̃n
t , ỹn

t )0≤t≤τn
together for successive n. In other words, (ηt, xt, yt) = (η̃n

t , x̃n
t , ỹn

t ) for 0 ≤ t ≤ τn, each n.
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show (a) τ = +∞ a.s., so the process never exits its domain; and (b) the resulting process
(ηt, xt, yt)t≥0 possesses a non-degenerate stationary distribution on X × Y . These will
be proved if we can obtain a Lyapunov function V satisfying Lemma B.1 below.

Define the positive Lyapunov function V by

V(η, x, y) :=
1

η1/2 +
1

1− η
+

1
x− qL

α(η)
+

1
qH

β (η)− x︸ ︷︷ ︸
:=v(η,x)

+vy(y), (B.14)

where recall that vy is the function from Step 2 satisfying L yvy ≤ 0. Note that V diverges
to +∞ at the boundaries of X ×Y , so assumption (i) of Lemma B.1 is proved.

Next, let us note the following useful property that will help in proving assumptions
(ii)-(iii) of Lemma B.1. Due to the form of V in (B.14), there are no cross derivatives and
so L η,x,yV = L η,xv +L yvy, where L η,x is the generator of (η, x), i.e.,

L η,x = µη∂η f + (xµx)∂x f +
1
2
|ση|2∂ηη f +

1
2
|xσx|2∂xx f + xσx · ση∂ηx f (B.15)

for any C2 function f : X 7→ R. Using L yvy ≤ 0, we then obtain L η,x,yV ≤ L η,xv.
Consequently, if we can show that v satisfies assumptions (ii)-(iii) on the domain X ,
those assumptions will automatically hold for V on the overall domain X ×Y .

If assumption (iii) of Lemma B.1 holds for v (which we will prove below), then
L η,xv < 0 at all points (η, x) sufficiently close to ∂X . Furthermore, for every subset
bounded away from this boundary, we have that L η,xv is bounded. Consequently, we
can find a constant c large enough such that L η,xv ≤ cv on all of X , which verifies part
(ii) of Lemma B.1.

It remains to prove that assumption (iii) of Lemma B.1 holds for v, namely that
L η,xv → −∞ as (η, x) → ∂X . We will examine the boundaries of X one-by-one. In
the following, we use the notation g(x) = o( f (x)) if g(x)/ f (x) → 0 as x → 0, and the
notation g(x) = O( f (x)) if g(x)/ f (x)→ C as x → 0, where C is a finite constant.

Step 6a: boundary as η → 0. As η → 0 (and x bounded away from qL
α(0) and qH

β (0), such
that κ is bounded away from 0 and 1, the latter due to the definition of qH

β ), we have

µη = δh +
ae − ah

x
κ + η[ρh − ρe − δe − δh] + o(η) and |ση|2 = η(κ − η)

ae − ah
x

+ o(η)

µx = O(1) and |σx|2 = O(1).
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We used condition (B.10) to obtain µx bounded. Thus,

L η,xv = − 1
2η3/2 [δh +

1
4

ae − ah
x

κ] + o(η−3/2)→ −∞,

irrespective of δh > 0 or δh = 0.

Step 6b: boundary as η → 1. As η → 1 (and x bounded away from qL
α(1) and qH

β (1); note
that κ = 1 at this boundary), we have

µη = −δe − (ρe − ρh)(1− η) + o(1− η) and |ση|2 = (1− η)2σ2

µx = O(1) and |σx|2 = O(1).

We used condition (B.11) to obtain µx bounded. Thus,

L η,xv = −(1− η)−2δe − (1− η)−1[ρe − ρh − σ2] + o((1− η)−1)→ −∞,

irrespective of δe, due to Assumption 1 part (iii).

Step 6c: boundary as x → qL
α . We separately calculate the limit x → qL

α(η) (with η bounded
away from 0) in the two cases {x < qH(η)} and {x ≥ qH(η)}, since κ < 1 in the first
case, and κ = 1 in the second case. Still, we find that in both cases,

µη = O(1) and |ση|2 = O(1)

µx = o((x− qL
α)
−1) and |σx|2 = O(1).

We used condition (B.8) to obtain the order of µx. Thus,

L η,xv = −(x− qL
α)
−2xµx + O((x− qL

α)
−3)→ −∞.

Step 6d: boundary as x → qH
β . Similarly, we separately calculate the limit x → qH

β (η) (with
η bounded away from 0) in the two cases {x < qH(η)} and {x ≥ qH(η)}. Again, we find
that in both cases,

µη = O(1) and |ση|2 = O(1)

µx = (−1)× o((qH
β − x)−1) and |σx|2 = O(1).
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We used condition (B.9) to obtain the order of µx. Thus,

L η,xv = (qH
β − x)−2xµx + O((qH

β − x)−3)→ −∞.

Step 6e: boundary as (η, x) → (0, qL
α(0)). Finally, all the corners of X can be analyzed

in a straightforward way by combining the cases above, with the exception of (η, x) =

(0, qL
α(0)) = (0, ah/ρh). Approaching this corner, we must take a particular path of

x → ah/ρh as η → 0. Denote this path by x̂(η) and denote the asymptotic slope by
x̂′(0) ∈ ( d

dη qL
α(0),+∞), where d

dη qL
α(0) = [ ae

ah
− ρe

ρh
] ah

ρh
+ α′(0) > 0, by Assumption 1,

part (i), and the fact that α′(0) > 0. Denote the associated path of κ by κ̂(η) and the
corresponding asymptotic slope by κ̂′(0) = 1

ae−ah
[x̂′(0)ρh + (ρe − ρh)ah/ρh]. Substituting

in, we find κ̂′(0) ∈ (1+ α′(0)
ae−ah

,+∞). When computing L η,xv, we will take the supremum
over all possible paths, meaning over x̂′(0) and κ̂′(0). Using similar calculations from
the initial η → 0 case, but using these paths, we obtain

µη = δh + η[
ae − ah

x̂
κ̂′ + ρh − ρe − δe − δh] + o(η) and |ση|2 = η2[κ̂′ − 1]

ae − ah
x̂

+ o(η)

µx = o((x̂− qL
α)
−1) and |σx|2 = O(1)

and σx · ση = η[
ae − ah

x̂
− σ(ϑ(κ̂′ − 1)

ae − ah
x̂

)1/2] + o(η).

Since x̂ ≥ O(η) and κ̂ ≥ O(η) (in the sense that both could be +∞), we may treat terms
like (x̂ − qL

α)
−1 as smaller than η−1, asymptotically. This identifies the dominant terms

as those associated to µη, |ση|2, and µx. Thus,

L η,xv = − 1
2η3/2 δh +

1
2η1/2 [ρe − ρh + δe + δh −

ae − ah
x̂
− ae − ah

x̂
(κ̂′ − 1)/4] + o(η−3/2)

− (x̂− qL
α)
−2xµx + O((x̂− qL

α)
−3)→ −∞,

irrespective of δh, because ρe− ρh− ae−ah
ah/ρh

= ρh[ρe/ρh− ae/ah] < 0 by Assumption 1, part
(i), and because inf{κ̂′(0)} > 1.

This completes the verification that L η,xv → −∞ as (η, x) → ∂X , which proves sta-
tionarity by Lemma B.1 below. This proves that the construction above is an equilibrium.

Step 7: Indexing the equilibria. We conclude by summarizing the indeterminacies, corre-
sponding to the “equilibrium indexing” referenced in the statement of the theorem:

(i) In Step 3, we allowed for an arbitrary share ϑ(η, x, y) of capital return variance
|σR|2 to arise from the fundamental shock Z(1), in the region {x < qH}. Since q = x
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in this region, we write this function as ϑ(η, q, y) in the theorem’s statement.

(ii) In Step 4, we allowed for an arbitrary drift µq(η, x, y) = mq(η, x, y) in the region
{x < qH}, subject to boundary conditions that hold at ∂X . Note that this implies
µq can be any function of (η, q, y) almost everywhere in the interior of D.

(iii) In Step 5, we allowed for arbitrary dynamics σx(η, x, y) = σ̃x(η, x, y) and µx(η, x, y) =
mx(η, x, y) in the region {x ≥ qH}. Together, these dynamics can be chosen to en-
gineer an exit rate from {x ≥ qH} = {κ = 1}, in the following sense. Given
(η0, x0, y0) = (η, x, y), define the first passage time to inefficiency by τ◦ := inf{t >
0 : xt < qH(ηt)} and its expectation T(η, x, y) := E[τ◦ | (η0, x0, y0) = (η, x, y)].
Then, T(η, x, y) is determined by solving the PDE26

L η,x,yT = −1 on {(η, x) : x > qH(η)} × Y s.t. T(η, qH(η)) = 0 (B.16)

By choosing σ̃x(η, x, y) and mx(η, x, y), we can thus obtain various solutions to the
PDE (B.16), hence various exit rates.

This completes the proof. �

B.4 Stochastic stability: a useful lemma

To prove the stationarity claims of Theorem 1 and Proposition D.1, we need the following
lemma, which is a slight generalization of Theorems 3.5 and 3.7 of Khasminskii (2011),
in the sense that weaker conditions are imposed on the coefficients α and β. Indeed, any
coefficients (α, β) are permissible as long as they admit existence of a weak solution to
the SDE system. The other generalization is that we allow the domain to be any open
domain D rather than Rl (see also Remark 3.5 and Corollary 3.1 in Khasminskii (2011)).

Lemma B.1. Suppose (Xt)0≤t≤τ is a weak solution to the SDE dXt = β(Xt)dt + α(Xt)dZt

in an open connected domain D ⊂ Rl, where Z is a d-dimensional Brownian motion and τ :=
inf{t : Xt 6∈ D} is the first exit time from D. Define the infinitesimal generator L by (for any
C2 function f )

L f =
n

∑
i=1

βi
∂ f
∂xi

f +
1
2

n

∑
i,j=1

(αi · αj)
∂2 f

∂xi∂xj
.

Suppose there is a non-negative C2 function v : D 7→ R+ such that (i) lim infx→∂D v(x) = +∞;
(ii) L v ≤ cv for some constant c ≥ 0; and (iii) lim supx→∂DL v(x) = −∞. Then,

26This standard PDE is a consequence of the Feynman-Kac theorem.
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(a) τ = +∞ almost-surely;

(b) the distribution of X0 can be chosen such that (Xt)t≥0 is stationary.

Proof of Lemma B.1. Let {Dn}n≥1 be an increasing sequence of open sets, whose clo-
sures are contained in D, such that ∪n≥1Dn = D. Let τn := inf{t : Xt 6∈ Dn}, and
note that τ = limn→∞ τn is the monotone limit of these exit times. Define w(t, x) :=
v(x) exp(−ct), which satisfies L w ≤ 0 by assumption (ii). Using Itô’s formula, we have

E[v(Xτn∧t)e−c(τn∧t) − v(X0)] = E

∫ τn∧t

0
L w(u, Xu)du ≤ 0.

Since (τn ∧ t) ≤ t and v ≥ 0, we obtain

E[v(Xτn∧t)] ≤ ectE[v(X0)].

Because E[v(Xτn∧t)] ≥ P[τn ≤ t] infx∈D\Dn v(x), we thus have

P[τn ≤ t] ≤ ectE[v(X0)]

infx∈D\Dn v(x)
.

Taking the limit n→ ∞, we obtain

P[τ ≤ t] ≤ ectE[v(X0)]

lim infx→∂D v(x)
= 0.

Thus, taking t→ ∞, we prove (a).
Next, since τ = +∞ a.s., we may consider (Xt)t≥0 that is now defined for all time.

Using Itô’s formula,

E[v(Xτn∧t)− v(X0)] = E

∫ τn∧t

0
L v(Xu)du.

Note that min(inft E[v(Xt)− v(X0)], infn E[v(Xτn)− v(X0)]) ≥ b1 for some constant b1,
given assumption (i) and v ≥ 0. Also note that supx∈DL v(x) ≤ b2 for some constant b2,
given assumptions (i)-(iii) and the fact that v is C2. (b1 and b2 are both independent of t
and n.) Using these bounds, plus the following obvious inequality

L v(Xu) ≤ 1{Xu∈D\Dk} sup
x∈D\Dk

L v(x) + sup
x∈D

L v(x),
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we get

− sup
x∈D\Dk

L v(x)E
∫ τn∧t

0
1{Xu∈D\Dk}du ≤ tb2 − b1.

Given the proof of (a), we may take the limit n → ∞ (so that τn → +∞), then apply
Fubini’s theorem, and then rearrange to obtain

lim
t→∞

1
t

∫ t

0
P[Xu ∈ D\Dk]du ≤ b2

− supx∈D\Dk
L v(x)

.

Taking k→ ∞ and using assumption (iii), we obtain

lim
k→∞

lim
t→∞

1
t

∫ t

0
P[Xu ∈ D\Dk]du ≤ 0.

Applying Theorem 3.1 of Khasminskii (2011), there exists a stationary initial distribution
for X0. The process (Xt)t≥0 augmented with this initial distribution is clearly stationary
by definition.

B.5 Proof of Corollary 1

Start from the construction of S-BSE in Theorem 1, and note that we can make εα arbitrar-
ily small such that the lower boundary converges to its lowest possible level: qL

α → ā/ρ̄.
Hence, an S-BSE can be constructed such that the set of prices q matches Q(η) arbitrarily
closely. The result on the minimal return variance comes from the following two objects:
(i) take the limit κ → 1 in (B.6) to obtain |σR|2 = ηρ̄(η) ae−ah

ae
; (ii) use (B.7) to obtain

|σR|2 = σ2 ρ̄(η)2

ρ2
e

. When η ≥ η∗, it is clear that the minimal variance is the smaller of
(i)-(ii). When η < η∗, we cannot have κ = 1, so the minimal variance is simply the result
from (i); however, the equation for η∗ in (B.4) can be rearranged to show that η < η∗

is equivalent to ηρ̄(η) ae−ah
ae

< ρ̄(η)2

ρ2
e

σ2. Finally, the form of V being at most two inter-

vals comes from the fact that the variance when κ < 1 is |σR|2 = η(1−η)
κ−η

ae−ah
q , which is

continuous in q. �

B.6 Model with jumps and investment in Section 2.3

We provide more detail here on the equilibrium with investment and sunspot jumps.
Recall that all agents make the same scaled investment decisions, and their resulting
capital growth rate can be written G(q) := g + ι(q)− δ, where ι(q) := (Φ′)−1(q). Also
recall that our jumps `q are assumed to occur randomly but have a known size, given
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observables. Therefore, optimal portfolio conditions are

ae −Φ(ι(q))
q

+ G(q) + µq + σ
(

1
0
)
· σq − r =

κ

η
|σR|2 +

λ`q

1− κ
η `q

ah −Φ(ι(q))
q

+ G(q) + µq + σ
(

1
0
)
· σq − r ≤ 1− κ

1− η
|σR|2 +

λ`q

1− 1−κ
1−η `q

.

Combining these two equations, we obtain (RBJ), restated here for reference:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

(
|σR|2 +

λ`2
q(

1− κ
η `q
)(

1− 1−κ
1−η `q

))]. (RBJ)

We can determine the other equilibrium objects similarly to before. The riskless rate is
given by, after aggregating the two Euler equations with weights κ and 1− κ, and then
using the price-output relation (PO-inv) to replace κae+(1−κ)ah−Φ(ι(q))

q = ρ̄,

r = ρ̄ + G(q) + µq + σ
(

1
0
)
· σq −

(κ2

η
+

(1− κ)2

1− η

)
|σR|2 − λ`q

( κ

1− κ
η `q

+
1− κ

1− 1−κ
1−η `q

)
.

The dynamics of η are now given by dηt = µη,t−dt + ση,t− · dZt − `η,t−dJt, where

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
|σR|2 + δh − (δe + δh)η +

(κ − η)λ`q(
1− κ

η `q
)(

1− 1−κ
1−η `q

)
ση = (κ − η)σR.

The wealth share jump `η is derived by using knowledge of the jump size in q and noting
that agents’ portfolios (capital and bonds) are predetermined:27

`η = (κ − η)
`q

1− `q
.

For a valid equilibrium, jumps cannot be so large as to send experts into bankruptcy, nor
can they induce households’ leverage to exceed experts’ (as this would contradict (RBJ)).

27The derivation is as follows. Let variables with hats, e.g., “x̂”, denote post-jump variables. Note
N̂e = q̂K̂κ − B and N̂h = q̂K̂(1− κ) + B, where B is expert borrowing (and household lending, by bond
market clearing). Then, η̂ = N̂e/(q̂K̂) = κ − B/(q̂K̂) and by similar logic the pre-jump wealth share is
η = κ− B/qK. Thus, `η = η− η̂ = B[1/(q̂K̂)− 1/(qK)] = qK(κ− η)[1/(q̂K̂)− 1/(qK)]. Using the fact that
K̂ = K and the definition `q := 1− q̂/q, we arrive at `η = (κ− η)[(1− `q)−1 − 1]. This derivation assumes
the presumably risk-free bond price does not jump when capital prices jump. Conceptually, there is no
reason why this needs to be true, but it preserves its risk-free conjecture.
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These two conditions are

`q <
η

κ
(B.17)

ρ̄(η̂)(1− `q)q + Φ(ι((1− `q)q)) > (ae − ah)η̂ + ah, (B.18)

where η̂ := η− (κ− η)
`q

1−`q
is the post-jump expert wealth share. Although it is obvious,

(RBJ) implies another bound on `q that arises because of |σR| ≥ 0. This implies two
different bounds, depending on whether κ < 1 or κ = 1:

ae − ah
q

≥ κ − η

η(1− η)

λ`2
q(

1− κ
η `q
)(

1− 1−κ
1−η `q

) , if κ < 1 (B.19)

ae − ah

qH ≥ 1
η

(
σ2 +

λ`2
q

1− 1
η `q

)
, if κ = 1 (B.20)

Numerical procedure. With these equations in hand, we sketch our equilibrium con-
struction and simulation procedure. Note that the equilibrium domain for (η, q) is
D := {(η, q) : 0 < η < 1, qL(η) < q ≤ qH(η)}, where the minimal permissible capi-
tal price is qL(η) := ηae+(1−η)ah

ρ̄(η)
, and the maximal capital price qH(η) is such that κ = 1,

i.e., qH(η) := sup{q : ρ̄(η)q + Φ(ι(q)) = ae}.

Step 0. Given (η, q), solve for κ(η, q) from the price-output relation (PO-inv).

Step 1. Solve for the upper bound of `q using (B.17)-(B.20).
Note that, fixing (η, q, λ), the RHS of (B.19) is strictly increasing in `q when `q ∈(

0, η
κ

)
while the LHS is constant. Moreover, the inequality is satisfied for `q = 0 and

violated as `q → η
κ . Hence, this condition, combined with requirement (B.17), imply that

`q ≤ `A,◦
q (η, q, λ), where the upper bound `A,◦

q (η, q, λ) is the unique value of `q ∈ (0, η
κ )

that makes (B.19) an equality. This upper bound can be solved with a bisection method.
On the other hand, the RHS of (B.20) is strictly increasing in `q when `q ∈ (0, η) while

the LHS is constant. Moreover, the inequality is satisfied for `q = 0 and violated as `q →
η. Hence, condition (B.20), combined with requirement (B.17), imply that `q ≤ `A,1

q (η, λ),
where the upper bound `A,1

q (η, λ) is the unique value of `q ∈ (0, η) that makes (B.20) an
equality. The closed-form expression for this bound is

`A,1
q (η, λ) =

1
2

[
− M

λη
+

√( M
λη

)2
+ 4

M
λ

]
, where M(η) := max[0, η

ae − ah

qH(η)
− σ2]

22



Putting these two together, define

`A
q (η, q, λ) :=

`A,◦
q (η, q, λ), if q < qH(η);

`A,1
q (η, λ), if q = qH(η).

Next, after some algebra, we can write condition (B.18) as

(1− `q)
2 − (1− `q)

( ρ̄(η)q + q(ρe − ρh)(κ − η) + Φ(ι(q))−Φ(ι((1− `q)q))
ρ̄(η)q + q(ρe − ρh)(κ − η)

)
+

(ae − ah)(κ − η)

ρ̄(η)q + q(ρe − ρh)(κ − η)
> 0.

Define `B
q as the smallest positive root of equating the LHS to zero, if such root exist, and

let `B
q = 1 otherwise. Given that inequality (B.18) holds for `q = 0, it holds for `q < `B

q .
Finally, we have an upper bound that ensures all required inequalities are satisfied:

`max
q (η, q, λ) := min{`A

q (η, q, λ), `B
q (η, q)}.

Step 2. Pick the jump size, subject to its upper bound.
Given the upper bound derived in Step 1, we may choose any 0 ≤ `q < `max

q (η, q, λ).
Note that `q can be a function of (η, q, λ) and potentially other variables, for instance
variables driving the dynamics of λ or r (neither of these objects will be pinned down).

Step 3. Compute other equilibrium objects.
Use risk-balance condition (RBJ) to solve for |σR|2, given `q. For each (η, q, λ), assign

ϑ(η, q, λ)2 fraction of the variance to the fundamental Brownian shock, and 1− ϑ(η, q, λ)2

to the sunspot Brownian shock. Then, solve for other equilibrium objects from the equa-
tions above. In this process, we have freedom to set r arbitrarily, but µq is pinned down
given this choice for r, similar to the S-BSE.

Step 4. Specify dynamics at the boundaries of D.
At the upper boundary of D (i.e., when κ = 1), there is an indeterminacy in the

speed at which the economy re-enters the interior and κ < 1.28 We determine this re-
entry speed in a manner identical to the S-BSE. Near the lower boundary of D (i.e., when
κ ≈ η), we use a reflecting boundary for q.

28The exception is if η < ησ := {η′ : qH(η′)
ae−ah

σ2 = η′}. If η < ησ, then condition (B.20) implies we must
have `q = 0 and the economy must immediately re-enter the interior of D.
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C Additional results from quantitative exercises

C.1 More details on the baseline crisis event studies

Figure C.1: Stationary marginal CDFs of several objects in the S-BSE. Parameters are the same as Figure 6.

The marginal distributions of equilibrium variables in the S-BSE and FE, plotted in
Figure C.1, highlight the key differences. Compared to the FE, the S-BSE can attain
significantly higher risk premia and volatility, precisely what permits the spikes in crisis
event studies. This is despite featuring a smoother interest rate and a similar marginal
distribution of η.

C.2 Crisis event studies under alternative specifications

This section displays the results from various robustness exercises. In particular, we redo
the financial crisis event studies from Section 3.2 under various alternative specifications.

Define crises based on expert wealth. Empirically, financial crises are not defined based
on large output drops. Some authors define financial crises based on narrative sources on
fire sales and panics (Reinhart and Rogoff, 2009), while others use bank equity declines
(Baron et al., 2021). We perform robustness on our baseline by defining crises instead
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Figure C.2: Stationary marginal CDFs of several objects in the S-BSE with higher bounce-back beliefs. The
bounce-back belief is a lower reflecting barrier at qL(η) + 0.6(1 − η) ae−ah

ρ̄(η)
. Parameters are the same as

Figure 6.

as the bottom 3rd percentile of year-to-year declines in log(η), which we interpret as a
proxy for bank equity. Figure C.3 displays the results. One difference from the baseline
specification is the presence of a much sharper decline in η. This sharper behavior is to
be expected, given the crisis is defined based on η itself. But broadly speaking, the crisis
dynamics are similar to the baseline case: the S-BSE still delivers sudden and severe
crises with pre-crisis froth, while the FE does not.

Shut down sunspot shocks. Now, we perform a particularly stark exercise: we eliminate
the sunspot shock Z(2) altogether. The baseline model set ϑ = σ

(1)
R /|σR| =

√
0.5, so that

50% of return volatility was due to the fundamental shock and 50% due to the sunspot
shock. Here, we instead set ϑ = 1 so that sunspot shocks contribute nothing. Never-
theless, as Figure C.4 shows, financial crises behave broadly similar to the baseline case
and are still much sharper than the FE. The key is that the equilibrium still occasionally
visits parts of (η, q) space that are more extreme than the FE, in particular low values
of q where volatility is very high. In fact, it turns out that the stationary distribution of
(η, q) is very similar to the baseline specification.
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Figure C.3: Event studies around financial crises defined by expert wealth. Crises are defined as the bottom
3rd percentile of year-to-year declines in log(η), subject to only one crisis occurring in a 6-year window.
All other details are identical to Figure 6.

Figure C.4: Event studies around financial crises without sunspot shocks. The fraction of return variance
|σR|2 from the sunspot shock is recalibrated to be ϑ = 1. Crises are defined as the bottom 3rd percentile of
year-to-year log output declines, subject to only one crisis occurring in a 6-year window. All other details
are identical to Figure 6.
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Slower exit rate from the efficient region. Recall that the speed of exit from the efficient
region with κ = 1 is not pinned down. In the baseline model, we targeted a 10%
unconditional probability of efficiency. Here, we increase this to 30% instead, much
closer to the amount of efficiency that arises in the FE. Figure C.5 displays the marginal
CDFs from this economy: despite the fact that the economy is efficient significantly
more often, there remains a non-trivial chance of extreme volatility and risk premia.
Consequently, the crisis event studies, displayed in Figure C.6, are broadly similar to the
baseline case.

Figure C.5: Stationary marginal CDFs of several objects in the S-BSE with stickier efficiency. The exit rate
from the efficient region is recalibrated so that P{κt = 1} ≈ 0.3 (the baseline probability was 0.1). Other
parameters are the same as Figure 6.
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Figure C.6: Event studies around financial crises with stickier efficiency. The exit rate from the efficient
region is recalibrated so that P{κt = 1} ≈ 0.3 (the baseline probability was 0.1). Crises are defined as the
bottom 3rd percentile of year-to-year log output declines, subject to only one crisis occurring in a 6-year
window. All other details are identical to Figure 6.

Recalibrate interest rate process. Recall that our S-BSE constructions are such that, away
from the boundaries, the interest rate follows the exogenous Ornstein-Uhlenbeck process

drt = λr(r̄− rt)dt + σr

(
θ√

1− θ2

)
· dZt. (C.1)

In the baseline model, we set σr = 0, so that r deterministically drifts towards its long-
run mean r̄. Here, we pick these parameters to match the unconditional mean (0.014),
variance (0.0232), and annual autocorrelation (0.94) of the 3-month US real rate. In par-
ticular, we set r̄ = 0.014, λr = − log(0.94), and σr = |2 log(0.94)× 0.0232|. We perform
sensitivity analyses on the sign of σr (positive implies procyclical r; negative implies
countercyclical r) and the value of θ (whether r is driven by fundamentals or sunspots).
The event study results, including r for reference, are displayed in Figures C.7-C.10.
Overall, regardless of whether rt is procyclical, countercyclical, driven by fundamental
or sunspot shocks, the crisis event studies are largely similar to the baseline results.
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Figure C.7: Event studies around financial crises with a procyclical interest rate driven by fundamentals. The
interest rate process is (C.1) with r̄ = 0.014, λr = − log(0.94), σr = −2 log(0.94) × 0.0232, and θ = 1.
Crises are defined as the bottom 3rd percentile of year-to-year log output declines, subject to only one
crisis occurring in a 6-year window. All other details are identical to Figure 6.

Figure C.8: Event studies around financial crises with a procyclical interest rate driven by sunspots. The
interest rate process is (C.1) with r̄ = 0.014, λr = − log(0.94), σr = −2 log(0.94) × 0.0232, and θ = 0.
Crises are defined as the bottom 3rd percentile of year-to-year log output declines, subject to only one
crisis occurring in a 6-year window. All other details are identical to Figure 6.
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Figure C.9: Event studies around financial crises with a countercyclical interest rate driven by fundamentals.
The interest rate process is (C.1) with r̄ = 0.014, λr = − log(0.94), σr = 2 log(0.94)× 0.0232, and θ = 1.
Crises are defined as the bottom 3rd percentile of year-to-year log output declines, subject to only one
crisis occurring in a 6-year window. All other details are identical to Figure 6.

Figure C.10: Event studies around financial crises with a countercyclical interest rate driven by sunspots. The
interest rate process is (C.1) with r̄ = 0.014, λr = − log(0.94), σr = 2 log(0.94)× 0.0232, and θ = 0. Crises
are defined as the bottom 3rd percentile of year-to-year log output declines, subject to only one crisis
occurring in a 6-year window. All other details are identical to Figure 6.
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C.3 Specification of the quantitative model with investment and jumps

We provide more details on the quantitative analysis in Section 3.3, based on the model
with capital investment and sunspot jumps. Recall the theoretical characterization of
equilibrium for this model is contained in Appendix B.6. Here, we focus on more par-
ticular features, such as the jump specification, defining some auxiliary asset-pricing
objects, the model calibration, and additional unreported quantitative results.

Jump size. The jump size `q,t− is constructed as follows. Because we wish to allow a
state-dependent formulation, define stateλ ∈ {normal, quiet, panic}. We then specify the
jump size by the function

`q(η, q, λ, stateλ) =

Cstateλ
`max

q (η, q, λ), if κ > κmin
stateλ

and Cstateλ
`max

q (η, q, λ) > `min
stateλ

0, otherwise.

In the formula above, `max
q (η, q, λ) is the maximum possible jump size (an endogenously-

determined amount, which is derived in Appendix B.6), Cstateλ
∈ [0, 1) is a fraction of

this maximum jump size that is realized (a state-dependent parameter), κmin
stateλ

is the
minimal level of κ such that jumps can affect prices (a state-dependent parameter), and
`min

stateλ
is the minimum allowable jump size (a state-dependent parameter).

Some asset pricing objects. We extend the model with two assets that proxy for liquidity
and credit premia. Both assets are assumed to be in zero net supply and can only be
held by experts, and so they do not alter any aspect of equilibrium (i.e., they are assets
that can be priced using an existing equilibrium SDF).

The first asset loses fraction α of its value when a “liquidity event" is realized. We
define a liquidity event as a jump of `q,t−dJt > 0 that triggers a drop in capital price. In
equilibrium, the premium such an assets pays over the risk free rate would be

LiqPrem = 1{`q>0}
λα

1− κ
η `q

(C.2)

We calibrate the loss to 5 percent, i.e., α = 0.05, which corresponds to the effective
liquidation loss in the data of the 2008 crisis (Krishnamurthy and Li, 2024).

The second asset captures default premia, conditional on the liquidity event. When-
ever a liquidity event is realized, with exogenous probability π the asset “defaults" on a
fraction of its value and with probability 1− π it experiences a (small) decline in value.
The loss-given-default `m is assumed to be increasing in the drop of capital price `q, in
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particular, `m = m0 + m1`q. Meanwhile, the price decrease in the non-default scenario is
fixed at m2. In equilibrium, the spread this asset pays over the risk-free rate is

CredSpread = 1{`q>0}
λ

1− κ
η `q

[
π(m0 + m1`q) + (1− π)m2

]
(C.3)

We target an annual default rate of 4.26%, which corresponds to the difference in default
rates of 10-year BAA and AAA bonds in the US, by setting 0.0426 = πE[1{`q>0}λt].
We target the loss-given-default to that of BAA bonds, which from Moody’s data has
been 55% on average over the last three decades and rose to 65% during the 2008 crisis.
Hence, we calibrate m0 = 0.45 and m1 to match an average increase of 10% during
liquidity events, i.e., 0.10 = m1E[`q|`q > 0]. We set m2 = 0.02. The calibration discussed
for the credit spread here follows the one in Krishnamurthy and Li (2024).

Model calibration. Table C.1 presents the values for the parameters of the model. Panel
A contains the fundamental parameters of the model. Panel B contains parameters
that govern the λ process. Panel C contains parameters associated to the construction
of the sentiment equilibrium, including those governing the jump size `q, the fraction
of Brownian risk coming from the sunspot shock, the riskless interest rate, and the
specification for the reflecting boundary at the lower end of the equilibrium domain.

Unconditional moments. Table C.2 presents unconditional moments of the model. In
addition to the values coming out of our model, the last column of the table documents
the value (or range) in the data. This last column also includes a code (starting with
letter “R") that refers to the position in Table C.3, which provides a description of the
source of these values in the empirical literature (e.g., R1 refers to moment 1). We briefly
discuss the model-implied unconditional moments.

The model’s investment-to-capital ratio (0.04) and the GDP-to-capital ratio (0.08) are
slightly below their data counterparts (though one should keep in mind that capital is
the only productive asset in our model without labor). The model’s annual GDP growth
(0.034) is slightly above the data (0.025), and the volatility of GDP growth is too large
(0.10) compared to data. Similarly, consumption growth (0.034) and in particular its
volatility (0.087) are too high compared to data. With log preferences, these high levels
of real volatility are needed in order to generate large capital return volatility, which we
also discuss below. That said, investment growth (0.034) and the volatility of investment
growth (0.125) are close to the corresponding moments in the data (0.026 and 0.127).

In the model, we can define capital return in different ways depending on the div-
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Parameter Value Description
A. Fundamental model parameters

ρe 0.04 Discount rate of experts
ρh 0.04 Discount rate of households
ae 0.20 Productivity of expert
ah 0.10 Productivity of household
σ 0.05 Exogenous volatility of capital shocks
g 0 Exogenous component of growth
χ 30 Adjustment cost of investment
γ 0 Auxiliary parameter for investment function
δ 0.03 Depreciation rate
δe 0.10 Retirement rate of experts
δh 0.01 Retirement rate of households
B. Poisson processes parameters

λnormal 0.20 Jt arrival rate during normal times
λquiet 0.10 Jt arrival rate during quiet times
λ

panic
L 0.30 lower bound for Jt arrival rate during panic times

λ
panic
H 0.70 upper bound for Jt arrival rate during panic times

Tpanic
max 10 maximum number of years in panic state

λnormal→quiet 0.05 arrival rate for transition from normal to quiet times
λquiet→normal 0.00 arrival rate for transition from quiet to normal times
λpanic→normal 0.25 arrival rate for transition from panic to normal times
C. Sentiment equilibrium parameters

Cnormal 0.40 fraction of max possible q loss (when not zero) during normal times
Cquiet 0.75 fraction of max possible q loss (when not zero) during quiet times
Cpanic 0.50 fraction of max possible q loss (when not zero) during panic times
κmin

normal 0.30 κ lower threshold during normal times (`q = 0 if κ below it)
κmin

quiet 0.90 κ lower threshold during quiet times (`q = 0 if κ below it)
κmin

panic 0.00 κ lower threshold during panic times (`q = 0 if κ below it)
`min

normal 0.00 min loss size during normal times (`q = 0 if it would be below this)
`min

quiet 0.05 min loss size during quiet times (`q = 0 if it would be below this)
`min

panic 0.00 min loss size during panic times (`q = 0 if it would be below this)
ϑ 0.5 share of diffusive return variance via the fundamental shock
r̄ 0.014 (fixed) interest rate when κ < 1

¯
κ 0.01 reflecting boundary occurs at a line from (0,

¯
κ) to (1, 1) in (η, κ) space

Table C.1: Model parameters
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idend considered (experts’, households’ or their capital-weighted average). We report
the return, in excess of the riskless rate, associated to the aggregate dividend: its mean
(0.028) and standard deviation (0.1517) are in the ballpark of un-levered US equity re-
turns. We also report the return on experts’ net worth: its mean (0.1053) and standard
deviation (0.3939) align closely with data on financial stock returns (0.0875 and 0.3653,
respectively). Experts’ capital ratio (i.e., the inverse of leverage) in the model (0.35)
is slightly above the corresponding moment in the data (between 0.20 and 0.27). The
model’s liquidity premium (0.009) is very close to the data (0.0094).

We also target an annual probability of crisis of 3.5%; evidence from various sources
suggests this frequency is between 3%-6%. In our simulations, a crisis is dated in a
month with a month-to-month log-change in GDP below percentile 0.035, conditional
on no other crisis in the previous 7 years (the length of the crisis event study windows
below). Finally, the unconditional probability of a liquidity event is around 13.3% (
=7.1% + 1.9% + 4.3%). As mentioned before, the corresponding value in Krishnamurthy
and Li (2024) is around 7.2%. While our results is higher, recall that liquidity events
during normal times are mild by construction; removing these 7.1%, we would obtain
only 6.2% for the “more significant” liquidity events corresponding to quiet and panic
states.
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Name in Code Value Description Data
InvCapRatio 0.0409 Investment to capital ratio 0.0879 [R1]
GDPCapRatio 0.0809 GDP to capital ratio [0.14, 0.4] [R2a,b]
GDPGrowth 0.0341 mean GDP growth (year-to-year) 0.025 [R3a,b,c]
GDPGrowthVol 0.1059 std GDP growth (year-to-year) 0.0368 [R4a,b,c]
InvGrowth 0.0341 mean Investment growth (year-to-year) 0.0261 [R5]
InvGrowthVol 0.1253 std Investment growth (year-to-year) 0.1275 [R6]
ConGrowth 0.0342 mean Consumption growth (year-to-

year)
0.0179 [R7]

ConGrowthVol 0.0872 std Consumption growth (year-to-year) 0.0418 [R8]
ExcCapRet 0.0279 Mean of excess log capital return, aver-

age dividend (experts and households)
0.0545 [R9]

stdExcCapRet 0.1517 Std of excess log capital return, average
dividend (experts and households)

0.2178 [R10]

BanksCapRatio 0.3511 Equity-to-Assets for experts [0.20,0.27] [R11a,b]
ExpRet 0.1053 Mean log return on experts’ wealth (no

consumption)
0.0875 [R12]

stdExpRet 0.3939 Std log return on experts’ wealth (no con-
sumption)

0.3653 [R13]

LiqPrem 0.0090 Liquidity premium 0.0094 [R14a,b]
annualProbCrisis 0.0350 Annual prob. of a crisis [0.025,0.06] [R15a,b,c]
LiqEvent_normal 0.0707 Annual prob. of a liquidity event
LiqEvent_quiet 0.0187 Annual prob. of a liquidity event during

quiet times
LiqEvent_panic 0.0432 Annual prob. of a liquidity event during

panic times

Table C.2: Model unconditional moments. The references (e.g., R#) in the final column correspond to the
row number in Table C.3 that provide sources for the data counterparts.
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Name Data Description
R1 Investment capi-

tal ratio
0.0879 IMF Investment and Capital Stock Dataset (Adv Economies

1960-2019)
R2a GDP capital ratio 0.3997 mean in IMF Investment and Capital Stock Dataset (Adv

Economies 1960-2019)
R2b GDP capital ratio 0.14 He and Krishnamurthy (2019)
R3a GDP growth 0.0199 JST data w/o WWI and WWII periods (real GPP per capita)
R3b GDP growth 0.0303 JST data w/o WWI and WWII periods (Nominal GDP/CPI)
R3c GDP growth 0.0284 JST data w/o WWI and WWII periods (real GPP per capita x

population)
R4a std GDP growth 0.0368 JST data w/o WWI and WWII periods (real GPP per capita)
R4b std GDP growth 0.0470 JST data w/o WWI and WWII periods (Nominal GDP/CPI)
R4c std GDP growth 0.0377 JST data w/o WWI and WWII periods (real GPP per capita x

population)
R5 Investment

growth
0.0261 mean in JST data excluding WWI and WWII (real GPP per capita

* Inv/GDP)
R6 std Investment

growth
0.1275 JST data w/o WWI and WWII (real GPP per capita * Inv/GDP)

R7 Consumption
growth

0.0179 JST data w/o WWI and WWII (real C per capita)

R8 std Consumption
growth

0.0418 JST data w/o WWI and WWII (real C per capita)

R9 Excess equity re-
turn

0.0545 JST data w/o WWI and WWII (equity total return - safe return)

R10 std Excess equity
return

0.2178 JST data w/o WWI and WWII (equity total return - safe return)

R11a Bank capital ratio 0.2650 mean in JST data w/o WWI and WWII (Capital/ (Total Assets -
Deposits))

R11b Bank capital ratio 0.20 Krishnamurthy and Li (2024)
R12 Bank Equity Re-

turn
0.0875 Mean bank equity total return index adj for CPI (Baron et al.,

2021)
R13 std Bank Equity

Return
0.3653 Std bank equity total return index adj for CPI (Baron et al., 2021)

R14a Liquidity pre-
mium

0.0094 spread between P2 rated 3-month commercial paper and 3-
month T-bill 1974-2018

R14b Liquidity pre-
mium

0.0075 Krishnamurthy and Vissing-Jorgensen (2015) estimate of liquid-
ity premium of LT bonds vs AAA corporate bonds

R15a Crisis probability 6.2% =
79/1272

Schularick and Taylor (2012), collecting crisis dates from various
sources

R15b Crisis probability 2.5% =
50/1946

Jordà et al. (2013), collecting crisis dates from various sources

R15c Crisis probability ≈ 3% Baron et al. (2021), Figure A12, averaging frequencies across
decades; crisis definition: panics & bank equity crashes ≥ 30%

Table C.3: Data unconditional moments. JST refers to data from Jordà et al. (2017), Jordà et al. (2019),
or Jordà et al. (2021), collectively available online at https://www.macrohistory.net/database/. The
numbers using these data are the authors’ own calculations.
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Crisis moments. Table C.4 reports model-implied crisis moments related to GDP, credit,
and credit spreads. In addition to the values coming out of our model, the last column
of the table documents the value (or range) in the data. This last column also includes a
code (starting with letter “RC") that refers to the position in Table C.5, which provides
a description of the source of these values in the empirical literature (e.g., RC1 refers to
crisis moment 1).

Regarding GDP growth, the model-implied drop around the crisis, and in the years
post-crisis, closely align with the data. For example, the average drop in log GDP 12-36
months post-crisis, relative to trend, is 7.01% in the model and 6.49% in the data. In this
sense, the crises in the model are reasonable in magnitude.

Regarding credit-to-GDP ratios, while we do not have direct data counterparts to our
standardized measure, the model generates a modest amount of pre-crisis “frothiness”
and a large drop upon crisis.

An emerging finding that crises are predictable is captured well by the model. In
particular, whether we predict crises by high credit growth or low credit spreads, our
model predicts crises broadly in line with the data. For example, using below-median
credit spreads as the predictor variable, the model implies a 17% higher probability of
crisis in the next 5 years, with the corresponding number being 21% in the data. In
addition, crisis predictability rises (21.7% in the model; between 24-27% in the data) if
both high credit and low spreads happen at the same time, captured by the interaction
between the two predictors.

Finally, the model implies quantitatively reasonable credit spread behavior around
crises. For example, the 1-year spread increase around crisis is 0.73 in the model and
between 0.48 and 0.68 in the data (both in units of standard deviations). Some pre-crisis
frothiness of credit spreads is present, but slightly more modest than in the data; as one
example, in the two years before crisis, spreads are -0.14 standard deviations below their
mean in the model, with the corresponding numbers between -0.15 and -0.43 in the data.
After the crisis, spreads tend to mean-revert at a rate in line with the data (half-life of
3.1 years in the model and between 2.5-3.5 years in the data).
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Online Appendix 2
(not for publication):

Rational Sentiments and Financial Frictions
Paymon Khorrami and Fernando Mendo

February 28, 2025

D An alternative construction: sentiment state variable

In contrast to the main paper, where (η, q) was the state variable, here we implement our
sentiment-driven equilibria with an auxiliary state variable s and with q as a function
of η and s. Being explicit about a sentiment state variable is useful for several reasons.
First, this equilibrium construction will be pedagogically more familiar to the literature
on sunspots. Second, the sentiment state dynamics can be modeled as locally uncorre-
lated with fundamental shocks, which brings some clarity. Third, this setting happens
to facilitate building sunspot equilibria in which experts fully de-lever as their wealth
shrinks, i.e., κ → 0 as η → 0, for which there are natural justifications.

D.1 Explicit equilibrium with a sentiment state variable

Let s be a pure sunspot that is irrelevant to economic fundamentals and loads on only
the second shock (recall Z(1) affects capital and Z(2) does not):

dst = µs,tdt + σs,t
(

0
1

)
· dZt, st ∈ S . (D.1)

(Online Appendix D.5 solves additional examples with sentiment correlated to funda-
mentals, i.e., with ds = µsdt + σ

(1)
s dZ(1) + σ

(2)
s dZ(2).) We will also find some use in

introducing auxiliary state variables that can affect the drift µs,t. This is possible to do in
a very flexible way, due to the drift indeterminacy result of Corollary ??. Let xt ∈ X be
an arbitrary bounded diffusion,

dxt = µx(xt)dt + σx(xt) · dZt,

which (only) affects the sentiment drift, through µs,t = µs(ηt, st, xt).

Definition 3. A Markov S-BSE in states (η, s, x) ∈ (0, 1) × S × X consists of functions
(q, κ, r, ση, µη, σs) : (0, 1)×S 7→ R, and µs : (0, 1)×S ×X 7→ R, all C2 almost-everywhere,
such that the process (ηt, q(ηt, st), κ(ηt, st), r(ηt, st))t≥0 is an S-BSE.
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Remark 3 (Endogenous sentiment dynamics). Note that the statement of Definition 3 allows
(σs, µs) to be endogenous, in the sense that they could depend on the wealth distribution η. Our
examples in this section purposefully entertain this endogeneity, partly because we think of this
as the more interesting and realistic situation. Why? As shown in Section 2, dynamics depend
explicitly on q in an S-BSE. Thus, it is completely sensible for agents in our S-BSEs to use asset
prices directly in forecasting; in particular, sentiment dynamics (σs, µs)—which are nothing but
belief dynamics—themselves should condition on q. But q will depend on both s and η, implying
sentiment dynamics (σs, µs) depend on η too, through q. That said, Online Appendix D.6 verifies
that similar types of sunspot equilibria can be constructed with exogenous sentiment dynamics,
i.e., (σs, µs) are only functions of s, not η.

The Markov assumption in Definition 3 allows us to specialize equilibrium condi-
tions. By applying Itô’s formula to q(η, s), we obtain the capital price volatility σq in
terms of ση, namely

qσq = ση∂ηq + σs∂sq.

From equation (14), we also have ση in terms of σq. Solving this two-way feedback, we
obtain

σq =
( 1

0 )(κ − η)σ∂η log q + ( 0
1 )σs∂s log q

1− (κ − η)∂η log q
. (D.2)

Using (D.2) in (RB), we obtain the following equation linking capital prices, the capital
distribution, and sentiment volatility:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

( σ2 + (σs∂s log q)2

(1− (κ − η)∂η log q)2

)]
. (D.3)

Our strategy to find a Markov S-BSE is to guess a capital price function q(η, s) and
then use equation (D.3) to “back out” the sunspot volatility σs that justifies it. We will
perform a construction such that sunspots only increase volatility relative to the funda-
mental equilibrium, to highlight their potential for resolving puzzles. For this reason,
we sometimes refer to s as rational pessimism.

More specifically, suppose a fundamental equilibrium, where sunspots do not mat-
ter, exists with equilibrium capital price qFE (see Online Appendix E for details on the
fundamental equilibria). We will think of qFE as the “best-case” capital price, because
despite featuring amplification, qFE inherits no sunspot volatility. Conversely, think of
the capital price q∞ associated to an infinite-volatility equilibrium as the “worst-case”
capital price (substitute |σR| → ∞ into (20) to find q∞ := ηae+(1−η)ah

ρ̄ ).
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Our strategy is essentially to treat the sentiment variable s as a device to shift contin-
uously between the best-case qFE and the worst-case q∞. Mathematically, we conjecture
a capital price that is approximately a weighted average of qFE and q∞, with weights
1− s and s. The novelty of our approach here is to then use equation (D.3) to solve for
sunspot volatility σs, which will generically depend on experts’ wealth share η. In terms
of Figure 3, the economy will live in the sub-region bounded by the solid FE line and the
κ = η border (and notice this implies the full-deleveraging condition κ → 0 as η → 0).
In the proposition below, we verify that such a construction is indeed an equilibrium.

Proposition D.1. Let Assumption 1 hold, and assume a fundamental equilibrium exists for each
σ ≥ 0 small enough. Then, for all σ ≥ 0 small enough, there exists a Markov S-BSE with capital
prices arbitrarily close to (1− s)qFE(η)+ sq∞(η). In this equilibrium, µs is indeterminate except
near the boundaries of (0, 1)×X × S .

We construct a numerical example closely following Proposition D.1, which we will
use in subsequent sections. The left panel of Figure D.1 shows the capital price function.
A rise in rational pessimism s reduces the capital price q, independently of wealth share
η (although η will also endogenously respond to s-shocks).

The middle panel of Figure D.1 displays capital return volatility, which can be sub-
stantially greater than in the fundamental equilibrium. Implied by capital return volatil-
ity is an underlying sunspot shock size σs, which is displayed in the right panel of Figure
D.1. Sunspot dynamics become more volatile both as experts become poor (η shrinks)
and as the economy approaches the worst-case equilibrium (s rises). The dependence of
σs on η is the notion of endogenous beliefs that can occur in S-BSEs.

Figure D.1: Capital price q, volatility of capital returns |σR|, and sunspot shock volatility σs. Parameters:
ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025.
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D.2 Non-fundamental crises and large amplification

We now show how our model with sentiment shocks can help resolve some empirical
issues related to financial crises and recoveries.

First, Figure D.2 compares impulse responses to a large negative balance-sheet shock
(i.e., decline in η) versus a wave of pessimism (i.e., increase in s). The shock sizes are cho-
sen so that the initial drop in capital price q0 − q0− is roughly the same. “Balance-sheet
recessions” (decline in η) feature a modest increase in volatility followed by relatively
slow recoveries, as experts can only rebuild their balance sheets by earning profits over
time. By contrast, “pessimism crises” (increase in s) feature large temporary volatility
spikes and can have accelerated recoveries (depending on the choice of µs). The dynam-
ics after a pessimism shock—both the rise in volatility and speed of recovery—are closer
to empirical evidence.29 Our results on recovery speeds are related to Maxted (2024),
who shows how extrapolative beliefs can help this class of models match such evidence,
but with our rational sentiment in place of his behavioral sentiment.

Figure D.2: Bust IRFs of capital price q and return volatility |σR|. The IRFs labeled “η shock” are responses
to a decrease in η from η0− = 0.5 to η0 = 0.25, holding s0 fixed at 0.1. The IRFs labeled “s shock” are
responses to an increase in s from s0− = 0.1 to s0 = 0.8, holding η0 fixed at 0.5. These shock sizes are
chosen such that the initial response of q are approximately equal. Note that η0 would respond to an “s
shock,” since ση has a non-zero second element, but we keep it fixed here. IRFs are computed as averages
across 500 simulations at daily frequency, with the outcomes above then averaged to the monthly level.
Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. Type-switching parameters: δh = 0.004
and δe = 0.036. In this example, we set the sunspot drift µs = 0.0002s−1.5 − 0.0002(smax − s)−1.5, where
smax = 0.95. This choice ensures st ∈ (0, smax) with probability 1.

29During the 2008 financial crisis and 2020 COVID-19 episode in the US, implied volatility from option
markets spiked by magnitudes on the order of 60%. For a rough idea of what the data says about crisis
recoveries, see Jordà et al. (2013) and Reinhart and Rogoff (2014) for output, and see Muir (2017) and
Krishnamurthy and Muir (2024) for credit spreads and stock prices. Across these many measures, and
using broad-based international panels, crisis recovery times tend to range from 4-6 years on average.

Of course, note that η responds to s-shocks, i.e., ση has a non-zero second component. Thus, a true
sentiment-driven crisis features dynamics that are a blend of the two IRFs in Figure D.2. Figure D.2 shows
a pure shock to s, without the endogenous co-movement in η, for theoretical clarity.
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To establish some more confidence in these results, we present the following two
propositions which together show that amplification can be arbitrarily high (Proposition
D.2) as long as sentiment shocks are the source (Proposition D.3). Given the literature’s
struggle to identify a “smoking gun” (e.g., TFP shocks, capital efficiency shocks) for
financial crises, we view this set of results as a helpful insight. The importance of senti-
ment s, relative to experts’ wealth share η, also echoes the empirical results suggesting
financial crises are not associated with pre-crisis levels of bank capital (Jordà et al., 2021).

Proposition D.2 (Arbitrary volatility). Given a target variance Σ∗ > 0 and any parameters
satisfying the assumptions of Proposition D.1, there exists a Markov S-BSE with stationary
average return variance exceeding the target, i.e., E[|σR|2] > Σ∗.

Proposition D.3 (Decoupling). In the Markov S-BSEs of Proposition D.1, the fraction of return
volatility due to sentiments |( 0

1 ) · σR|/|σR| and total return volatility |σR| increase with s.

D.3 Booms predict crises

We now use the same framework to cast light on empirical findings suggesting that
financial crises are predictable, in particular by large credit and asset price booms (Rein-
hart and Rogoff, 2009; Jordà et al., 2011, 2013, 2015a,b; Mian et al., 2017) that feature
below-average credit spreads (Krishnamurthy and Muir, 2024; López-Salido et al., 2017;
Baron and Xiong, 2017).

To do this, we make use of the auxiliary variable x that can affect the sentiment drift.
Following some models of extrapolative beliefs (Barberis et al., 2015; Maxted, 2024),
define an exponentially-declining weighted average of sentiment shocks:

xt := x0 + σx

∫ t

0
e−βx(t−u)dZ(2)

u . (D.4)

The variable x measures the stock of past pessimism. Assume the drift of s depends on
x via

µs,t = bxxt + µ̂s(st) with bx ≤ 0.

Similar to Section D.2, the term µ̂s will be designed to induce stationarity in st. The
new term bxx induces the following dynamics: after a wave of optimism (dZ(2)

t < 0),
st and xt will be low, but this raises µs,t and shifts up the conditional distributions
of future pessimism st+h. If the constant bx is large enough, the shift can generate
dynamics reminiscent of “overshooting,” in which an optimism-driven boom raises bust
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probabilities. Differently from the extrapolative belief literature, the beliefs implied by
these sentiment dynamics are completely rational.

Figure D.3: Boom IRFs of capital price q and return volatility |σR|. The IRFs labeled “η shock” are
responses to an increase in η from η0− = 0.5 to η0 = 0.7, holding s0 fixed at 0.4. The IRFs labeled “s
shock” are responses to a decrease in s from s0− = 0.4 to s0 = 0.1, holding η0 fixed at 0.5. These shock
sizes are chosen such that the initial response of q are approximately equal. Note that η0 would respond
to an “s shock,” since ση has a non-zero second element, but we keep it fixed here. IRFs are computed as
averages across 2000 simulations at daily frequency, with the outcomes above then averaged to the monthly
level. Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. Type-switching parameters: δh = 0.004
and δe = 0.036. In this example, we set the sunspot drift µs = bxx + 0.0001s−1.5 − 0.0001(smax − s)−1.5,
where smax = 0.95, bx = −25, βx = 0.1, and σx = 0.025. The parameters (βx, σx) are approximately the
values used for the mean-reversion and volatility of the diagnostic belief process in Maxted (2024).

Figure D.3 displays IRFs consistent with this overshooting logic. Sentiment-driven
booms predict future busts: an optimism shock raises asset prices and lowers volatility
for 1-2 years, but predicts lower prices and higher volatility afterward. (This number
of years depends on bx.) By contrast, a boom driven by expert wealth counterfactually
predicts high prices, lower volatility, and lower fragility at all horizons.

To connect to the empirical literature, we conduct an event study in Figure D.4.
We simulate our model (which thus features contributions from both fundamental and
sunspot shocks), identify crises in the simulated data, and plot average outcomes in the
years before and after crisis. Crises are identified as the worst 3rd percentile of yearly
output drops; other tail outcomes will produce similar graphs. We see that conditions
are improving up to 1 year before the crisis, with risk premia below average and declin-
ing. The crisis emerges suddenly and features spikes in all variables. Although we do
not report it here, such dynamics cannot be produced in the non-sunspot equilibria of
the model.
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Figure D.4: Event studies around financial crises. Crises are defined as the bottom 3rd percentile of year-
to-year log output declines. Data is generated via a 10,000 year simulation at the daily frequency, with the
outcomes above then averaged to the monthly level. The solid blue line is the mean path, and the dotted
blue lines represent the 25th and 75th percentiles. The thin horizontal line represents the unconditional
average. Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. Type-switching parameters: δh =
0.004 and δe = 0.036. In this example, we set the sunspot drift µs = bxx+ 0.0002s−1.5− 0.0002(smax− s)−1.5,
where smax = 0.95, bx = −25, βx = 0.1, and σx = 0.025. The parameters (βx, σx) are approximately the
values used for the mean-reversion and volatility of the diagnostic belief process in Maxted (2024).

D.4 Proofs of Propositions D.1-D.2-D.3

Proof of Proposition D.1. We provide a sketch the proof, which is similar to Theorem
1. Essentially, we want to construct an upper bound for the price based on the funda-
mental equilibrium, and the lower bound for the price based on a small perturbation of
the worst-case price (we want to include this perturbation since volatility explodes when
the price approaches its worst-case value). For notation, recall that ρ̄ := ηρe + (1− η)ρh.
By analogy, define ā := ηae + (1− η)ah.

Upper and lower bounds for price. Let (q̂0, κ̂0) be the solution to the fundamental equilib-
rium (which exists by assumption), and let η0 := inf{η : κ̂0 ≥ 1}. By Lemma E.1 part
(v), if σ is small enough then η0 < 1, which we assume to be the case. Then, define

q0(η) :=

q̂0(η), if η < η0;

q̂0(η) + ϕ(η), if η ≥ η0,
(D.5)

where ϕ is a C2 function with the properties ϕ(η0) = 0 and ϕ′ > (ā/ρ̄)′ − (ae/ρ̄)′ for all
η. In words, q0 is equal to the fundamental equilibrium price q̂0 whenever κ̂0 ≤ 1 and
above it when κ̂0 = 1. For the other extremal function, use the “worst-case” price

q1(η) := ā(η)/ρ̄(η). (D.6)

Importantly, we have q0 > q1 for all η.
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Candidate price. We proceed to combine these two extremal functions according to the
following convex combination, where α ∈ (0, 1) is fixed:

q̃(η, s) := (1− αs)q0(η) + αsq1(η), (η, s) ∈ D = (0, 1)× S . (D.7)

where S = (0, 1) is the domain for the sunspot state s. For each s ∈ S , define η∗(s) :=
inf{η : q̃(η, s) ≥ ae/ρ̄}, which can be shown is strictly increasing.30 Put

q(η, s) :=

q̃(η, s), if η < η∗(s)

ae/ρ̄(η), if η ≥ η∗(s)
and κ :=

ρ̄q− ah
ae − ah

.

By construction, the pair (q, κ) satisfy equation (PO).

Volatility. Gven the fact that α < 1 in (D.7), the resulting capital price is always bounded
away from the worst-case price, except as η → 0. Thus, the resulting equilibrium volatil-
ity will remain bounded for the exact same reasons as in the construction of Theorem
1 (which used a small perturbation of the state space to keep capital prices away from
their worst-case value). We omit the construction of this return volatility |σR|, since it is
identical to Theorem 1. Given the value of |σR| and the identity |σR|2 =

σ2+(σs∂s log q)2

[1−(κ−η)∂η log q]2 ,
we obtain σs by inverting this identity. Some technical checks are required to ensure that
the resulting σs is real, but this can be done. (If σ = 0, this is guaranteed.)

Sunspot drift and stationarity. Having determined q, κ, and σs, we define µη and ση by
(13)-(14). It remains to determine µs. We will pick µs(η, s) = m(η, s), where m is a
C2 function with the following properties: ∂sm < 0, and for some 0 ≤ s0 < s1 ≤ 1

30Indeed, note that q̃ is C2 on (η0, η1)× S , which implies η∗ is C1. Then, use the fact that η∗ is C1 to
differentiate q̃(η∗(s), s) = ae/ρ̄(η∗(s)) with respect to s, and use the fact that ∂s q̃ = q1 − q0, and finally
rearrange to obtain

(η∗)′(s)
[
∂η q̃(η∗(s), s) +

ae

ρ̄(η∗(s))
ρe − ρh

ρ̄(η∗(s))

]
= q0(η∗(s))− q1(η∗(s)).

If at any point s, we had (η∗)′(s) = 0, we would necessarily have q0(η∗(s)) = q1(η∗(s)). But this con-
tradicts the that q0 > q1. Thus, (η∗)′(s) 6= 0 for all s. We can also rule out (η∗)′(s) < 0 by the fact that
η∗(0+) = η0 and η∗(s) ≥ η0 for all s. Thus, (η∗)′(s) > 0 for all s.
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thresholds,

(if s0 > 0) inf
η∈(0,1)

lim
s↘s0

(s− s0)m(η, s) = +∞ (D.8)

(if s0 = 0) inf
η∈(0,1)

lim
s↘s0

m(η, s) > 0 (D.9)

sup
η∈(0,1)

lim
s↗s1

(s1 − s)m(η, s) = −∞. (D.10)

Given this choice, we need to demonstrate the time-paths (ηt, st)t≥0 remain in D almost-
surely and admit a stationary distribution. This step is very similar to the stochastic
stability step in Theorem 1 and is therefore omitted. We simply note that the Lyapunov
function to use in this step is v(η, s) := 1

η1/2 +
1

1−η + 1
1−s +

1
s .

Proof of Proposition D.2. Fix any Σ∗ > 0. The proof is a simple consequence of the
fact that σq must be unbounded as κ approaches η, which is as q approaches the worst-
case price q1. We fill in the technical details below.

We construct a sequence of equilibria—indexed by (α, ζ)—as follows. Recall the
capital price construction in Proposition D.1:

q = (1− αs)q0 + αsq1, when κ < 1,

where α < 1 is a parameter, q0 is the fundamental equilibrium price, and q1 = ā/ρ̄ is
the worst-case price. Based on the discussion in the text, we may choose µs such that
equilibrium concentrates on any particular value of s. Thus, pick µs such that st ≥ ζ

almost-surely. Clearly, the choice of µs depends on α, but such a choice can always be
made for any parameters.

Let plow > 0, phigh > 0 be given with plow + phigh < 1. First, note that there exist
α∗, ζ∗, ε∗ such that P[ηt ≤ ε ∩ κt < 1] < plow and P[ηt ≥ 1 − ε ∩ κt < 1] < phigh

for all α > α∗, ζ > ζ∗, and ε < ε∗. This is a consequence of the fact that in any
stationary distribution, we have limx→0 P[ηt < x] = limx→1 P[ηt > x] = 0 and the fact
that limα→1 lims→1 κ(η, s) < 1 for all η.

At this point, fix such an ε < ε∗. Let a constant M > 0 be given satisfying

M ≤ (1− plow − phigh)
(ae − ah)

2

ρeae/ρh

ε(1− ε)

Σ∗
. (D.11)
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Note that
lim
α→1

lim
s→1

sup
η∈(ε,1−ε)

∣∣∣q(η, s)− ā(η)/ρ̄(η)
∣∣∣ = 0.

Consequently, we may pick α > α∗ close enough to 1 and ζ > ζ∗ close enough to 1 such
that

sup
s∈(ζ,1)

sup
η∈(ε,1−ε)

∣∣∣q(η, s)− ā(η)/ρ̄(η)
∣∣∣ ≤ M.

Finally, using equation (D.3) and substituting κ < 1 from (PO), we have |σ( 1
0 ) +

σq|2 = (ae−ah)
2

q
η(1−η)

ρ̄q−ā . Note also that q ≤ ae/ρh and ρ̄ ≤ ρe are upper bounds. Then,

E[|σ( 1
0 ) + σq,t|2] > (1− plow − phigh)

(ae − ah)
2

ρeae/ρh

ε(1− ε)

M
.

Using (D.11), we obtain E[|σ( 1
0 ) + σq,t|2] > Σ∗.

Proof of Proposition D.3. First, we prove that |σR| is increasing in s. From (D.3), we
obtain |σR|2 = (ae−ah)

2

q
η(1−η)

ρ̄q−ā on {κ < 1}. Differentiating with respect to s, and using
∂sq = α(q1 − q0) < 0, we obtain

∂s|σR|2 = −η(1− η)
(ae − ah)

2

q(ρ̄q− ā)

[1
q
+

ρ̄

ρ̄q− ā

]
∂sq > 0.

Next, revisiting the proof of Proposition D.1, we compute on {κ < 1},

∂s[(κ − η)∂η log q] = α
[
(κ − η)

(q1)′ − (q0)′

q
+

ā(q1 − q0)

(ae − ah)q2 ∂ηq
]
< 0.

The inequality uses the properties of the ϕ function in (D.5) to say (q1)′ − (q0)′ < 0,
along with the obvious facts q1 − q0 < 0 and ∂ηq > 0. Using |( 1

0 ) · σR| = σ
1−(κ−η)∂η log q ,

we obtain ∂s|( 1
0 ) · σR| < 0.

Using the two claims just proved, and the identity |σR|2 = |( 0
1 ) · σR|2 + |( 1

0 ) · σR|2, we
see that |( 0

1 ) · σR| is increasing in s on {κ < 1}. For the same reason, namely |( 0
1 ) · σR|2

is both smaller and increasing faster than |σR|, we have that |( 0
1 ) · σR|/|σR| increasing in

s on {κ < 1}.
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D.5 Correlation between sentiment and fundamentals

What happens if sentiment shocks are correlated with fundamental shocks? To model
this, we allow

dst = µs,tdt + σ
(1)
s,t dZ(1)

t + σ
(2)
s,t dZ(2)

t .

In Section D.1, we restricted attention to σ
(1)
s,t = 0. Without this assumption, equations

(D.3) and (D.2) are modified to read:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

( (σ + σ
(1)
s ∂s log q)2 + (σ

(2)
s ∂s log q)2

(1− (κ − η)∂η log q)2

)]
σq =

( 1
0 )(κ − η)σ∂η log q + σs∂s log q

1− (κ − η)∂η log q
.

The rest of the equilibrium restrictions are identical.
For the present illustration, we additionally assume that σ

(2)
s,t = 0, i.e., sentiment

shocks only load on fundamental shocks. What emerges is the possibility that sentiment
shocks “hedge” fundamental shocks: we can have σ

(1)
s ∂s log q < 0, which lowers return

volatility and raises asset prices. In one extreme, if σ
(1)
s ∂s log q → −σ, the price function

converges to that of a Fundamental Equilibrium with vanishing fundamental risk σ →
0; call this FE(0). At the other end, if σ

(1)
s ∂s log q → 0, the economy resembles the

Fundamental Equilibrium with positive fundamental shocks; call this FE(σ). Thus, by
constructing our conjectured capital price function as a convex combination of FE(0) and
FE(σ), with weights 1− s and s, we can ensure that σ

(1)
s ∂s log q endogenously emerges

negative. Figure D.5 displays the equilibrium constructed this way.

Figure D.5: Capital price q, volatility of capital returns |σR|, and sunspot shock volatility |σs|. Parameters:
ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.10.
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D.6 Exogenous sunspot dynamics

In Section D.1, we solved for a Markov S-BSE that featured endogenous sunspot dynam-
ics, i.e., (σs, µs) could potentially depend on η. Here, we show that sunspot equilibria
can be built on top of exogenous sunspot dynamics as well. As we will show, this con-
struction can be naturally viewed as the limit of equilibria in which the variable s has
a vanishing contribution to fundamentals. With that in mind, we actually start from a
more general setting in which s can impact fundamental volatility, and then we take the
limit as this impact becomes vanishingly small.

Consider the following stochastic volatility model:

dKt

Kt
= gdt + σ

√
1 + ωstdZt

dst = µs(st)dt + ϑ
√

1 + ωstdZt

where ϑ > 0 is an exogenous parameter and ω ∈ R measures the impact of st on capital
growth volatility. Thus, the diffusion of st, namely σs(s) := ϑ

√
1 + ωs, is specified

exogenously. Also, µs(s) is an exogenous function that is specified to ensure that st ∈
(smin, smax), for some pre-specified interval satisfying smin ≥ 0 and ωsmax > −1. Such a
choice can always be made, e.g., by putting µs(s) = −(smax− s)−(1+β)+ (s− smin)

−(1+β).
Note that st becomes a sunspot when ω = 0. When ω < 0, the state st is an inverse
measure of capital’s volatility.

For simplicity, we assume there is a single aggregate shock, i.e., Z is a one-dimensional
Brownian motion; this can easily be generalized to multiple shocks. Also for simplicity
of expressions, we assume here that ρe = ρh = ρ. Then, an equilibrium capital price
function q(η, s) must satisfy the PDE defined by the following system

ρq = κae + (1− κ)ah

0 = min
[
1− κ,

ae − ah
q
− (κ − η)(1 + ωs)

η(1− η)

( σ + ϑ∂s log q
1− (κ − η)∂η log q

)2]
.

Technically, the multiplicity arises from the selection of the boundary conditions on
q(η, smin) and q(η, smax), which are not pinned down by any equilibrium restriction.

We perform two exercises. First, we show that there are multiple equilibria for a given
set of parameters. We use ω < 0 here, along with smin = 0 and smax = 2. In this case, the
“natural” and intuitive solution is for q to increase with s, because volatility decreases.
In Figure D.6, we pick a “low” boundary condition for q(η, 0) and the solution follows
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this intuition.31
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Figure D.6: Equilibrium with ω = −0.25, and the “low” boundary condition for q(η, 0), which is a 50%
weighted-average of the fundamental equilibrium and the infinite-volatility equilibrium. Other parame-
ters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The boundary condition at η = 0 is set so that
κ(0, s) = 0.01 for all s.

However, agents could equally well coordinate on a “high” boundary condition,
which results in the solution of Figure D.7.32 Notice the capital price and return volatil-
ity exhibit a non-monotonicity in s. At low values of s, q is decreasing in s, while return
volatility increases. The very different behavior in Figures D.6 and D.7 is made possible
by coordination on the different boundary conditions.

Our second exercise considers the limit ω → 0. Figure D.8 shows the solution for
ω = −10−6, again equipped with the “low” boundary condition for q(η, 0). There re-
mains a tremendous amount of variation in the equilibrium as s varies, illustrating con-
vergence to a sunspot equilibrium. Thus, as promised, we are able to construct sunspot
equilibria even if the dynamics (σs, µs) are specified exogenously. In fact, it appears that
the amount of price volatility is relatively insensitive to the real effects s has (i.e., the
size of ω), which is reminiscent of the “volatility paradox” of Brunnermeier and San-
nikov (2014) but one level deeper. Their paradox is that total volatility is only modestly
sensitive to exogenous fundamental volatility; our paradox is that total volatility is only
modestly sensitive to the exogenous impact of s on fundamental volatility.

31This “low” boundary condition is a weighted average between the solution with infinite volatility and
the fundamental equilibrium solution. The fundamental equilibrium, which is the capital price solution
that keeps s = 0 fixed forever, is discussed in Online Appendix E. The infinite-volatility solution has κ = η,
hence q = (ηae + (1− η)ah)/ρ̄(η).

32This “high” boundary condition is a weighted average between limv→0 FE(v) and FE(σ), where FE(σ)
denotes the Fundamental Equilibrium solution with exogenous risk σ.
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Figure D.7: Equilibrium with ω = −0.25, and the “high” boundary condition for q(η, 0), which is a 50%
weighted-average of FE(σ) and limv→0 FE(v), where FE(σ) denotes the fundamental equilibrium solution
with fundamental risk σ. Other parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The
boundary condition at η = 0 is set so that κ(0, s) = 0.01 for all s.
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Figure D.8: Equilibrium with near-sunspot ω = −10−6 and the “low” boundary condition for q(η, 0),
which is a 50% weighted-average of FE(σ) and the infinite-volatility equilibrium (which has κ = η). Other
parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The boundary condition at η = 0 is set
so that κ(0, s) = 0.01 for all s.
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E Fundamental Equilibria

In this section, we investigate properties of equilibria where sunspot shocks Z(2) are
irrelevant and experts’ wealth share η serves as the only state variable, i.e., fundamental
equilibria. The key equations describing FEs are:

qρ̄ = κae + (1− κ)ah (E.1)

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(σ + σq)

2
]
. (E.2)

σq =
(κ − η)q′/q

1− (κ − η)q′/q
σ. (E.3)

Equation (E.1) just restates (PO). Equation (E.2) is the risk-balance condition (RB) when
there is only the fundamental shock Z(1). Equation (E.3) comes from resolving the
two-way feedback between wealth share volatility ση = (κ − η)(σ + σq) and asset-price
volatility σq = q′

q ση, which arises from Itô’s formula. Finally, wealth share dynamics are
given in (13)-(14), restated here for convenience:

µη = −η(1− η)(ρe − ρh) + (κ − 2κη + η2)
κ − η

η(1− η)

( σ

1− (κ − η)q′/q

)2
(E.4)

+ δh − (δe + δh)η

ση = (κ − η)(σ + σq). (E.5)

We define a fundamental equilibrium as follows, analogously to Lemma 1.

Definition 4. Given η0 ∈ (0, 1), a Markov fundamental equilibrium consists of adapted
processes (ηt, qt, κt, rt)t≥0 such that qt = q(ηt) for some function q(·), such that (E.1)-
(E.3) and (11) hold, and such that (E.4)-(E.5) describe dynamics of ηt.

Note that the interest rate rt can be simply set from (11), given the other variables,
and it affects no other equilibrium equation. Similarly, the dynamics of ηt are set from
(E.4)-(E.5), and they affect none of (E.1)-(E.3). Finally, κt can be obtained from (ηt, qt)

directly from equation (E.1). Hence, the critical object in a fundamental equilibrium is
the function q.

We document some properties of fundamental equilibria, where we additionally im-
pose the standard full-deleveraging boundary condition κ(0) = 0. Khorrami and Mendo
(2024) shows in their online appendix that this boundary condition is the only one that
survives a simple refinement based on a vanishingly-small limited commitment friction.
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Lemma E.1. Assuming it exists, suppose q is a fundamental equilibrium in the sense of Defini-
tion 4. Assume κ(0+) = 0. Consider only equilibria with σ + σq ≥ 0. Define η∗ := inf{η :
κ = 1}. Then, the following hold:

(i) Free boundary problem for (q, η∗):

(ρ̄q− ηae − (1− η)ah)
q′

q
= ae − ah − σ

√
q

ρ̄q− ηae − (1− η)ah
η(1− η)

for all η ∈ (0, η∗).

(ii) ηae + (1− η)ah < ρ̄q < ae , for all η ∈ (0, η∗).

(iii) q′(0+)
q(0+)

= ae
ah
− ρe

ρh
+ ρh

( ae−ah
σah

)2.

(iv) If σ is sufficiently small, then q′ > ae−ah
ρ̄ , for η ∈ (0, η∗).

(v) If σ is sufficiently small, then ρh
ρe

(1−ah/ae
σ2 − 1 + ρh

ρe

)−1
< η∗ < 1.

(vi) If σ is sufficiently small, then the equilibrium is unique.

Proof of Lemma E.1. Recall ρ̄ := ηρe + (1− η)ρh. By analogy, let ā := ηae + (1− η)ah.

(i) Start from equation (E.2), plug in (E.1) and (E.3), and rearrange to obtain the result,
where we have selected the solution with 1 > (κ− η) q′

q to make sure σ + σq ≥ 0 as
mentioned.

(ii) The first inequality, which is equivalent to κ > η, is a direct implication of equation
(E.2). The second inequality, equivalent to κ < 1, is a restatement of the definition
of η∗.

(iii) Start from equation (E.2). Taking the limit η → 0, and using κ(0+) = 0, delivers
an equation for κ′(0+). Differentiating (E.1), we may then substitute κ′(0+) =
ρhq′(0+)+(ρe−ρh)q(0+)

ae−ah
. Rearranging, we obtain the desired result.

(iv) By part (iii), there exists η◦ > 0 and σ̄ > 0 such that uniformly for all σ < σ̄, we
have q′ > ae−ah

ρ̄ on the set {η < η◦}. On the set {η◦ ≤ η < η∗}, we know that
κ − η is bounded away from zero, uniformly for all σ < σ̄. Using the expression
in part (i), the fact that q is bounded by ae/ρ̄ uniformly for all σ, and the previous
fact about κ − η = ρ̄q− ā, we can write

q′ =
ae − ah
ρ̄q− ā

q− o(σ), η ∈ (η◦, η∗).
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Therefore,

q′ + o(σ) =
ae − ah
ρ̄q− ā

q =
ae − ah

ρ̄

q
q− ā/ρ̄

>
ae − ah

ρ̄
, η ∈ (η◦, η∗),

where the last inequality is due to ρ̄q > ā [part (ii)]. Taking σ is small enough
implies the result on (η◦, η∗), which we combine with the result on (0, η◦) to con-
clude.

(v) Consider the function q̃ := ā/ρ̄, whose derivative is q̃′ = ae−ah
ρ̄ − ā

ρ̄
ρe−ρh

ρ̄ < ae−ah
ρ̄ .

Combining this result with part (iv), we obtain q′ > q̃′. If q̃ was the capital price,
then equation (E.1) implies the associated capital share κ̃ = η. On the other hand,
the fact that q′ > q̃′ implies κ′ > κ̃′ = 1, which implies η∗ < 1.

Next, consider η ∈ (η∗, 1) so that κ = 1 (see Lemma A.6 of Khorrami and Mendo,
2024 for a proof that we must have κ = 1 for all η > η∗). By equation (E.2), with
q = ae/ρ̄, we must have

σ2 ≤ ηρ̄
ae − ah

ae

(
1 + (1− η)

ρe − ρh
ρ̄

)2
, η ≥ η∗.

This is equivalent to

1 ≤ η
ρe

ρh

( ae − ah
aeσ2 ρe − 1 +

ρh
ρe

)
, η ≥ η∗.

Substituting η = η∗, and rearranging, we obtain the first inequality. There is no
contradiction with η∗ < 1, due to the assumption that σ can be made small enough.

(vi) See Lemma A.7 of Khorrami and Mendo (2024).
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F Partial equity issuance

We extend the model to allow some equity issuance by capital holders, subject to a
constraint. In particular, at any point of time, agents managing capital can issue some
equity to the market, but the issuer must keep at least χ ∈ [0, 1] fraction of their capital
risk—this is a so-called “skin-in-the-game” constraint. In other words, if experts and
households retain χe and χh of their capital risk, respectively, it must be the case that

χ`,t ≥ χ, ` ∈ {e, h}. (F.1)

Thus, the frictionless model corresponds to χ = 0, while our baseline model corresponds
to χ = 1. Outside equity contracts are risky, having risk exposure σR (the endoge-
nous capital return volatility), so they must promise an excess return σR · π, where π is
the equilibrium risk price vector that applies to securities tradable by both experts and
households.

Agents’ dynamic budget constraints are now given by

dn`,t =
[
(n`,t − qtk`,t)rt − c`,t + a`k`,t

]
dt + d(qtk`,t)

+ [θ`,tn`,t − (1− χ`,t)qtk`,t]σR,t · (πtdt + dZt). (F.2)

The second line of (F.2) contains the new terms pertaining to equity-issuance: θ`,t ≥ 0
denotes purchases of equity contracts in the market, per unit of wealth, while χ`,t denotes
the fraction of capital risk. Notice that it will be without loss of generality to assume
χ`,t = χ at all times and for all agents, because the purchase variable θ`,t is available
as a control. For example, an agent with a slack equity-issuance constraint (χ` > χ)
could issue equity to the constraint (F.1) and then buy back such equity by increasing
their θ` control. Going forward, we simply assume χe,t = χh,t = χ. The presence
of a public equity market implies an additional market clearing condition for equity
securities, namely

θe,tNe,t + θh,tNh,t = (1− χ)qtKt. (F.3)

At this point, we may solve for equilibrium.

Model solution. The introduction of equity issuance changes nothing about optimal
consumption choices, so the price-output relation (PO) still holds.
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Optimal portfolio choice now implies the following four FOCs:

µR,e − (1− χ)σR · π − r = χ
(χqke

ne
+ θe

)
|σR|2 (F.4)

µR,h − (1− χ)σR · π − r ≤ χ
(χqkh

nh
+ θh

)
|σR|2, with equality if kh > 0 (F.5)(χqke

ne
+ θe

)
|σR|2 ≥ σR · π, with equality if θe > 0 (F.6)(χqkh

nh
+ θh

)
|σR|2 ≥ σR · π, with equality if θh > 0 (F.7)

where µR,` := a`
q + g + µq + σσq ·

(
1
0
)

is the expected return on capital for agent `. Equa-
tions (F.4)-(F.5) are the FOCs for capital holdings, and (F.6)-(F.7) are the FOCs for equity
purchases. Note that the equality in (F.4) assumes ke > 0, which is easy to verify must
always be the case in equilibrium, exactly as in the baseline model.

We can derive a new “risk-balance” condition, analogously to the baseline model. If
in addition to ke > 0 we have kh > 0, then we cannot simultaneously have θe > 0, as this
would contradict µR,e > µR,h. Thus, θe = 0 whenever kh > 0, and so we may difference
(F.4)-(F.5) and use the market clearing condition (F.3) to substitute θh = 1−χ

1−η , which leads
to

0 = min
[
1− κ,

ae − ah
q
− χ

χκ − η

η(1− η)
|σR|2

]
. (RBE)

In addition to (RBE), equation (F.7) must hold with equality and (F.6) with inequality
when κ < 1. By (F.7) and the derived expression θh = 1−χ

1−η , we have σR · π = 1−χκ
1−η |σR|2,

for which a viable solution is

π =
1− χκ

1− η
σR, if κ < 1. (F.8)

Using this expression for π, (F.6) requires χκ ≥ η, which holds by equation (RBE).
By contrast, when kh = 0 (so κ = 1), equations (F.6)-(F.7) imply

π = min
(

1,
1− χ

1− η

)
σR, if κ = 1. (F.9)

To prove this, combine the two possible cases:

(i) Suppose θe > 0. Note that θh = 0 cannot occur, as θe > 0 implies σR · π > 0 while
kh = θh = 0 implies the opposite. Thus, we may combine (F.6)-(F.7), both evaluated
under equality, to obtain θh = θe +

χ
η . Plugging this result into market clearing (F.3)
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yields θe = 1− χ/η and θh = 1. Using θh = 1 back in (F.7), we obtain σR ·π = |σR|2,
for which a viable solution is π = σR. Note that θe = 1− χ/η > 0 if and only if
η > χ.

(ii) Suppose θe = 0. Note that market clearing (F.3) implies θh = 1−χ
1−η > 0 in this case.

By (F.7), we have σR · π = 1−χ
1−η |σR|2, for which a viable solution is π = 1−χ

1−η σR.
Using the expression for π, (F.6) requires η ≤ χ.

Putting the results of (F.8)-(F.9) together, we have that

π = min
(

1,
1− χκ

1− η

)
σR. (F.10)

Finally, the riskless interest rate can be derived as always, by summing a (κ, 1− κ)-
weighted-average of equations (F.4)-(F.5) to get

r =
κae + (1− κ)ah

q
+ g + µq + σσq ·

(
1
0
)
− (1− χ)σR · π (F.11)

− χ
[
κ
(χκ

η
+ θe

)
+ (1− κ)

(χ(1− κ)

1− η
+ θh

)]
|σR|2.

We can simplify this equation using the following facts. First, from the discussion above,
θh > 0 always holds, so that (F.7) holds with equality, hence θh = σR·π

|σR|2
− χ(1−κ)

1−η . Next,

we may use the market clearing condition (F.3) to obtain θe =
1−χ

η −
1−η

η θh. We use these
two facts to eliminate θe and θh from (F.11), then we substitute the solution for π from
(F.10), and finally we simplify the result to obtain

r =
κae + (1− κ)ah

q
+ g + µq + σσq ·

(
1
0
)
− |σR|2 −

(χκ

η
− 1
)

max
(

0,
χκ − η

1− η

)
. (F.12)

This completes the derivation of equilibrium.

Properties of equilibrium. For any χ > 0, we can construct S-BSEs using a similar
procedure as the baseline model, i.e., by solving equation (PO) for κ as a function of
(η, q), and then substituting this into (RBE) to also solve for |σR| as a function of (η, q).
Importantly, any solution to equation (RBE) requires χκ ≥ η, and so the effect of lower
equity issuance frictions (lower χ) is to reduce the range of possible fluctuations of κ,
hence q, for any given η. This effect is depicted in Figure F.1, which shows that the range
of possible fluctuations for price q is unambiguously shrinking as χ falls. However, the
ergodic set is {η ≤ χ}, and so the resulting equilibrium dynamics actually look very
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similar for any χ > 0. On the other hand, if χ = 0, no sunspot equilibrium can exist, as
shown in the main text.

Figure F.1: Colormap of volatility |σR| as a function of (η, q), in the region D := {(η, q) : η ∈
(0, 1) and (η/χ)ae + (1− η/χ)ah < qρ̄(η) ≤ ae}. Volatility is truncated for aesthetic purposes (because
|σR| → ∞ as κ → η/χ). Parameters: ρe = 0.07, ρh = 0.05, ae = 0.11, ah = 0.03.
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G Discrete-time model

The following discrete-time model is exactly analogous to our continuous-time model.
We model each decision on a time-step of ∆ (it will turn out that the decision interval ∆
cannot be arbitrarily large).

Technology. For simplicity, we assume that aggregate capital K is fixed, i.e., there is no
fundamental uncertainty. Note nevertheless that individual positions on capital are not
predetermined since agents can trade capital.

Individual agent problem. An individual can hold two assets, riskless bonds bt and
capital kt, and decides consumption ct. The individual net worth, just before consuming,
is nt = bt + qtkt, where qt is the market price of capital. The one-period return on bonds
is R f

t = 1 + rt∆, and the return-on-capital is Rk
t+∆ := a∆

qt
+ qt+∆

qt
, where a is the agent’s

productivity per unit of time while holding capital. Then, the agent’s dynamic budget
constraint is33

nt+∆ = qtkt(Rk
t+∆ − R f

t ) + (nt − ct)R f
t . (G.1)

Each agent takes qt, R f
t , and Rk

t+∆ as given and chooses (c, k, n) to maximize

E

[
∞

∑
i=0

( 1
1 + ρ∆

)i
log(ci∆)

]
, (G.2)

subject to (G.1), subject to the no-shorting constraint kt ≥ 0, and subject to the solvency
constraint nt ≥ 0.

The first-order optimality conditions are the standard Euler equations

1 =
1

1 + ρ∆
R f

t Et

[
ct

ct+∆

]
(G.3)

0 ≥ 1
1 + ρ∆

Et

[
ct

ct+∆
(Rk

t+∆ − R f
t )

]
, (G.4)

where (G.4) holds with equality when kt > 0 is chosen.

33To derive (G.1), proceed as follows. First, note that the bond market account next period, before
adjusting the portfolio of bonds and capital, will have value b′t+∆ = R f

f (bt − ct) + akt∆—that is, after
consumption expenditures are made, the residual earns the interest rate, and the cash flows from holding
capital are also added at the end of the period. Second, the capital holdings kt will have value qt+∆kt next
period. Adding these two quantities must equal tomorrow’s net worth nt+∆. Hence, nt+∆ = R f

f (bt − ct) +

akt∆ + qt+∆kt. Using the definition nt = bt + qtkt gives the result (G.1).
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In addition, it is straightforward to show that optimal consumption satisfies the stan-
dard log utility formula34

ct =
ρ∆

1 + ρ∆
nt. (G.5)

Using this fact, plus the budget constraint (G.1) in (G.3)-(G.4), we obtain

1 =
1

1 + ρ∆
R f

t Et

[
1

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
(G.6)

0 ≥ 1
1 + ρ∆

Et

[
Rk

t+∆ − R f
t

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
, with equality if θt > 0 (G.7)

where θt := qtkt
nt

is the share of wealth allocated to capital. At this point, one can prove
that (G.6) holds automatically if (G.7) holds.35 Therefore, we can drop the bond Euler
equation (G.6) from the remainder of the analysis, i.e., (G.5) and (G.7) fully characterize
the agent’s optimal choices.

Aggregation and equilibrium conditions. As in the main text, we assume there are
two types of agents: experts have productivity ae and discount rate ρe, while households
have productivity ah < ae and discount rate ρh ≤ ρe. Clearly, then, experts have a higher
return-on-capital than households: Rk

e,t+∆ > Rk
h,t+∆.

We now aggregate. The market clearing condition for goods, capital, and bonds are
given by, respectively,

ce,t + ch,t = (aeke,t + ahkh,t)∆ (G.8)

ke,t + kh,t = K (G.9)

be,t + bh,t = ce,t + ch,t. (G.10)

Equation (G.10) says that bondholdings just after consuming (which is bt − ct) sum to

34This can be showed by writing out the Bellman equation and guessing-and-verifying that the value
function takes the form vt = (1− β)−1 log(nt) + f (Ωt) for β = (1 + ρ∆)−1 and some function f that only
depends on aggregate states Ωt. Then, the envelope condition says c−1

t = ∂
∂n vt = (1− β)−1n−1

t , which is
the consumption formula.

35Indeed, if θt = 0 it is obvious that (G.6) holds. If θt > 0, then (G.7) holds with equality, so we then
have

0 = Et

[ θt(Rk
t+∆ − R f

t )

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
Adding this expression to equation (G.6), we obtain the identity 1 = 1.

62



the zero net supply. By combining (G.10) with the individual net worth definition nt =

bt + qtkt, we obtain an alternative statement of bond market clearing that we will use:

ne,t + nh,t = qtK + ce,t + ch,t. (G.11)

Definition 5. An equilibrium is a collection of stochastic processes for allocations
(k j,t∆, nj,t∆, cj,t∆)

∞
t=0 for j ∈ {e, h} with ke,0 and kh,0 given, and for prices (qt∆, R f

t∆)
∞
t=0 such

that (i) given prices, allocations solve each agent type’s problem, and (ii) markets clear.

G.1 Equilibrium characterization

We have already characterized optimal decisions and market clearing conditions. In
particular, a collection of stochastic processes for allocations and prices constitute an
equilibrium if they satisfy (G.1), (G.5), and (G.7) for each agent type (experts and house-
holds), along with equations (G.8), (G.9), and (G.11) at the aggregate level.

We further tighten this characterization and reduce it to four stochastic processes sat-
isfying a set of conditions, exactly as in our continuous-time model. First, to keep track
of the distribution of wealth and capital, let ηt := (1 + ρe∆)−1ne,t/qtK and κt := ke,t/K
denote expert’s wealth and capital shares.36 Whereas κt is a “jumpy” variable because
it is linked to agent’s capital choices, ηt is a “state” variable because it is determined
via agent’s slow-moving wealths. Using the budget constraint (G.1), we can obtain the
dynamics of ηt as

ηt+∆ =
1

1 + ρe∆

κt(Rk
e,t+∆ − R f

t ) + ηtR
f
t

qt+∆/qt

 . (G.12)

Next, we aggregate the consumption decisions across these two types. To do this, plug
the consumption rules from (G.5) into the goods and bond market clearing conditions
(G.8) and (G.11), and combine the results to obtain

qtρ̄(ηt) = κtae + (1− κt)ah, (G.13)

where ρ̄(η) := ηρe + (1 − η)ρh is a wealth-weighted average discount rate. Identical
to our continuous-time model, equation (G.13) is a price-output relation that links asset
values qt to the efficiency of the capital distribution κt. Finally, we aggregate the Euler

36Note that the wealth share is defined just after consumption choices are made, i.e., ηt = (ne,t −
ce,t)/(ne,t + nh,t − ce,t − ch,t) is the definition we are using.
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equations (G.7) within the two types using the fact that experts will always be on the
margin (i.e., since Rk

e,t+∆ > Rk
h,t+∆, we have ke,t > 0 at all times). We also use the fact

that θe,t = qtke,t
ne,t

= 1
1+ρe∆

κt
ηt

and θh,t =
qtkh,t
nh,t

= 1
1+ρh∆

1−κt
1−ηt

to write the results in a more
convenient way. The results are

0 = Et

 qt+∆ + ae∆− R f
t qt

κt
ηt

(
qt+∆ + ae∆− R f

t qt

)
+ R f

t qt

 (G.14)

0 ≥ Et

 qt+∆ + ah∆− R f
t qt

1−κt
1−ηt

(
qt+∆ + ah∆− R f

t qt

)
+ R f

t qt

 (G.15)

where the latter holds as an equality when households hold capital, i.e., when κt < 1.
Thus, an equilibrium is fully characterized by the collection of stochastic processes

(ηt∆, κt∆, qt∆, R f
t∆)

∞
t=0, with η0 = ke,0/K given, such that the two optimality conditions

(G.14)-(G.15) hold; the price-output relation (G.13) holds; and the law of motion for ηt is
given by (G.12). To establish the analog to our continuous-time model, we also state this
characterization as a lemma—notice that the verbiage is almost identical to Lemma 1.

Lemma G.1. Given η0 ∈ (0, 1), consider stochastic processes {ηt∆, qt∆, κt∆, R f
t∆}∞

t=0 such that
ηt evolution is described by (G.12). If ηt ∈ [0, 1], κt ∈ [0, 1], and equations (G.13), (G.14), and
(G.15) hold for all t ≥ 0, then {ηt∆, qt∆, κt∆, R f

t∆}∞
t=0 corresponds to an equilibrium.

Notice from Lemma G.1 that we have as many equations as unknown non-state vari-
ables (qt, κt, R f

t ). However, Euler equations (G.14)-(G.15) also depend on the probability
distribution of the future asset price qt+∆, in order to determine the asset price qt and
riskless rate R f

t today. This will be the key reason why the set of equilibrium conditions
above is not enough to pin down qt uniquely. In the continuous-time model, the dis-
tribution of future asset prices was summarized by the drift and the volatility (µq, σq).
Here, the distribution of qt+∆ could be more general, but we present a binomial example
below. We now proceed to analysis of the two types of equilibria: fundamental and
non-fundamental.

G.2 Fundamental equilibrium

A fundamental equilibrium has κt = 1 for all periods. In such an equilibrium, (G.13) says
that the capital price should be

qt =
ae

ρ̄(ηt)
, if κt = 1. (G.16)
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Substituting this result into the state dynamics (G.12), we have

ηt+∆ =
1

1 + ρe∆

[
1 + ρ̄(ηt+∆)−

ρ̄(ηt+∆)

ρ̄(ηt)
(1− ηt)R f

t

]
, if κt = κt+∆ = 1. (G.17)

As the only (t + ∆)-measurable object in (G.17), ηt+∆ evolves deterministically in a fun-
damental equilibrium. Because qt is solely a function of ηt in (G.16), qt+∆ is also known
as of time t. As a result, experts’ return-on-capital must coincide with the riskless rate,
i.e., R f

t = ae∆
qt

+ qt+∆
qt

, or

R f
t = ρ̄(ηt) +

ρ̄(ηt)

ρ̄(ηt+∆)
, if κt = κt+∆ = 1. (G.18)

Combining (G.17) and (G.18), we obtain the solved dynamics

ηt+∆ =
ηt(1 + ρe∆)−1

ηt(1 + ρe∆)−1 + (1− ηt)(1 + ρh∆)−1 , if κt = κt+∆ = 1. (G.19)

Thus, expert’s wealth share asymptotically tends toward zero. Intuitively, they earn zero
excess capital returns and consume at a higher rate than households.

G.3 Non-fundamental equilibrium

A non-fundamental equilibrium has κt < 1 for some t. We proceed with a simple binomial
tree example to show that non-fundamental equilibria exist, although more complicated
information structures are also likely possible. We conjecture an equilibrium with

qt+∆ =

utqt, with probability 1− πt;

dtqt, with probability πt.
(G.20)

The “up” and “down” returns ut and dt ∈ (0, ut) may be state dependent, as may the
probability of a price drop πt. As in our baseline model, we will take the “state space”
to be the set of possible (ηt, qt), or equivalently (ηt, κt). In other words, (ut, dt, πt) will
be functions of (ηt, κt), as will the interest rate rt. The rest of this appendix constructs an
example equilibrium under the binomial scheme (G.20). In particular, we will prove the
following by construction:

Proposition G.1. For all ∆ sufficiently small, a non-fundamental equilibrium exists.

To start, we may solve for the optimal portfolios explicitly in this binomial environ-
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ment. Using (G.12) and (G.20) in the expert Euler equation (G.14), we have

κt

ηt
= −R f

t

(1− πt)ut + πtdt +
ae∆
qt
− R f

t

(ut +
ae∆
qt
− R f

t )(dt +
ae∆
qt
− R f

t )
. (G.21)

Doing the same for the household Euler equation (G.15), we have

1− κt

1− ηt
= −R f

t min
(

0,
(1− πt)ut + πtdt +

ah∆
qt
− R f

t

(ut +
ah∆
qt
− R f

t )(dt +
ah∆
qt
− R f

t )

)
. (G.22)

Next, note that the price-output relation (G.13) and state dynamics (G.12) are un-
changed by the binomial setup, and we repeat them here for convenience:

ρ̄(ηt) =
κtae + (1− κt)ah

qt
(G.23)

ηt+∆ =
1

1 + ρe∆

κt(
ae∆
qt

+ qt+∆
qt
− R f

t ) + ηtR
f
t

qt+∆/qt
. (G.24)

As mentioned in Lemma G.1, to find an equilibrium we only need to check that we
can pick (ut, dt, πt) to satisfy (G.21)-(G.24) at every point in the state space and that the
resulting equilibrium dynamics do not cause the dynamical system to “exit the feasible
region.” To this end, we immediately note that ηt ∈ (0, 1) on any equilibrium path,
which can be verified by checking the state dynamics (G.24).37

To continue, we will specialize below to a particular choice of u and d. Our construc-
tion will correspond to an approximation of Brownian motion in the “interior” of the

37Examine the state dynamics (G.24) in the down state and substitute (G.21) to obtain

dt
ηd

t+∆
ηt

=
1

1 + ρe∆
R f

t

(
1−

(1− πt)ut + πtdt +
ae∆
qt
− R f

t

ut +
ae∆
qt
− R f

t

)
> 0.

Similarly, mirroring (G.24), the symmetric condition for household’s net worth share dynamics is

1− ηt+∆ =
1

1 + ρe∆

(1− κt)(
ah∆
qt

+
qt+∆

qt
− R f

t ) + (1− ηt)R f
t

qt+∆/qt

Examining this condition in the up state and substituting (G.22), we obtain

ut
1− ηu

t+∆
1− ηt

=
1

1 + ρh∆
R f

t

(
1−min

(
0,

(1− πt)ut + πtdt +
ah∆
qt
− R f

t

dt +
ah∆
qt
− R f

t

))
> 0.

Thus, the requirement to keep ηt ∈ (0, 1) is automatically satisfied.
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state space, with special considerations imposed at the “boundaries” of this state space.
More specifically, we define the following regions. First, we have the entire feasible state
space

D :=
{
(η, κ) : η ∈ (0, 1), κ ∈ (η, 1]

}
.

The reason why κ > η is required is because κ ≤ η is inconsistent with the expert and
household Euler equations (G.21)-(G.22), since ae > ah. Next, there will be a region near
the top of D, where κ is close to 1, such that positive shocks will just take the economy
to the border:

Dhigh :=
{
(η, κ) ∈ D : κ < 1, f (κ, η) < 0

}
.

for some function f to be defined endogenously below. At the other ends, let us pick
some ε > 0 and define the lower boundary region:

Dε
low :=

{
(η, κ) ∈ D\Dhigh : κ ≤ (1 + ε)η

}
.

For reasons that will become clear at the end of the construction, we will impose

ε >
ahρe

(ae − ah)ρh
. (G.25)

Finally, we will detail a separate method to deal with the top border region

D1 :=
{
(η, κ) ∈ D : κ = 1

}
.

The “interior” region is defined by subtracting these boundary regions:

D◦ := D\(Dhigh ∪Dε
low ∪D1).

We explain our construction in each of these regions in sequence.

Brownian approximation in the interior. In the interior region D◦, we construct a
non-fundamental equilibrium by explicitly specifying (ut, dt, πt) to take a form that ap-
proximates Brownian motion in the ∆→ 0 limit. In particular, we set

ut = 1 + vt
√

∆ (G.26)

dt = 1− vt
√

∆ (G.27)

πt =
vt −mt

√
∆

2vt
, (G.28)
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for some endogenous variables mt and vt. Note that πt ∈ (0, 1) requires mt
√

∆ ∈
(−vt, vt). Of course, we also require vt ≤ 1/

√
∆. These constraints on mt and vt be-

come arbitrarily loose as ∆→ 0.
One can verify that (G.26)-(G.28) imply that

Et[
qt+∆ − qt

qt
] = mt∆.

Thus, the interpretation of the variable mt introduced is as the drift of percentage price
changes. Also, we may compute

Et[(
qt+∆ − qt

qt
)2] = v2

t ∆,

so that vt corresponds roughly to the instantaneous volatility of percentage price changes.
Notice that any higher moments of price changes are of order o(∆). Similarly, substi-
tuting the specification (G.26)-(G.28) into (G.24), one can verify that the state dynamics
converge as ∆→ 0 to the continuous-time model. Indeed, examine the conditional mean
and second moment of ηt+∆ − ηt:

Et[ηt+∆ − ηt] =
(

κt
ae

qt
− ηtρe + (κt − ηt)(mt − rt − v2

t )
)

∆ + o(∆)

Et[(ηt+∆ − ηt)
2] = (κt − ηt)

2v2
t ∆ + o(∆).

Dividing by ∆ and taking ∆ → 0, it becomes clear that these moments coincide with
those of the continuous-time model.

Now, we determine what mt and vt must be to satisfy agents’ optimality conditions.
In this Brownian approximation, the expert and household Euler equations (G.21)-(G.22)
become

κt

ηt
= (1 + rt∆)

ae
qt
+ mt − rt

v2
t − ( ae

qt
− rt)2∆

(G.29)

1− κt

1− ηt
= (1 + rt∆)max

{
0,

ah
qt
+ mt − rt

v2
t − ( ah

qt
− rt)2∆

}
. (G.30)

As ∆ → 0, these two specialized Euler equations (G.29)-(G.30) coincide with the famil-
iar mean-variance portfolio choice. However, to recover the same equations as in our
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continuous-time model, let us take the difference between (G.29)-(G.30) to get

0 = min

{
1− κt, (1 + rt∆)

[ ae
qt
+ mt − rt

v2
t − ( ae

qt
− rt)2∆

−
ah
qt
+ mt − rt

v2
t − ( ah

qt
− rt)2∆

]
− κt − ηt

ηt(1− ηt)

}
. (G.31)

Equation (G.31) clearly coincides with our baseline risk-balance condition as ∆ → 0.
Then, summing (G.29)-(G.30), weighted by κt and 1− κt respectively, we have

κ2
t

ηt
+

(1− κt)2

1− ηt
= (1 + rt∆)

[
κt

ae
qt
+ mt − rt

v2
t − ( ae

qt
− rt)2∆

+ (1− κt)

ah
qt
+ mt − rt

v2
t − ( ah

qt
− rt)2∆

]
. (G.32)

Again, this coincides with the equation for µq in the continuous-time model as ∆→ 0.
To solve the model, first we use the expert Euler equation to solve for v2

t :

v2
t = (1 + rt∆)

[ ae

qt
+ mt − rt

]ηt

κt
+ (

ae

qt
− rt)

2∆.

Then, we use the household Euler equation, when κt < 1, to also solve for v2
t :

v2
t = (1 + rt∆)

[ ah
qt

+ mt − rt

]1− ηt

1− κt
+ (

ah
qt
− rt)

2∆.

Setting these expressions equal gives an equation for mt, which is

mt = rt +
(1− κt)ηt

κt − ηt

ae

qt
− κt(1− ηt)

κt − ηt

ah
qt

+
κt(1− κt)

[
( ae

qt
− rt)2 − ( ah

qt
− rt)2]

(1 + rt∆)(κt − ηt)
∆. (G.33)

Substituting back into the equations for v2
t , we solve for

v2
t = (1 + rt∆)

ηt(1− ηt)

κt − ηt

ae − ah
qt

+
κt(1− ηt)(

ae
qt
− rt)2 − ηt(1− κt)(

ah
qt
− rt)2

κt − ηt
∆. (G.34)

Given a choice for rt, we can obtain mt and v2
t from equations (G.33)-(G.34), for any

point in the interior of the state space. The only restriction is that we choose rt so that
mt
√

∆ ∈ (−vt, vt) and hence that πt ∈ (0, 1), which leaves a wide range of choices. To
be explicit, we will choose rt such that mt = O(∆), in particular we set

rt =
κt(1− ηt)

κt − ηt

ah
qt
− (1− κt)ηt

κt − ηt

ae

qt
. (G.35)

This choice makes it automatic that mt
√

∆ ∈ (−vt, vt) if ∆ is also chosen small enough.
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As an aside, note that these equations, in the ∆ → 0 limit, are identical to the
continuous-time versions (when there is zero fundamental risk and zero growth). In-
deed, equation (G.34) says

v2
t =

ηt(1− ηt)

κt − ηt

ae − ah
qt

+ O(∆).

Next, by doing some algebra on (G.33), it reads

mt = rt − ρ̄(ηt) +
(κ2

t
ηt

+
(1− κt)2

1− ηt

)
v2

t + O(∆).

Consequently, mt and vt are indeed the discrete-time counterparts to µq,t and σq,t.

Reflection approximation near the lower boundary. In the lower region Dε
low, we pro-

ceed with a different construction that ensures the economy never exits D through its
lower border. Luckily, in everything so far, rt was indeterminate, and this flexibility is
what allows us to construct such an equilibrium. In particular, to ensure we always have
κt ∈ (ηt, 1), we impose some rules similar to our “boundary conditions” in continuous
time.

In Dε
low, we will use the binomial specification

ut = 1 + v2
t /mt (G.36)

dt = 1 (G.37)

πt =
v2

t −m2
t ∆

v2
t

(G.38)

Equations (G.36)-(G.38) preserve the desired moment properties that Et[
qt+∆−qt

qt
] = mt∆

and Et[(
qt+∆−qt

qt
)2] = v2

t ∆. Again, we must have probabilities in between zero and one,

so we always require mt
√

∆ ∈ (−vt, vt).
With this specification, the Euler equations become

κt

ηt
= (1 + rt∆)

ae
qt
+ mt − rt

v2
t

mt
(rt − ae

qt
)− ( ae

qt
− rt)2∆

(G.39)

1− κt

1− ηt
= (1 + rt∆)

ah
qt
+ mt − rt

v2
t

mt
(rt − ah

qt
)− ( ah

qt
− rt)2∆

. (G.40)
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As before, we may use these two equations to solve for mt and v2
t :

mt = rt +
(1 + rt∆)

[ ηt
κt
(rt − ah

qt
) ae

qt
− 1−ηt

1−κt
(rt − ae

qt
) ah

qt

]
− ( ae−ah

qt
)(rt − ae

qt
)(rt − ah

qt
)∆

(1 + rt∆)
[1−ηt

1−κt
(rt − ae

qt
)− ηt

κt
(rt − ah

qt
)
] (G.41)

v2
t = mt

[ (1 + rt∆)
ηt
κt
( ae

qt
+ mt − rt)

rt − ae
qt

+ (rt −
ae

qt
)∆
]

(G.42)

Given that the Euler equations hold for this choice of (mt, v2
t ), we have an equilibrium

as long as mt
√

∆ ∈ (−vt, vt) and κt > ηt in all periods.
The condition that κt > ηt is the more complex and restrictive condition. The key

issue is that (ηt, κt) can jump from Dε
low to a point outside of the feasible region D.38

Resolving this issue requires us to make particular choices for rt such that the dynamics
of (ηt, κt) “point toward the interior” of the state space, i.e., the dynamics starting from
Dε

low are such that (ηt+∆, κt+∆) moves closer to D◦. Sufficient conditions for this are that
ηt+∆ ≤ ηt when (ηt, κt) ∈ Dε

low. Indeed, if ηt+∆ ≤ ηt, then the dynamics of qt are such
that κt+∆ ≥ κt. Since the lower-boundary of D is upward-sloping in (η, κ)-space, the
combination of ηt+∆ ≤ ηt and κt+∆ ≥ κt implies that the new point is further away from
exiting D.

Ensuring that ηt+∆ ≤ ηt translates to the following condition on the risk-free rate:

rt ≥ r̃t, whenever (ηt, κt) ∈ Dε
low, (G.43)

where r̃t := max
[κtae − ρeηtqt

qt(κt − ηt)
,

κtae − ρeηtqt(1 + v2
t /mt)

qt(κt − ηt)
+

v2
t

mt∆

]
.

Now, the equilibrium values of vt and mt in (G.41)-(G.42) depend on rt, so the compar-
ison between rt and r̃t is not explicit. However, we can show that a valid solution to
(G.43) exists if ∆ is made small enough.

To see this, let us set

rt =
κtae − ρeηtqt

qt(κt − ηt)
+

αt

∆
+ Cr (G.44)

for some αt > 0 small enough and some constant Cr. Using equations (G.44) and (G.41)-
(G.42), one may conjecture and verify that, as ∆ → 0, the variables (rt, mt, v2

t ) obey the

38Another potential issue is that (ηt, κt) can jump from the interior D◦ to a point outside of the feasible
region D. This issue is removed by choosing small enough ∆, because the step sizes in the interior are
proportional to

√
∆.
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following asymptotic relationships

rt∆→ αt

mt∆→ αt

v2
t /mt → αt.

In that case, we have that rt − r̃t ∼ ρeηtqtαt
qt(κt−ηt)

+
αt−v2

t /mt
∆ + Cr as ∆ → 0. Thus, if we pick

Cr = − lim∆→0 ∆−1(αt − v2
t /mt), the inequality rt ≥ r̃t holds for all small enough ∆. It

is easy to see that ∆−1(v2
t /mt − αt) = O(1) as ∆ → 0 so that Cr will be a finite constant.

Furthermore, given that αt is a free parameter, it may be chosen small enough so that
upward percentage step size v2

t /mt is small enough. Given that the choice (G.44) is
continuous in ∆, and equations (G.41)-(G.42) are continuous in rt, it follows that for all
small enough ∆, a valid rt exists satisfying (G.43).

The final question is whether or not this choice also satisfies mt
√

∆ ∈ (−vt, vt), such
that the probabilities of up- and down-moves are within zero and one. To answer this,
we can study

v2
t

m2
t ∆

= 1 +
ae
qt
+ mt − rt

mt

[ (1 + rt∆)
ηt
κt

rt∆− ae∆
qt

− 1
]
. (G.45)

We can see from equation (G.41) that as ∆→ 0, we have

ae

qt
+ mt − rt →

1
1 + αt

κt(1− κt)

κt − ηt

ae − ah
qt

[
αt − (1 + αt)

1− ηt

1− κt

]
> 0.

In addition, the term in square brackets in equation (G.45) is positive in the ∆→ 0 limit
if and only if κt/ηt < (1+ αt)/αt. Therefore, by picking αt small enough, we ensure that
the expression in (G.45) is strictly larger than 1 for all ∆ small enough. This shows that
mt
√

∆ ∈ (−vt, vt) by choosing αt and ∆ small enough.

Jumps to efficiency. At some points when κt is sufficiently close to 1, the Brownian
approximation above could potentially make κt jump above 1, which is inconsistent
with equilibrium. At these points, we must instead design the shocks so that κt jumps
to 1. Such points will constitute the region earlier denoted by Dhigh, whose border with
D◦ was previously left unspecified and which we will now make explicit.
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First, let us define the binomial scheme by

ut =
ae

qtρ̄(ηmax
t )

(G.46)

dt = free parameter (G.47)

πt =
ut − 1−mt∆

ut − dt
, (G.48)

where

ηmax
t :=

κtae(1 + ρe∆)− (κt − ηt)qtρh(1 + rt∆)
ae[1 + ρe∆− κt(ρe − ρh)∆] + (κt − ηt)qt(1 + rt∆)(ρe − ρh)

(G.49)

is the net worth share that would arise if κ jumps to 1.39 It is straightforward to check
that for ∆ small enough, we have ηmax

t < κt < 1, so that ηmax
t is a valid wealth share.

Note also that the setup in (G.46)-(G.48) by construction preserves specification of mt as
the local mean Et[

qt+∆−qt
qt

] = mt∆.
The Euler equations become

κt

ηt
= −(1 + rt∆)

(mt +
ae
qt
− rt)∆

(ut +
ae∆
qt
− (1 + rt∆))(dt +

ae∆
qt
− (1 + rt∆))

(G.50)

1− κt

1− ηt
= −(1 + rt∆)

(mt +
ah
qt
− rt)∆

(ut +
ah∆
qt
− (1 + rt∆))(dt +

ah∆
qt
− (1 + rt∆))

. (G.51)

We can use the two Euler equations to solve for mt and dt as

mt = rt +
1

1 + rt∆

κt(1− κt)
ae−ah

qt
(ut +

ah∆
qt
− (1 + rt∆))(ut +

ae∆
qt
− (1 + rt∆))

(κt − ηt)(ut − (1 + rt∆)) + κt(1− ηt)
ae∆
qt
− ηt(1− κt)

ah∆
qt

−
(κt − ηt)

aeah∆
q2

t
+ [κt(1− ηt)

ah
qt
− ηt(1− κt)

ae
qt
](ut − (1 + rt∆))

(κt − ηt)(ut − (1 + rt∆)) + κt(1− ηt)
ae∆
qt
− ηt(1− κt)

ah∆
qt

(G.52)

39In particular, if κt jumps to κt+∆ = 1, then from (G.23) qt jumps to qt+∆ = ae/ρ̄(ηt+∆). But the
dynamics of η from (G.24) must also hold, which means that ηt+∆ solves

ηt+∆ =
1

1 + ρe∆

κt
[ ae∆

qt
+ ae

qt ρ̄(ηt+∆)
− (1 + rt∆)

]
+ ηt(1 + rt∆)

ae/(qtρ̄(ηt+∆))
.

We denote the solution by ηmax
t , given in (G.49).
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and

dt = (1 + rt∆)
[
1− ηt

κt

(mt +
ae
qt
− rt)∆

ut +
ae∆
qt
− (1 + rt∆)

]
− ae∆

qt
. (G.53)

To guarantee that this constitutes an equilibrium, we must verify πt ∈ (0, 1) along with
0 < dt < 1 < ut.

To check these conditions explicitly, let us pick rt = 0, and let us consider ∆ small.
As it will turn out (which we will verify below), when ∆ is small the region Dhigh will be
associated with κt = 1−O(

√
∆), so that our choice implies mt = −ah/qt +O(

√
∆) from

equation (G.52). Substituting this result into equation (G.53), we see that 0 < dt < 1 if
∆ is small enough. It is easy to check that ut > 1 holds as long as ρe − ρh is not too
large, which we implicitly assume. Lastly, given these results just discussed, we have
πt ∈ (0, 1) automatically when ∆ is small enough. This shows that, if ∆ is small enough,
then rt = 0 is a valid choice, and the other equilibrium conditions all hold.

Finally, we need to specify the boundary between Dhigh and the interior region D◦.
The procedure will be to compute vt associated to D◦—from equation (G.34)—and then
compare 1 + vt

√
∆ to ae/(qtρ̄(ηmax

t )). If 1 + vt
√

∆ > ae/(qtρ̄(ηmax
t )) at a given point

(ηt, κt) ∈ D, then we allocate that point to set Dhigh. Otherwise, the given point (ηt, κt)

is considered to be part of D◦. This proves the result used above that ut − 1 = O(
√

∆),
and hence 1− κt = O(

√
∆).

Analysis at κ = 1 border. Finally, given that κt = 1 sometimes, we must describe how
the economy exits this region and re-enters the interior D◦. We specify a particularly
simple approach that always works, although it is unnecessarily restrictive in general.

We will consider a binomial scheme that either maintains κt+∆ = 1 with some prob-
ability and otherwise has ηt+∆ ≈ 0 (i.e., expert near-bankruptcy) with the residual prob-
ability. This scheme is

ut = 1 (G.54)

dt = 1− (ηt −ωt)(1 + ρe∆)
1−ωt(1 + ρe∆)

(G.55)

πt = free parameter, (G.56)

along with a particular choice for the riskless rate:

rt = ρh. (G.57)
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Using (G.54), (G.55), and (G.57) in the state dynamics (G.24), one can verify that

ηu
t+∆ = ηt

ηd
t+∆ = ωt.

In other words, a positive shock keeps (ηt, qt) in place, while a negative shock drives η

down to ωt.
For this to be a valid construction, we require that qd

t+∆ = dtqt is larger than the
minimum possible price at the new wealth share, which is qmin(η

d
t+∆) = qmin(ωt) =

(ωtae + (1− ωt)ah)/ρ̄(ωt). Using the fact that qt = ae/ρ̄(ηt), this validity condition is
equivalent to

ρ̄(ωt)
[
1− ηt −

(
ρ̄(ηt)− (1− ηt)ρh

)
∆
]
ae > ρ̄(ηt)

[
1−ωt(1 + ρe∆)

](
ωtae + (1−ωt)ah

)
.

As ∆→ 0, this condition becomes

ρ̄(ωt)(1− ηt)ae > ρ̄(ηt)(1−ωt)
(
ωtae + (1−ωt)ah

)
.

Taking ωt → 0 as well, we have the condition

ρh(1− ηt)ae > ρ̄(ηt)ah ⇔ ηt <
(ae − ah)ρh

(ae − ah)ρh + ahρe
:= ηtop.

Finally, we use the choice of ε in (G.25), which implies that the line κ = (1+ ε)η intersects
the horizontal line κ = 1 at a point η < ηtop. Consequently, if ∆ is chosen small enough,
equilibrium paths with κt = 1 in period t will have ηt < ηtop in the same period. This
implies that if ∆ and ωt are chosen small enough, then we can ensure that qd

t+∆ >

qmin(η
d
t+∆).

Given that κt = 1 at these points, the household Euler inequality (G.22) must hold
with strict inequality. A sufficient condition is that households make negative excess
returns when capital price remains constant, i.e.,

0 >
ah∆ + qt+∆

qt
− R f

t =

[
ah
ae

ρ̄(ηt)− ρh

]
∆

which always holds since ρe > ρ̄(η) and ae/ρe > ah/ρh.
It remains to verify that the expert Euler equation (G.21) holds. However, this is
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guaranteed if the remaining free parameter πt takes the particular value

πt =
(ρ̄(ηt)− ρh)∆

1− dt
+

(ρ̄(ηt)− ρh)(dt − 1 + (ρ̄(ηt)− ρh)∆)∆
ηt(1 + ρh∆)(1− dt)

.

Plugging in dt from (G.55), we have

πt =
1−ωt(1 + ρe∆)

(ηt −ωt)(1 + ρe∆)

[
1 +

(ρ̄(ηt)− ρh)∆−
(ηt−ωt)(1+ρe∆)

1−ωt(1+ρe∆)

ηt(1 + ρh∆)

]
(ρ̄(ηt)− ρh)∆.

Note that ηt >
(ηt−ωt)

1−ωt
, so that πt > 0 for all ∆ small enough. In addition, note that πt →

0 as ∆→ 0. Therefore, for all ∆ small enough, we are guaranteed to have πt ∈ (0, 1).
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H Stochastic stability in a simplified reduced-form model

Our equilibrium construction differs from the literature. Sunspot equilibria are often
constructed as follows:

1. Analyze the deterministic steady state of your dynamic model (suppose there is
only one).

(a) If the steady state is “unstable” or “saddle path stable,” then there is a unique
equilibrium, which involves either jumping directly to the steady state or
jumping to a unique transition path toward steady state, respectively.

(b) If the steady state is “stable,” typically diagnosed by showing that the lin-
earized transition dynamics have more stable eigenvalues than state variables
(pre-determined variables), then there will be multiple deterministic transition
paths toward steady state.

2. In the stable case, one can add sunspot shocks, so long as these shocks do not
cause the system to leave the “stable region” near steady state. Sunspot shocks
essentially randomize over the starting points of the multiplicity of deterministic
transition paths.

Classic papers like Azariadis (1981) and Cass and Shell (1983) follow this approach.
More recent papers Gârleanu and Panageas (2021) and Khorrami and Zentefis (2025)
generalize this same idea to larger classes of models and sunspot shocks.

By contrast, the deterministic version of our model features an unstable steady state;
critically, the introduction of volatility flips the stability properties of equilibrium. This
distinction may be why our equilibria have gone unnoticed despite the framework being
widespread.

To clarify our methodology without forcing the reader deep into our proofs, let us
present a simple example. The analogy between this example and our model is not
perfect but still illuminates some key issues. Consider an economy with a single en-
dogenous outcome xt and no fundamental state variables. Suppose xt follows a process
of the form

dxt = µtdt + σtdZt, (H.1)

where Zt is a one-dimensional Brownian motion. To fix ideas, think of xt as an equilib-
rium asset price, so that there is no initial condition associated with (H.1). The drift µt

and volatility σt are also endogenous.
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Equilibrium is defined as any xt process that satisfies

0 = F(xt, µt, σt), where xt ∈ (
¯
x, x̄), (H.2)

where F is some known function. This situation is analogous to our main model, where
the future distribution of asset prices (captured by µt and σt) can influence today’s price.
Think of F as an equilibrium condition which relates the market interest rate and risk
premium to agents’ capital and bond holdings. The domain (

¯
x, x̄) arises because of

constraints on agents’ investment decisions.
To transparently elaborate on our methodology and connect it to our model, let us

specialize to the following parametric example:

F(x, µ, σ) =

v− x− σ, if σ 6= 0

φµ− x, if σ = 0,
and

¯
x < 0 < x̄, (H.3)

where v > 0, φ ≥ 0 are parameters. The key feature of F, shared by our main model,
is that it depends in a critical way on whether or not there is volatility. In a stochastic
equilibrium, F = 0 places no restrictions on the drift µ. In a deterministic equilibrium,
F = 0 pins down the drift µ = φ−1x as an increasing function of the price, provided
φ > 0. (In fact, our main model has the property that φ = 0 so that x = 0 is immediately
pinned down as the unique deterministic equilibrium.) The criticality of σ stems from
deeper economic forces that we highlight in our paper.

What are the equilibria in this environment? A conventional analysis would start by
examining the deterministic steady state and its stability properties. In this example, the
steady state is x∗ = 0. It is unstable when φ > 0. Instability implies that any deter-
ministic equilibrium has xt = 0 forever: if x0 6= 0, then xt eventually exits the domain
(
¯
x, x̄). Likewise, our main model has a unique deterministic equilibrium. By contrast,

non-fundamental equilibria arise in many papers because of steady state stability and
the associated multiplicity of transition paths, which here would require φ < 0.

In stochastic equilibria, volatility is pinned down as a decreasing function of the asset
price σ(x) = v− x. The fact that volatility is pinned down in this reduced-form setup
is also a feature shared by our model (a similar phenomenon occurs in Benhabib et al.,
2015, where the sentiment distribution is uniquely-determined). Since the drift µ is not
pinned down when σ 6= 0, we may engineer it to ensure that xt ∈ (

¯
x, x̄) at all times. For
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example, the function

µ(x) =
( 1

x−
¯
x

)2
−
( 1

x̄− x

)2
(H.4)

diverges sufficiently quickly as x approaches the boundaries of (
¯
x, x̄), enough to ensure

that shocks do not push xt outside of its equilibrium domain. Thus, the dynamics are
“stochastically stable” and an equilibrium exists of this type.

The most important methodological point here is that only boundary dynamics mat-
ter for stochastic stability. To see this, consider modifying (H.4) to

µ(x) =
( 1

x−
¯
x

)2
1x≤

¯
x+ε −

( 1
x̄− x

)2
1x≥x̄−ε + µ̂(x)1x∈(

¯
x+ε,x̄−ε), (H.5)

for ε small. This modified drift also diverges quickly at the boundaries, but can have al-
most arbitrary behavior away from the boundaries. Still, xt is stochastically stable under
(H.5), regardless of µ̂(x). Our analysis reveals that the typical question of local stability
near steady state, which concerns the function µ̂(x), is irrelevant to global stochastic
stability. Because only the boundary behavior matters, we must abandon the standard
linearized spectral analysis that may be more familiar to many readers. Related anal-
yses of boundary behavior occur in the literature on the “market-selection hypothesis”
(Kogan et al., 2017; Borovička, 2020).

To conclude, this simple reduced-form example features a unique deterministic equi-
librium (xt = 0 for all t) but a variety of stochastic equilibria. For example, if agents
coordinate on a price drift function given by either (H.4) or (H.5), then x0 can take any
value in (

¯
x, x̄) and xt will never leave this region. Furthermore, it will not be the case

(except for knife-edge choices of the parameters
¯
x, x̄, v) that xt → 0 asymptotically. This

economy can stay stochastic forever.
How many of these stochastic equilibria are there? For one, the initial condition x0

is not pinned down. Additionally, the choice of drift µ(x) only needs to satisfy certain
boundary conditions that keep xt ∈ (

¯
x, x̄). This drift can essentially take any functional

form away from these boundaries. Thus, there are a great variety of equilibria, but they
all share the property that σt is pinned down given xt, as in our baseline model.
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