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Abstract

Why do fire sales occur if many risks are hedgeable? We study a version of Brun-
nermeier and Sannikov (2014) in which all fundamental risks can be hedged friction-
lessly. Our analysis shows that fire sales are inherently self-fulfilling. Fundamen-
tal shocks can never cause fire sales, and an efficient, safe equilibrium exists. On
the other hand, there exists an equilibrium in which agents coordinate fire sales on
non-fundamental shocks. A simple refinement based on vanishingly-small perceived
fundamental risk eliminates the safe equilibrium and selects the fire sale equilibrium
as the unique outcome.
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Why do fire sales occur if many risks are hedgeable? Why is risk concentrated on
the balance sheets of intermediaries and productive experts? Which types of risks are
concentrated? Our paper provides a new, self-fulfilling perspective on these questions.

We study a canonical macro-finance model, similar to Kiyotaki and Moore (1997)
and Brunnermeier and Sannikov (2014), that has launched a large subsequent literature.
The core mechanism in such models is sometimes referred to as a “financial acceler-
ator” because the economic impact of fundamental shocks is amplified by imperfect
risk-sharing.1 Our departure from these models: we allow agents to frictionlessly hedge
all fundamental risks. This feature brings our analysis closer to Di Tella (2017).

As a general principle, when a risk is shared, the accelerator mechanism breaks down.
To re-open the door to accelerator-type fluctuations, we limit risk-sharing in a novel way.
While our model features markets to hedge all fundamental shocks, markets do not exist
for hedging certain endogenous risks that emerge in a self-fulfilling manner, which we
will refer to as “sunspot shocks.” Sunspot shocks are non-fundamental, but agents could
potentially coordinate on them. Such coordination affects equilibrium precisely because
sunspot shocks are not directly hedgeable.

What emerges are self-fulfilling fire sales. More productive agents (“experts”) man-
age a disproportionate share of productive capital and share its fundamental risks per-
fectly with everyone else (“households”). In this world, fundamental shocks cannot
cause amplification. But equilibrium is not necessarily efficient or smooth. If a sunspot
shock arrives, experts may coordinate to sell capital to households. If such coordinated
selling occurs, the capital price would fall in equilibrium, due to the lower productive
efficiency of households. From the perspective of an individual expert, the selling by
other experts impinges her wealth and motivates her to also sell capital. The dynamics
at play are very similar to runs, but stem from the asset side rather than liability side.

Our main result proves and constructs such an equilibrium. In fact, we show that
there are a continuum of “partial fire sale” equilibria as well, depending on how agents
coordinate on the tail-event price of capital. Our benchmark sunspot equilibrium is a
“full fire sale” equilibrium, in which the tail-event capital price is its worst-case value.

We then go on to demonstrate how our benchmark sunspot equilibrium is a limiting

1Extensions of this framework have been used to study idiosyncratic uncertainty shocks (Di Tella, 2017);
shadow banking (Moreira and Savov, 2017); bank capital regulation (Phelan, 2016; Klimenko et al., 2017);
monetary policy and liquidity (Drechsler et al., 2018; d’Avernas and Vandeweyer, 2023); quantitative eas-
ing (Silva, 2024); optimal policy (Di Tella, 2019); the quantitative frequency and severity of crises (He and
Krishnamurthy, 2019); bank runs (Gertler and Kiyotaki, 2015; Gertler et al., 2020; Mendo, 2020); extrap-
olative sentiments (Krishnamurthy and Li, 2024; Maxted, 2024); time-varying diversification (Khorrami,
2021); and long-run risks (Hansen et al., 2024). On the asset-pricing side, this literature is often referred to
as “intermediary asset pricing” (He and Krishnamurthy, 2012, 2013).
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case of the conventional equilibrium. Imagine fundamental risks were not hedgeable,
and denote their volatility σ. As σ → 0, the conventional financial accelerator equilib-
rium converges to an equilibrium with volatility (formalizing the “volatility paradox” by
Brunnermeier and Sannikov, 2014). Agents continue to coordinate on the fundamental
shock, even though it has zero volatility, and the result is identical to our benchmark
sunspot equilibrium.

Finally, we provide a very simple refinement that ensures uniqueness. Our base-
line model features an indeterminate degree of fire sales, including the possibility of an
efficient equilibrium with no fire sales. Why would agents coordinate on a particular
fire-sale equilibrium? Imagine the sunspot shock, which is not hedgeable, is perceived
by agents to have a vanishingly-small fundamental impact ς. Imagine furthermore that
agents face a leverage cap of β. In this environment, loosening the leverage cap (β→ ∞)
and then eliminating the perceived risk (ς → 0) selects our benchmark fire-sale equilib-
rium as the unique outcome.

These results overturn a conventional wisdom that the financial accelerator mecha-
nism breaks down when fundamental shocks are hedgeable. So long as agents cannot
hedge every conceivable shock, the door remains open to accelerator-type fluctuations and,
in fact, such fluctuations are selected as the unique outcome in our context. Our analysis
also clarifies that fire-sale dynamics are likely to be driven by non-fundamental shocks,
especially emergent shocks that lack developed hedging markets.

Related literature. In addition to the financial accelerator papers cited above, our pa-
per contributes to two literatures: (i) the literature on sunspot fluctuations and (ii) the
literature on the accelerator mechanism in the presence of hedging markets.

Beginning with Azariadis (1981) and Cass and Shell (1983), the literature on sunspot
fluctuations often appeals to overlapping generations as a market access friction. At a
very high level, this bears similarity to our model, because some type of incomplete mar-
kets is critical to multiplicity. Like us, these papers, and their more recent articulations
(Farmer, 2018; Gârleanu and Panageas, 2021), often feature wealth redistribution as a
key mechanism. A key difference between our model and these OLG models is that,
for most specifications, they feature a multiplicity of fundamental or “certainty” equi-
libria, and the sunspot equilibria are built as lotteries over the fundamental equilibria;
this type of construction characterizes the vast majority of non-OLG sunspot papers as
well.2 By contrast, our model has a unique fundamental equilibrium. Also distinct is our

2One famous exception is the appendix of the aforementioned paper by Cass and Shell (1983). In their
construction, risk-preference heterogeneity among agents interacts with the sunspot risk to create a self-
fulfilling redistribution. Our paper differs from Cass and Shell’s appendix in several dimensions. First, we
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refinement argument that eliminates all equilibria but the worst sunspot equilibrium.
Bank runs, financial panics, and sudden stops represent a particular type of sunspot

fluctuation. While closely related, our dynamics are distinct from runs: whereas bank
runs and its cousins are liability-side phenomena, self-fulfilled fire sales are asset-side
phenomena. Furthermore, our fire sales do not require asset-market illiquidity or ma-
turity mismatch (Diamond and Dybvig, 1983). Thus, our paper shows how run-like
dynamics can occur in a broader set of environments.

Our companion paper Khorrami and Mendo (2024) studies a similar framework and
provides the complementary analysis of sunspot equilibria that are not Markovian in the
wealth distribution. In particular, whereas the present paper treats the asset price q as a
function of experts’ wealth share η, our other paper allows q to be driven by additional
non-fundamental state variables (“sentiments”). This leads to a dramatically different
analysis, in which “stochastic stability” becomes the key criterion for whether or not a
sunspot equilibrium can exist. Here, imposing the conventional Markovian assumption
q = q(η) allows us to say much more about the sunspot equilibrium, including its
uniqueness and similarity to the conventional accelerator equilibrium. In short, our
two papers study distinct classes of sunspot equilibria. (Another substantive difference:
Khorrami and Mendo, 2024, does not permit full hedging of fundamental shocks.)

Finally, the current paper contributes to the literature on the impact of hedging on the
financial accelerator. As is well understood, the conventional accelerator mechanism typ-
ically breaks down under financial markets for aggregate risk-sharing (Krishnamurthy,
2003; Di Tella, 2017). If all aggregate risks can be shared, then accelerator-like fluctua-
tions can only emerge under a combination of some type of financial friction and induced
heterogeneous risk preferences. For example, Di Tella (2017) shows that the combina-
tion of equity-issuance constraints (due to moral hazard) and Epstein-Zin preferences
can induce experts to hold concentrated exposure to idiosyncratic volatility shocks. Bo-
cola and Lorenzoni (2023) show that the combination of borrowing constraints (due to
limited enforcement) and non-expert hedging demand (due to their risk aversion and
claim to risky labor income) can induce experts to hold concentrated exposure to any
aggregate shock. Our paper lies somewhere in between these latter papers and the con-
ventional accelerator literature: we assume fundamental shocks are perfectly hedgeable

feature productive heterogeneity rather than preference heterogeneity, so our sunspot fluctuations have
real effects. Because of these real effects, our self-fulfilling sunspot equilibria are inefficient, whereas
they are “dynamically Pareto efficient” in Cass and Shell (1983). Second, our model is necessarily fully
dynamic: any finite-horizon version of our model could not support multiplicity, by backward-induction.
There are also minor differences such as the fact that such an equilibrium in Cass and Shell (1983) requires
at least 3 agent types and at least 2 consumption goods. See also Bacchetta et al. (2012) and Benhabib et al.
(2015) for examples of sunspot equilibria arising despite a unique fundamental equilibrium.
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(and so they cannot cause any amplification), while sunspot shocks are not hedgeable.
This feature relates to Dávila and Philippon (2017), who model “incompleteness shocks”
as a way to analyze an intermediate level of market completeness.

1 Model

The model structure is the same as in Khorrami and Mendo (2024), which is a simplified
version of Brunnermeier and Sannikov (2014) that does not include capital investment.

Information structure. There are two types of uncertainty in the economy, modeled as
independent Brownian motions (W, Z). The fundamental shock W directly impacts capital,
whereas the second shock Z is a sunspot shock that is extrinsic to economic primitives.
Section 4 studies Poisson jump shocks, rather than Brownian shocks.

Technology and markets. There are two goods, non-durable consumption and durable
capital that produces consumption. When an individual agent i holds capital ki,t, it
grows exogenously as

dki,t = ki,t[gdt + σdWt], (1)

where g, σ > 0 are exogenous constants. The capital-quality shock σdW introduces
fundamental randomness in technology. The relative price of capital is denoted by qt

and is determined in equilibrium. (Note that (1) excludes the effect of capital trades.)
There are two agent types, experts and households, who differ in their productivity.

Experts produce ae units of output per unit of capital, whereas households’ productivity
is ah ∈ (0, ae). Because all agents of the same type will ultimately behave as scaled
versions of each other, we index agents i ∈ {e, h} simply by their type.

Financial markets consist of a short-term, risk-free bond in zero net supply that pays
interest rate rt and a financial market for contracting on the fundamental shock, which
offers expected return πtdt per unit of exposure to dWt. The financial friction is that
agents cannot issue equity nor state-contingent debt when managing capital.3

Preferences and optimization. Given the stated assumptions, we can write the dynamic

3Partial equity issuance, with some constraint, will generate similar results. See Online Appendix F.
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budget constraint of any agent of type i ∈ {e, h} as

dni,t =
[
(ni,t − qtki,t)rt − ci,t

]
dt︸ ︷︷ ︸

consumption-savings

+ qtki,t

[ ai

qt
dt +

d(qtki,t)

qtki,t

]
︸ ︷︷ ︸

capital returns

+ xi,t
[
πtdt + dWt

]︸ ︷︷ ︸
financial hedges

, (2)

where n is the agent’s net worth, c is consumption, k is capital holdings, and x denotes
hedging positions. Brunnermeier and Sannikov (2014) effectively imposes x ≡ 0 as a
constraint (as does our companion paper Khorrami and Mendo, 2024).

Experts and households have logarithmic utility, with discount rates ρe and ρh < ρe,
respectively. In the online appendix, we generalize to CRRA utility with alternative levels
of risk aversion. Experts’ higher discount rate ensures a stationary wealth distribution.
Agents solve

sup
(ci,t,ki,t,ni,t,xi,t)t≥0

ci,t≥0, ki,t≥0, ni,t≥0

E
[ ∫ ∞

0
e−ρit log(ci,t)dt

]
(3)

subject to (2) and given ni,0. The solvency constraint ni,t ≥ 0 is the natural borrowing
limit, given the absence of labor income. Problem (3) is homogeneous in (c, k, n, x), so
we think of the expert and household as representative agents in their class.

Definition 1. For initial endowments ke,0, kh,0 > 0 such that ke,0 + kh,0 = K0, an equilibrium
consists of stochastic processes—adapted to the filtered probability space generated by
{Wt, Zt : t ≥ 0}—for capital price qt, interest rate rt, risk price πt, capital holdings
(ke,t, kh,t), hedges (xe,t, xh,t), consumptions (ce,t, ch,t), and net worths (ne,t, nh,t), such that:

(i) initial net worths satisfy ne,0 = q0ke,0 and nh,0 = q0kh,0;

(ii) taking processes (q, r, π) as given, agents solve (3) subject to (2);

(iii) consumption, capital, and hedging markets clear at all dates, i.e.,

ce,t + ch,t = aeke,t + ahkh,t (4)

ke,t + kh,t = Kt (5)

xe,t + xh,t = 0, (6)

where Kt follows the same dynamics as those given in (1).

Note that each agent is endowed with positive initial capital (ki,0 > 0), so that they
have positive initial wealth (ni,0 > 0) and can thus consume over their lifetime.

5



1.1 Equilibrium characterization

We start with a useful equilibrium characterization. First, conjecture the following form
for capital price dynamics:

dqt = qt[µq,tdt + σq,tdWt + ςq,tdZt]. (7)

There are two potential avenues for random fluctuations. The standard term σq rep-
resents amplification (or dampening) of fundamental shocks, as in Brunnermeier and
Sannikov (2014) and others. By contrast, ςq measures sunspot volatility that only exists
because agents believe in it.

Given log utility and the scale-invariance of agents’ budget sets, individual optimiza-
tion problems are readily solvable. Optimal consumption satisfies the standard formula
ci,t = ρini,t. Capital holdings and financial hedges are determined via a mean-variance
problem (see Appendix A):

max
k≥0,x∈R

{
E[

dn
n
]− 1

2
Var[

dn
n
]
}

(8)

Plugging in capital and price dynamics in the dynamic wealth equation (2), and rear-
ranging, this problem becomes

max
k̃≥0,x̃∈R

{
k̃
( a

q
+ g + µq + σσq − (σ + σq)π − r

)
+ x̃π − 1

2
(
k̃ςq
)2 − 1

2
x̃2
}

,

where k̃ := qk
n and x̃ := x

n + qk
n (σ + σq) are the agent’s per-unit-of-wealth exposures

to the sunspot shock ςqdZ and fundamental shock dW, respectively. Note that x̃ is
unconstrained because x is unconstrained. The optimality conditions are

ae

q
+ g + µq + σσq − (σ + σq)π − r =

qke

ne
ς2

q (9)

ah
q
+ g + µq + σσq − (σ + σq)π − r ≤ qkh

nh
ς2

q (with equality if kh > 0) (10)

for capital holdings and

π − qke

ne
(σ + σq) =

xe

ne
(11)

π − qkh
nh

(σ + σq) =
xh
nh

(12)
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for hedges. (Note that experts’ capital optimality condition (9) assumes the solution is
interior, i.e., ke > 0. But this is clearly required in any equilibrium given experts earn
a strictly higher expected return than households.) These conditions fully summarize
optimality.4

Next, we aggregate. Due to financial frictions and productivity heterogeneity, both
the distribution of wealth and capital holdings will matter in equilibrium. Define ex-
perts’ wealth and capital shares:

η :=
ne

ne + nh
=

ne

qK
and κ :=

ke

K
.

Given agents’ solvency and capital short-sales constraints, we must have η ∈ [0, 1] and
κ ∈ [0, 1] in equilibrium. Substitute optimal consumption into goods market clearing (4),
divide by aggregate capital K, and use the definitions of η and κ, to obtain

qρ̄ = κae + (1− κ)ah, (PO)

where ρ̄(η) := ηρe + (1− η)ρh is the wealth-weighted average discount rate. Equation
(PO) connects asset price q to output efficiency κ, which we call a price-output relation.

Using the definitions of η and κ, experts’ and households’ portfolio shares can be
written qke

ne
= κ

η and qkh
nh

= 1−κ
1−η . Then, differencing the optimal portfolio conditions

(9)-(10), we obtain the risk-balance condition

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
ς2

q

]
. (RB)

Either experts manage the entire capital stock (κ = 1) or the differential return of experts
over households, (ae− ah)/q, represents fair compensation for differential risk exposure,

κ−η
η(1−η)

ς2
q. Summing portfolio conditions (9)-(10), weighted by κ and 1 − κ, yields an

equation for r:

r =
κae + (1− κ)ah

q
+ g + µq + σσq − (σ + σq)π −

(κ2

η
+

(1− κ)2

1− η

)
ς2

q. (13)

Combining optimal financial hedges (11)-(12) with the zero net supply condition (6), we

4 The only additional optimality conditions are the transversality conditions limT→∞ E[e−ρiT 1
ci,T

ni,T ] =

0. However, using ci = ρini, we see that transversality automatically holds.
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obtain a full risk-sharing result for the equilibrium risk price

π = σ + σq. (14)

Finally, applying Itô’s formula to η, and using net worth dynamics (2), wealth share
dynamics are given by

dηt = µη,tdt + ση,tdWt + ςη,tdZt, given η0, (15)

where 5

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
ς2

q (16)

ση = 0 (17)

ςη = (κ − η)ςq. (18)

Note the full risk-sharing result ση = 0 on fundamental risk. Also, the initial wealth
distribution η0 =

ne,0
q0K0

=
ke,0
K0

is pinned down uniquely by capital endowments. Moreover,
η0 ∈ (0, 1) because both experts and households start with positive initial capital.

1.2 Fundamental Equilibrium

We focus on equilibria that are Markov in the state variable η (Khorrami and Mendo
2024 analyze equilibria with additional “sentiment states” beyond η). Going forward,
“equilibrium” refers to this Markovian subclass. Among those, categorize equilibria into
fundamental or sunspot, depending on whether dZ matters.

5To derive this, start from the definition η := ne/(ne + nh). Applying Itô’s formula yields

dη = η(1− η)
(dne

ne
− dnh

nh

)
− η(1− η)

(
η

d[ne]

n2
e
− (1− η)

d[nh]

n2
h

+ (1− 2η)
d[ne, nh]

nenh

)
,

where d[x] and d[x, y] denote the quadratic variation of x and quadratic co-variation of x with y, respec-
tively. Finally, plug in agents consumption and portfolio choices into their net worth evolution (2), and
use the aggregate variables η and κ, to obtain

dne

ne
=
[
r− ρe +

κ

η
(µe

R − r− (σ + σq)π) + π2
]
dt + πdW +

κ

η
ςqdZ

dnh
nh

=
[
r− ρh +

1− κ

1− η
(µh

R − r− (σ + σq)π) + π2
]
dt + πdW +

1− κ

1− η
ςqdZ

where µe
R := ae

q + g + µq + σσq and µh
R := ah

q + g + µq + σσq denote experts’ and households’ expected
return from managing capital, respectively. Combining these results yields (16)-(18).
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Definition 2. A Fundamental Equilibrium is an equilibrium in which ςq ≡ 0. Any other
equilibrium is called a Brownian Sunspot Equilibrium (BSE).

The Fundamental Equilibrium is unique, efficient, and deterministic. Allocative effi-
ciency is immediately evident: if ςq ≡ 0, then (RB) implies κ = 1 forever. Risk-sharing
is also efficient, captured by deterministic relative wealth dynamics: from (17)-(18), and
using ςq = 0, we have that ση = 0 and ςη = (κ− η)ςq = 0. In fact, the equilibrium obeys
the following deterministic dynamics:

q̇t

qt
= ηt(1− ηt)

(ρe − ρh)
2

ηtρe + (1− ηt)ρh
(19)

η̇t = −ηt(1− ηt)(ρe − ρh) (20)

(To obtain these equations, substitute κ = 1 into equation (PO) to get qt = ae/ρ̄(ηt),
and combine with the previous results.) Finally, because η0 is given and q = ae/ρ̄(η) is
purely a function of η, this Fundamental Equilibrium is unique: its initial condition is
pinned down, and its dynamics are given uniquely by (19)-(20). Therefore, none of our
results arise due to a multiplicity without sunspot shocks, unlike many classical sunspot
equilibrium constructions.

Lemma 1 (Fundamental Equilibrium). There exists a unique Fundamental Equilibrium in
which experts manage all capital, κ = 1, and its price qt = ae/ρ̄(ηt) evolves deterministically.

1.3 Discussion of setup and assumptions

Before proceeding to our main results, we pause to discuss some modeling choices and
assumptions.

First, why do we include both fundamental and sunspot shocks? For instance, one
possible alternative setup is to feature a single shock, with fundamental volatility σ, and
to interpret different values of σ as different financial market structures. The conven-
tional financial accelerator model is captured by σ > 0. Conversely, σ = 0 means the
single shock is itself a sunspot shock, and the reader could interpret this environment
as analogous to our present model where all fundamental sources of uncertainty are
hedgeable. In fact, this analogy is apt: given perfect hedging markets for the funda-
mental shock dW, it cannot play any role in fluctuations, as ση = 0 in equation (17).
Therefore, one may view the inclusion of two shocks as a distraction.

We choose to adopt our two-shock model for both pedagogical reasons and for
streamlined interpretation. Pedagogically, we think there is some value in developing
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the argument for why the fundamental shock cannot matter but the sunspot shock can.6

Including two shocks also maintains expositional clarity. A key motivation for this pa-
per is the idea that emergent shocks, for which hedging markets are not yet developed,
can impact the economy. It is thus convenient to have a shock, the sunspot shock dZ,
that always represents this emergent but extraneous source of uncertainty, regardless of
the parameters. This keeps our model closer, in a literal sense, to the language we use
throughout the introduction.

As we will show below, the sunspot shock dZ can affect the equilibrium because there
are no markets for hedging its impact. How should the reader interpret this assumption?
In our view, there are two essential characteristics that such a shock should possess: (1)
it should be relatively novel, and (2) it should affect aspects of the economy which are
not as liquid in asset markets. First, if a shock is old and relatively well-understood,
e.g., interest rate risk, then direct futures markets can be used to hedge such risks.
By contrast, it may have been difficult to directly hedge the proliferation of mortgage
derivatives in the run up to the 2008 financial crisis, because those were relatively new
assets. Second, if a shock only affects publicly-traded firms like the big banks, then an
easy way to hedge it would be to short the market index of these big banks. In our
model, the ability to short the “market index” of other experts’ equity would suffice to
complete markets even if individual experts’ equity-issuance was limited. By contrast,
if some experts’ equity is non-tradeable as in the case of private firms, then trading the
public experts’ equity would only serve as an approximate, but imperfect, hedge.

Finally, we study a continuous-time Brownian environment, as in Brunnermeier and
Sannikov (2014) and others, mainly for tractability. We also consider some alternatives.
Section 4 explores the setting with Poisson shocks, which allows fire sales to be large
disaster events. Online Appendix G presents the discrete-time model with time-step ∆
and binomial tree uncertainty. There, we show that the discrete-time equations converge
to their continuous-time counterparts as ∆ → 0, where the limit is either Brownian or
Poisson uncertainty depending on how the binomial tree is structured. (That said, we
do not provide an equilibrium existence proof nor construction for time-step ∆ > 0.)

6It is not obvious a priori that economic dynamics are invariant to whether (i) there a single shock
with fundamental volatility σ = 0; or (ii) there are both sunspot and fundamental shocks, with the latter
frictionlessly hedgeable. Case (i) and case (ii) share the property that a non-hedgeable sunspot shock
exists, but they differ in how much fundamental risk the economy has. In fact, the equilibrium equations
are not all literally identical between the two cases. In particular, the interest rate r will differ (and in
the case of non-logarithmic utility, optimal consumption hence the capital price function will also differ).
While this is minor, because r will not be relevant for any other object in the economy, we do think it is
important pedagogically to establish how the financial market structure by itself (without the confounding
effect of setting fundamental volatility to zero) affects all the equations.
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2 Brownian Sunspot Equilibrium (BSE)

Our main results construct and characterize a Brownian Sunspot Equilibrium (BSE).

2.1 BSE: existence, uniqueness, and properties

To construct a BSE, start from the conjecture that the capital price is only a function of η,
i.e., qt = q(ηt) for some function q. By Itô’s formula, σq =

q′
q ση and ςq =

q′
q ςη. Combining

this with equations (17)-(18), we have σq = 0 and

[
1− (κ − η)

q′

q

]
ςq = 0. (21)

There are two possibilities: either (i) ςq = 0; or (ii) 1 = (κ− η) q′
q , in which case ςq can be

non-zero.
Consider first the situation where κ = 1. It must be that ςq = 0 in this region. Indeed,

if not then (21) implies 1 = (1− η) q′
q , which requires q to be an increasing function of η.

On the other hand, (PO) implies that q = ae/ρ̄(η) is a decreasing function of η. Thus, no
solution can exist; it must be that ςq = 0 instead.

Next, consider the more interesting situation where capital is inefficiently allocated:
κ < 1. In this situation, ςq = 0 cannot hold (to see this, plug ςq = 0 into the risk-balance
condition (RB) to see that κ = 1 would be required). And so equation (21) can only hold
if 1 = (κ − η) q′

q . Substituting κ = qρ̄−ah
ae−ah

from (PO), we obtain a first-order ODE for q:

q′ =
(ae − ah)q

qρ̄− ηae − (1− η)ah
, if κ < 1. (22)

Consider boundary condition κ(0) = 0, equivalently q(0) = ah/ρh by (PO). Our con-
vention throughout the paper is to treat expressions like “κ(0)” as the limit limη→0 κ(η),
since η never literally equals zero in any equilibrium. Intuitively, this boundary condi-
tion says that experts fully de-lever as their wealth shrinks. (Section 2.3 below considers
other boundary conditions. Later in the paper, we also provide a sense in which κ(0) = 0
is a natural choice.) Equipped with κ(0) = 0, ODE (22) is solved on the endogenous re-
gion (0, η∗) where households manage some capital, i.e., η∗ := inf{η : κ(η) = 1}. Given
a solution for (q, κ), the risk-balance equation (RB) yields capital price variance

ς2
q =

η(1− η)

κ − η

ae − ah
q

, if κ < 1. (23)
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Since ςq 6= 0 in (23), a BSE exists as long as ODE (22) has a solution. Unfortunately,
the singularity limη→0 q′(η) = limη→0 q(η)(κ(η) − η)−1 = +∞ forces us to go beyond
standard ODE existence/uniqueness results. Instead, we build a monotonic sequence of
auxiliary economies that converge to the BSE.

Proposition 1 (BSE). There exists a unique BSE with κ(0) = 0. In this BSE, ςq(η) 6= 0 on
(0, η∗) for η∗ > 0; ςq(η) = 0 on (η∗, 1); and the process (ηt)t≥0 possesses a non-degenerate
stationary distribution on (0, η∗].
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Figure 1: Capital price q, volatility ςq, and stationary CDF of η in the Brownian Sunspot Equilibrium (BSE)
and Fundamental Equilibrium (FE). The stationary CDF is calculated using the Kolmogorov Forward
Equation for η. Parameters: ρe = 0.06, ρh = 0.04, ae = 0.11, ah = 0.03. (Note that g and σ are irrelevant to
the solution.)

Figure 1 displays a numerical example with the capital price q and volatility ςq as
functions of η.7 The left region where q is upward sloping corresponds to the inefficient
region where κ < 1 (i.e., η < η∗). This region induces a non-trivial amount of volatility
(middle panel). Volatility can be so high because of the large productivity gap ae − ah;
this gap makes fire sales impact asset prices significantly. By contrast, when capital
is efficiently allocated (κ = 1, or equivalently η ≥ η∗), the economy behaves exactly
as in the Fundamental Equilibrium, and endogenous price volatility is zero. Finally,

7The numerical procedure for obtaining a BSE is as follows. Equation (22) is a first-order ODE. Thus,
starting from the initial condition q(0) = ah/ρh, we may use (22) to numerically obtain a candidate function
q̃(η) for all η > 0. Let η∗ be the first point where q̃(η) exceeds ae/ρ̄(η) (equivalently, the associated capital
share κ̃(η) exceeds 1). Then, a solution is defined as q(η) = q̃(η) for η ≤ η∗ and q(η) = ae/ρ̄(η) for
η > η∗. By uniqueness, this is the only BSE solution with boundary condition κ(0) = 0.
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notice that the equilibrium is stationary (the right panel plots the stationary CDF of η).
This is fairly easy to understand. Since ρe > ρh, experts consume at a higher rate than
households, so they will never control all wealth in the economy. On the other hand,
expert wealth will not vanish because they hold a disproportionate share of capital,
which delivers a risk premium in equilibrium due to the volatility ςq.

2.2 Intuition behind self-fulfilling fire-sales

A BSE is a self-fulfilling fire sale. The mechanics are as follows. If agents believe sunspots
can affect asset prices, then the actual arrival of such a shock triggers trading of capital
between experts and households. Why? While experts are able to share risks from the
fundamental shock dW, they cannot hedge the sunspot dZ. Anticipating a hit to their
balance sheet from a decline in capital valuations, experts rush to sell capital.

Let us explore further. To sustain a self-fulfilling fire sale, it must be that (i) as-
set prices fall, and (ii) the asset price decline disproportionately reduces expert wealth.
Then, the self-fulfillment mechanism enters: (iii) the disproportionate decline in expert
wealth justifies selling behavior. Mathematically, since we are studying an equilibrium
that is Markovian in η, hence looking for a function q(η), the core intuition is transpar-
ent: the key question is whether or not some shock can trigger a decline in q (step i),
which then affects η (step ii), which then feeds back into q (step iii).

First, why do asset prices fall? Asset prices are connected to capital holdings because
experts are more productive than households hence willing to pay more for capital.
Equation (PO) captures this idea via the positive relationship between q and κ. Thus, if
all experts coordinate to sell capital, its price will fall:

κ ↓ =⇒ q ↓ (H1)

The key assumption underlying this mechanism is productivity heterogeneity, ae > ah.
Second, why does experts’ relative wealth fall? In general, falling asset prices do not

necessarily damage expert balance sheets; for instance, if asset prices were hypothetically
to fall for fundamental reasons, this shock would be perfectly shared between experts
and households. Such a proportionate wealth response would in fact eliminate the pos-
sibility of a self-fulfilling fire sale. But if asset prices decline due to a non-hedgeable
sunspot shock, experts’ have disproportionate exposure to this shock and their relative
wealth would fall—see equation (18). Thus,

q ↓ =⇒ η ↓ (if the shock is non-fundamental) (H2)
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The key assumption underlying this mechanism is the market incompleteness for hedg-
ing the sunspot shock dZ. Putting together (H1)-(H2), a coordinated fire-sale does affect
experts’ balance sheets.

The final question is how the mechanism of self-fulfillment arises. Beliefs are critical:
if agents believe other agents will participate in a fire sale, then they will do so as well.
Agents must decide how they think lower expert wealth feeds back into trading behavior.
Mathematically, since we study Markovian equilibria in η, the entire question boils down
to whether agents believe the decline in η from (H2) feeds back into κ:

η ↓ ?
=⇒ κ ↓ (H3)

There are two possibilities so far. On the one hand, agents may think that other experts’
wealth is disconnected from their trading behavior, so that (H3) is inoperative. In that
case, a self-fulfilling fire sale cannot be justified. The disconnect between expert wealth
and trading behavior happens both when η is very high (so experts have sufficient wealth
to endure shocks without selling) and if agents are playing the safe Fundamental Equi-
librium (FE). On the other hand, agents may suspect that other experts will sell when
they are undercapitalized. In that case, putting together (H1)-(H3) leads to the dynamic
feedback loop:

κ ↓ =⇒ q ↓ =⇒ η ↓ =⇒ κ ↓ (H-loop)

The feedback loop in (H-loop) captures the idea that a perceived fire sale justifies itself,
intermediated by expert balance sheets.

When does the feedback loop in (H-loop) terminate? Put differently, how large will
the fire sale be? Here, it helps to distinguish a relative and absolute effect. The co-
dependence of q and η is captured by the pricing function q(η), which only captures
relative responses: how much asset prices move per unit of wealth share fluctuation.
Such relative responses are pinned down by ensuring consistency of ςη = (κ− η)ςq with
ςq =

q′
q ςη, leading to the ODE (22) for q(·). Clearly, these two equations could admit any

scaling of ςq by also scaling ςη, reinforcing the notion that they only pin down relative
responses. The absolute size of the fire sale is, instead, pinned down by the risk-balance
condition (RB). If both experts and households are marginal in capital markets, their
relative risk exposure κ

η ς2
q − 1−κ

1−η ς2
q must be matched by their relative expected returns

ae
q −

ah
q . This pins down ςq, the absolute effect of the non-fundamental shock. In other

words, the size of an ex-post fire sale is pinned down by agents’ ex-ante optimal capital
holdings and their rational expectation of the fire sale.
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Having explained the mechanism behind self-fulfilling fire sales, we now address a
few auxiliary issues. First, our mechanism is critically dynamic and uncertainty-driven.
Within the sunspot literature, our paper is closest to the literature on banking panics—
with “run” and “no-run” equilibria being analogues to our BSE and FE. Unlike this
run literature, our BSE requires an infinite horizon because fire sales rely on future
uncertainty in asset prices. In a finite-horizon version of our economy, the asset price qt

would be pinned down at some future date T, rendering it risk-free at all earlier dates
by backward induction. But if asset prices are riskless, the economy must be in the FE.
(This can be seen by plugging in ςq = 0 in the risk-balance equation (RB).)

Second, unlike the literature on runs, there are actually many self-fulfilling fire-sale
equilibria. Section 2.3 document these and shows that they are determined by coordina-
tion on the boundary condition κ0 := limη→0 κ(η). So far, we have studied the BSE with
κ0 = 0, which corresponds to the maximal fire sale when experts are impoverished. But
there are also a continuum of “partial fire-sale” equilibria, associated to κ0 ∈ (0, 1).

Finally, while our sunspot analysis is simplest and cleanest in the case of log utility
and Brownian shocks, the intuition described above suggests that nothing is special
about log nor Brownian motion. To confirm this, we perform two extensions. First,
Online Appendix D shows how BSEs can be obtained with CRRA preferences and risk
aversion γ 6= 1. Second, Section 4 below illustrates a sunspot equilibrium with Poisson
jumps instead of Brownian shocks.

2.3 Beliefs about disaster states

In this section, we outline a richer class of BSEs. The entire set of BSEs studied here will
be indexed by agents’ beliefs about the “tail scenario” in the economy, i.e., what happens
when experts are severely undercapitalized.

Mathematically, recall that we previously have assumed the boundary condition
κ(0) = 0; in other words, experts fully deleverage as their wealth vanishes. Strictly
speaking, κ(0) = 0 turns out to not be necessary without some equilibrium refinements,
and it will be interesting to relax this assumption.

Consider any κ0 ∈ [0, 1) and enforce limη→0 κ(η) = κ0. We will call κ0 the disaster
belief in the economy. The sunspot equilibrium is similar to Proposition 1, with the
generalization that the boundary condition to the ODE (22) is now κ(0) = κ0. Along the
way toward proving Proposition 1, we actually proved that there is a unique solution to
this ODE, hence a unique sunspot equilibrium for each κ0 < 1. For short, let us refer to
these equilibria as BSE(κ0).
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Corollary 1 (Disaster beliefs). For each κ0 ∈ [0, 1), there exists a unique BSE(κ0) with κ(0) =
κ0, in which ςq(η) 6= 0 on (0, η∗κ0

) for η∗κ0
> 0, and ςq(η) = 0 on (η∗κ0

, 1). Moreover, the process
(ηt)t≥0 possesses a non-degenerate stationary distribution on (0, η∗κ0

].

In the proof of Proposition 1, we also showed that our baseline BSE(0) is the result
of taking the limit κ0 → 0 in the BSE(κ0). Similarly, one can show that as κ0 → 1, the
BSE(κ0) converges to the FE. For any κ0 ∈ (0, 1), an intermediate sunspot equilibrium
can prevail, with a self-fulfilling amount of expert deleveraging and associated price
dynamics. In this simple way, the boundary condition κ0 ∈ [0, 1] spans an entire range
of sunspot equilibria from more to less volatile. An illustration is in Figure 2.
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Figure 2: Capital price q, sunspot volatility ςq, and stationary CDFs of η for different levels of disaster
belief κ0. Parameters: ρe = 0.06, ρh = 0.04, ae = 0.11, ah = 0.03.

The indeterminacy in κ0 reinforces of the central property that the degree of fire
sales is indeterminate in these models. Intuitively, greater optimism about other experts’
ability to retain capital in the tail scenario induces smaller capital fire sales in response to
sunspot shocks, which keeps volatility low, asset prices high, and justifies the optimism.
At this point, we have a single Fundamental Equilibrium (which one may think of as κ0 =

1) and a continuum of Brownian Sunspot Equilibria (with any κ0 < 1). How do these
equilibria compare to conventional financial accelerator equilibria where fundamental
shocks cannot be hedged? Is there any reason to think one of these κ0 is a more natural
outcome than the others? We turn to these questions next.
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3 Self-fulfilling fire sales as a limiting case

3.1 Observational equivalence to conventional accelerator equilibria

So far, we have allowed agents to perfectly hedge fundamental shocks. To compare
our results to the literature, and provide further interpretation, consider what happens
if no market existed for hedging dWt. Equilibria for this “conventional situation” are
studied extensively, with the defining feature that fundamental shocks are amplified by
endogenous wealth dynamics.

Definition 3. A Conventional Accelerator Equilibrium (CAE) is an equilibrium which satis-
fies Definition 1 with the additional requirement that xe,t = xh,t = 0 (no hedging), which
is Markovian in the expert wealth share η, and which satisfies σ + σq > 0.

Let us briefly recount the details for a CAE in which dWt is non-hedgeable and the
sunspot shock dZt is absent. (In fact, Lemma A.2 shows that if dWt is non-hedgeable,
then dZt cannot impact equilibrium.) The key modification is that non-hedgeable return
volatility is now σ + σq rather than ςq from the BSE. Thus, the entire set of equilibrium
equations is similar to before, except ςq is replaced by σ + σq and ςη by ση in all cases.
(There is also a small modification to the expression for r. All the CAE equations are
contained in Appendix A.1.) The qualifier in Definition 3 that σ + σq > 0 is to focus on
the standard solution where capital returns respond in the same direction as the shock.8

Follow a similar analysis that led to the critical equation (21). Solving the two-way
feedback between the Itô condition σq =

q′
q ση and wealth volatility ση = (κ− η)(σ + σq),

we obtain

σq =
(κ − η)q′/q

1− (κ − η)q′/q
σ. (24)

Equation (24) is often interpreted as amplification, because (κ−η)q′/q
1−(κ−η)q′/q takes the form of

a convergent geometric series. In words, a negative fundamental shock reduces experts’
wealth share η directly through (κ − η)σ, which reduces asset prices through q′/q. This
explains the numerator of (24). But the reduction in asset prices has an indirect effect: a
one percent drop in capital prices reduces experts’ wealth share by (κ − η), which feeds
back into a (κ − η)q′/q percent further reduction capital prices, which then triggers the

8Online Appendix C.1 presents a solution where σ + σq < 0 in the “fire sale region,” confirming
a conjecture in footnote 16 of Kiyotaki and Moore (1997). This counterintuitive equilibrium can arise
because only the return variance (σ + σq)2 is pinned down by the risk-balance condition (A.14). Thus, the
sign of σ + σq can be positive or negative.
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loop again. The second-round impact is [(κ − η)q′/q]2, and so on. This infinite series
is convergent if (κ − η)q′/q < 1, such that incremental amplification is reduced in each
successive round of the feedback loop.

In the BSEs, recall that (κ − η)q′/q = 1 (equation (21)). BSEs have no dampening in
successive rounds of the feedback loop, leading to infinite amplification! Despite this
contrast, it turns out that the baseline BSE is “close” to a conventional equilibrium. As σ

shrinks, amplification rises because falling exogenous volatility incentivizes expert lever-
age, which raises endogenous volatility. As σ vanishes, amplification rises explosively
and equilibria become sunspot-like.9

Proposition 2 (Observational equivalence). Suppose a CAE exists for each σ > 0 small
enough, with κ(0) = 0. Then, as σ→ 0, the CAE converges to the BSE(κ0 = 0) in distribution.

It is relatively clear that taking σ→ 0 in equation (24) yields [1− (κ − η)q′/q]σq = 0,
analogous to the critical equation (21) from the benchmark model. Yet it is not clear why
the solution σq ≡ 0 (hence κ ≡ 1, i.e., the safe Fundamental Equilibrium) is ruled out as
a limiting equilibrium. Our formal proof rules this out and shows that fire sales remain
non-negligible in the limit.

The observational equivalence result of Proposition 2 formalizes how the BSE of
Proposition 1 “looks similar” to the conventional equilibria that have been studied in
the financial accelerator literature. There are two take-aways. Theoretically, our finding
demonstrates how the self-fulfilling nature of fire sales is core to the economics of the fi-
nancial accelerator. Practically, our finding can also be viewed as a robustness result: the
dynamics of conventional accelerator equilibria are robust to the inclusion of markets
for hedging fundamental risks. In that sense, and supposing there is a natural equi-
librium selection device that picks the fire-sale equilibrium, the market incompleteness
assumptions made in Brunnermeier and Sannikov (2014) are innocuous. We turn to this
selection device in the next section.

Rather than taking σ → 0, an alternative way to demonstrate the robustness of fire-
sale dynamics is to hold σ fixed and take a limit as markets “become complete.” Online
Appendix F analyzes a particular version of this complete-markets limit. There, we
suppose experts can issue up to 1− χ fraction of their own risks as equity to the market
and must retain χ fraction of their risks. We first provide a precise sense in which, for

9Brunnermeier and Sannikov (2014) provide a related limiting result, arguing numerically that asset-
price volatility does not vanish as σ → 0, also known as the “volatility paradox.” They also provide an
analytical result that limη→0

ση

η = ae−ah
ah

ρh
σ + O(σ). We go further in proving that the entire equilibrium

converges, as σ → 0, to a sunspot equilibrium. Related results can be found in Manuelli and Peck (1992)
and Bacchetta et al. (2012), in which sunspot equilibria could be seen as limits of fundamental equilibria
when fundamental uncertainty vanishes.
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any χ > 0, the equilibrium pricing function with equity-issuance, once the state variable
is re-scaled, is approximately similar to the one without equity-issuance (Proposition
F.1). We then show that as χ → 0, when financial markets approach completeness, the
possibility of fire-sales does not vanish (Proposition F.2). These points convey a sense
in which the fire sales associated to the conventional financial accelerator are robust to
allowing a significant amount of risk-sharing. Nevertheless, we also show numerically
that the probability of a fire-sale shrinks as χ shrinks, eventually vanishing as χ → 0
for our example. In this sense, approaching complete markets does actually restore the
safety and efficiency of equilibrium, which distinguishes the limit χ→ 0 from σ→ 0.

Finally, notice that Proposition 2 assumes the boundary condition κ(0) = 0 for each
of the CAEs. Online Appendix C.2 shows that this boundary condition is technically
not pinned down and numerically constructs CAEs for various κ(0) ∈ (0, 1), mirroring
the results for the BSEs in Section 2.3. In some sense, the literature has picked the worst
possible CAE (minimal-price, maximal-volatility) by imposing κ(0) = 0, so far without
any rigorous justification.10

We address the plausibility of κ(0) = 0 with a simple equilibrium refinement in
Online Appendix C.3. Assume agents face a leverage constraint when holding capital

qtk j,t

nj,t
≤ β, (25)

for some β > 1. Constraint (25) is motivated in the appendix by a standard limited
commitment friction. We prove that, as β → ∞ and the constraint becomes arbitrarily
lax, the unique outcome is the CAE with κ(0) = 0 (Proposition C.1). The argument is
involved, but intuitively, the leverage constraint gives experts an additional motive to sell
capital, which forces coordination on maximal selling in response to negative shocks.

3.2 Equilibrium selection via a small-noise limit

So far, we have demonstrated that BSEs are a possibility. But our model inherently per-
mits multiple equilibria. Agents may just as well coordinate on the Fundamental Equi-
librium, which has no fire sales, or they may coordinate on a BSE with disaster belief
κ0 > 0 so that the fire sale is only partial. In this section, we provide a very simple ratio-

10Brunnermeier and Sannikov (2014) argue heuristically for κ(0) = 0 in their online appendix: “because
in the event that ηt drops to 0, experts are pushed to the solvency constraint and must liquidate any
capital holdings to households.” But, as shown in Lemma C.1, even if κ(0) > 0, the resulting dynamics of
ηt will not allow it to ever reach 0, so there is no contradiction to equilibrium. In other words, experts are
almost-surely never pushed to their solvency constraint, so they may never need to fully liquidate.
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nale for selecting the BSE with κ0 = 0 as the unique equilibrium. The idea: suppose agents
perceive sunspot shocks as having a small fundamental impact. Even as the perceived
fundamental impact vanishes, equilibrium requires sunspots to matter.

Suppose agents believe that dZ is a second fundamental shock that affects capital. But
unlike dW, there are no hedging markets for dZ. Mathematically, introduce parameter ς

in the perceived capital evolution:

dki,t = ki,t[gdt + σdWt + ςdZt]. (26)

In reality, ς = 0 so that dZ is a sunspot that does not affect capital evolution. Think of ς

as small, since we eventually take ς→ 0 and impose convergence to rational beliefs.11

Definition 4. A Perceived Accelerator Equilibrium (PAE) is an equilibrium which satisfies
Definition 1, in which agents perceive capital dynamics (26), which is Markovian in the
expert wealth share η, and which satisfies ς + ςq > 0.

This perceived risk model is tractable because all the equations are either identical to
or limiting versions (as ς→ 0) of those that arise when the risk is real. (All the equations
are contained in Appendix A.3.) Thus, all the relevant equilibrium equations in the PAE
converge to the BSE equations as ς→ 0.

The only question is which of the BSE solutions, or possibly the FE, is selected. The
equilibrium selection argument proceeds in two steps. First, it is straightforward to
verify that the argument in Online Appendix C.3 continues to apply to this perceived-
risk setting: a vanishingly-small limited-commitment friction prunes all disaster beliefs
besides κ(0) = 0. Second, taking as given that κ(0) = 0, we take ς → 0 and show that
the BSE emerges as the unique limiting equilibrium.

Essentially, all we are doing in this second step is using the previous limiting results
in a different way. Indeed, for any ς > 0, agents perceive some fundamental risk, and
so their behavior and their perceived dynamics mimic a conventional equilibrium, the
CAE. By the exact same argument as Proposition 2, this behavior and belief converge
to those of the BSE as ς → 0. By imposing that belief distortions are “small” (i.e.,
requiring agents’ beliefs to converge to rationality), the actual dynamics must coincide
asymptotically with perceived dynamics, and so they coincide with the BSE.

11Note that, in a diffusion model, misperceptions about volatility are extreme in the sense in that such
beliefs are singular with respect to the objective probability—data at infinitely-high frequency could detect
the true volatility. That said, we will take misperception ς→ 0 in this argument. And so if investors receive
data at anything less than infinitely-high frequency, the belief distortion can be interpreted as trivial.
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Proposition 3 (Refinement). Suppose a PAE exists for each ς > 0 small enough, with κ(0) = 0.
Suppose agents’ beliefs converge to rational expectations as ς → 0. Then, as ς → 0, the PAE
converges to the BSE(κ0 = 0).

4 “Large” self-fulfilling fire sales

We now re-write the model with jumps rather than Brownian shocks. For simplicity we
assume a single Poisson shock dJt, which is a fundamental shock if it has a non-zero
impact on capital and is a sunspot shock otherwise. We assume there are no markets to
hedge the dJ shock. To focus on bad shocks, we assume that the Poisson shock reduces
capital and restrict our analysis to equilibria where asset prices decline in response to
this shock.

In this section, we will provide an overview of the jump model and present some nu-
merical results. More details and derivations for this Poisson environment are contained
in Online Appendix E. There, we also provide an overview of the numerical method,
which is more challenging than simply solving an ODE as in the BSE.

Let capital evolve as

dkt = kt−[gdt− ζdJt],

where J is a Poisson process with intensity λ, and where ζ ≥ 0. If ζ = 0, then J is a
sunspot shock. Capital prices follow a process of the form

dqt = qt−[µq,t−dt− ζq,t−dJt].

Note that −ζq,t−dJt := qt−qt−
qt−

is the proportional price jump. We will assume that ζq,t− is
pre-determined, i.e., conditional on a jump, the jump size is known. This dramatically
simplifies the analysis, although there may be additional equilibria where the jump size
is also random. As usual, we will focus attention to equilibria which are Markov in the
expert wealth share η, which follows a process of the form

dηt = µη,t−dt− ζη,t−dJt.

Note that −ζη,t−dJt := ηt − ηt− by definition. In this context, Markov equilibria are
categorized as follows. If ζ > 0, we define a Conventional Accelerator Equilibrium (CAE)
as an equilibrium in which ζ + ζq − ζζq > 0. If ζ = 0, we define a Poisson Sunspot
Equilibrium (PSE) as an equilibrium in which ζq is not identically zero.
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For convenience, let us define the negative jump in return-on-capital

ζR := ζ + ζq − ζζq. (27)

This measures the total risk embedded in managing capital, namely the proportional size
of a jump to qk. The two assets in the economy are capital and the risk-free bond. Since
our jumps have a known size, optimal portfolio conditions are (see Online Appendix E
for a derivation)

ae

q
+ g + µq − r =

λζR

1− κ
η ζR

ah
q
+ g + µq − r ≤ λζR

1− 1−κ
1−η ζR

, with equality if κ < 1.

Combining these two equations, we obtain a modified risk-balance equation:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

λζ2
R(

1− κ
η ζR

)(
1− 1−κ

1−η ζR
)]. (RBJ)

This is very similar to (RB) from the Brownian model, but where the non-hedgeable

risk ςq is replaced by non-hedgeable jump risk λζ2
R

(1− κ
η ζR)(1− 1−κ

1−η ζR)
, which involves both the

arrival rate λ, the squared jump size ζ2
R, and its impact on marginal utilities (terms in

the denominator).
The wealth share jump ζη is derived by using knowledge of the jump size in q and

noting that agents’ portfolios (capital and bonds) are predetermined:12

ζη = (κ − η)
ζR

1− ζR
. (28)

On the other hand, once the post-jump wealth share is known, the capital price is also
known, since η is the sole state variable, i.e., we have qt = q(ηt) for some function q.

12The derivation is as follows. Let variables with hats, e.g., “x̂”, denote post-jump variables. Note
N̂e = q̂K̂κ − B and N̂h = q̂K̂(1− κ) + B, where B is expert borrowing (and household lending, by bond
market clearing). Then, η̂ = N̂e/(q̂K̂) = κ− B/(q̂K̂) and by similar logic the pre-jump wealth share is η =
κ − B/qK. Thus, ζη = η − η̂ = B[1/(q̂K̂)− 1/(qK)] = qK(κ − η)[1/(q̂K̂)− 1/(qK)]. Using the definitions
ζ := 1− K̂/K and ζq := 1− q̂/q, and using ζR := ζ + ζq − ζζq, we arrive at ζη = (κ − η)[(1− ζR)

−1 − 1].
This derivation assumes the presumably risk-free bond price does not jump when capital prices jump.
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Thus, if we denote the post-jump wealth share by η̂ := η − ζη,

ζq = −
q(η̂)− q(η)

q(η)
. (29)

These equations encode a two-way feedback between the wealth distribution and capital
prices, similar to the Brownian model. Indeed, equations (27)-(28) show that wealth
share jump depends on the return jump, which depends on the capital price jump. On
the other hand, equation (29) shows that the capital price jump depends on the wealth
share jump.

Because we do not model bankruptcy procedures, we must also make sure the jump
renders experts solvent, meaning ζη,t− < ηt−, to preserve the risk-free status of the
bond. If solvency cannot be ensured, then no jump can take place. Putting these results
together, the equations characterizing an equilibrium of this model are given by the
following simple lemma.

Lemma 2 (Equilibrium with Jumps). A Markov equilibrium with jumps requires functions
(q, κ, ζq, ζη) of η to satisfy price-output relation (PO), risk-balance condition (RBJ), equations
(28)-(29), and ζη < η.

Figure 3: Convergence to a Poisson Sunspot Equilibrium as ζ → 0. Parameters: ρe = 0.06, ρh = 0.04,
ae = 0.11, ah = 0.03, λ = 0.1. In all cases, we use the boundary condition κ(0) = 0.

23



Analogously to the results of Section 3.1, a sunspot equilibrium emerges in the limit
as fundamental risk vanishes, ζ → 0. That is, the CAE converges to the PSE. While we
do not prove this rigorously in the jump context, we do provide a numerical example
in Figure 3.13 As exogenous risk shrinks, the pricing function q(η) converges to a limit
which differs from the riskless Fundamental Equilibrium (FE). While the fire-sale region
shrinks with ζ, it does not vanish, and endogenous jump risk remains in the limit. This
is despite the fact that when ζ = 0 (i.e., zero exogenous risk), there always exists a safe
Fundamental Equilibrium (FE) featuring κ ≡ 1 and ζq ≡ 0 at all times.

Next, we compare experts’ capital share κ in the PSE to the Brownian Sunspot Equi-
librium (BSE) and the safe Fundamental Equilibrium (FE). Figure 4 displays the results.
The left panel plots one simulation of κ in these three equilibria. The right panel plots
the stationary densities of κ (although note that the BSE and FE “densities” in fact have
a point mass at κ = 1). This example illustrates how misallocation in the PSE tends to be
worse than in the BSE, and certainly much worse than the efficient FE. The reason is sim-
ple: the PSE features a very left-skewed distribution of sunspot shocks, hence large fire
sales. This means that asset prices and experts’ capital share can immediately become
quite depressed tomorrow, even if the economy is doing well today.

Figure 4: Time series and stationary density of capital price q in a PSE, BSE, and Fundamental Equilibrium
(FE). Parameters: ρe = 0.06, ρh = 0.04, ae = 0.11, ah = 0.03, σ = 0, ζ = 0. We use the boundary condition
κ(0) = 0 in all cases. For the PSE, we use λ = 0.02 as the arrival rate of Poisson jumps and compute the
stationary CDF via a 100,000 year simulation at the weekly frequency.

13Such a convergence proof would involve a much harder existence/uniqueness analysis of differential
equations with “delay”. That said, one can easily verify that all the equilibrium equations are continuous
in ζ, so that the limiting equations as ζ → 0 are well-defined. For this reason, a reasonable conjecture is
that the PSE emerges in the limit ζ → 0.
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Overall, we make two points in light of these results. First, different sunspot equilib-
ria are possible depending on what agents assume about the sunspot process. Agents
can equally well coordinate on large, discrete fire sales as they can on small, frequent
trading. Second, whether we model shocks as Brownian motions or Poisson jumps,
sunspot equilibria are “close” to their corresponding conventional accelerator equilib-
rium. In that sense, the traditional assumption of non-hedgeable fundamental shocks
may be relatively innocuous to the equilibrium dynamics.

5 Conclusion

We have studied a canonical macro-finance model and constructed equilibria with self-
fulfilling fire sales. The key innovation is that, while all fundamental risks are perfectly
shared, not every conceivable shock is hedgeable. Fundamentals-based fire sales are no
longer possible, but endogenously-emerging risks are unhedgeable and could matter.
If agents coordinate on selling capital, its price falls, which feeds back into net worth
and self-justifies the initial fire sale. The resulting dynamics are familiar, resembling the
conventional financial accelerator equilibria in a sense we make precise, but can only
emerge out of non-fundamental shocks. For example, consider the emergence of new
types of shocks for which hedging markets have not yet developed; these are the shocks
likely to encourage coordination and fire sale behavior. Finally, despite the presence
of multiple equilibria, we provide a simple trembling-hand-style refinement, based on
a vanishingly-small limited commitment problem, combined with agents mistaking the
sunspot shock to have a vanishingly-small fundamental impact. This refinement justifies
selecting the (worst) fire-sale equilibrium and neglecting the safe equilibrium and all
partial fire-sale equilibria.
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Appendix to: Dynamic Self-Fulfilling Fire Sales
Paymon Khorrami and Fernando Mendo

March 29, 2025

A Proofs

Derivation of mean-variance problem. Here, we briefly justify the mean-variance
problem (8). This standard result is due to the combination of log utility and a ho-
mogeneous of degree one budget set (including the fact that the no-shorting constraint
k ≥ 0 is homogeneous in agent-specific wealth). See Cvitanić and Karatzas (1992) for
a full mathematical proof using convex duality methods. Rather than provide the for-
mal proof along those lines, we provide below a sketch of the argument behind the
mean-variance problem using the recursive formulation of agents’ problems.

Consider an agent with net worth n, who faces the aggregate state vector X (in our
equilibria, X = η). The evolution of n is given by (2), while the evolution of the aggregate
state is independent of individual states and controls, i.e., dX = µ(X)dt + σ(X)dWt +

ς(X)dZt. Letting V denote his value function, the associated HJB equation is

ρV(n, X) = max
c≥0,k≥0,x∈R

log(c) +
E[dV(n, X)]

dt

We now guess and verify that V(n, X) = ρ−1 log(n) + ξ(X), where ξ is a function solely
of aggregate states. Using the conjecture, and using Itô’s formula to write E[d log(n)] =
E[ dn

n ]− 1
2Var[ dn

n ], we can write the HJB equation as

log(n) + ρξ(X) = max
c,≥0,k≥0,x

log(c) +
ρ−1

dt

(
E[

dn
n
]− 1

2
Var[

dn
n
]
)

︸ ︷︷ ︸
mean-variance component

+
E[dξ(X)]

dt

Consumption only appears in the flow utility log(c) and the drift of dn in (2), and
so maximizing over c gives c = ρn. Capital k and hedges x only appear in the net
worth dynamics, leading to the mean-variance problem (8). Finally, plugging the optimal
consumption, capital, and hedges back into the HJB equation, we can show that the
individual state n drops from the expression and the remainder is exclusively a function
of X, representing a functional equation for ξ(X). This verifies the conjectured form of
the value function, and therefore verifies the conjectured mean-variance problem.
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Proof of Lemma 1. The construction is contained in the text leading up to the Lemma.
To confirm that this is an equilibrium, note that all equations are satisfied: (PO) by κ = 1
and q = ae/ρ̄(η); (RB) by κ = 1 and ςq = 0; and r and π can be set by (13) and (14),
respectively. Finally, the dynamics in (19)-(20) are consistent with equations (16)-(18) and
Itô’s formula applied to q = ae/ρ̄(η).

Proof of Proposition 1. As stated in the text, the existence of a BSE boils down to
proving the existence of a solution q to ODE (22) with boundary condition κ(0) = 0,
or equivalently q(0) = ah/ρh. However, because κ(0) = 0 implies that q′(0) = +∞, we
cannot apply standard results to this problem and must argue differently.

In our first step, we replace the boundary condition κ(0) = 0 by any κ(0) = κ0 ∈
(0, 1). We prove existence of a solution to (22) with this modified boundary. In our
second step, we take the limit κ0 → 0 and argue the limit satisfies the relevant equations.
Our third step shows this limit is the unique solution to the BSE ODE.

Step 1: Existence (and uniqueness) for κ0 ∈ (0, 1). Consider the initial value problem

q′ = F(η, q) :=
ae − ah

qρ̄(η)− ηae − (1− η)ah
q s.t. q(0) =

κ0ae + (1− κ0)ah
ρh

. (A.1)

Notice that q′(0+) = q(0)
κ0

is bounded, ensuring F is bounded and uniformly Lipschitz
on the domain Rε := {(η, q) : 0 < η < 1, (ε + η)ae + (1− ε− η)ah < qρ̄(η)}, for each
ε ∈ (0, κ0). This is the relevant domain because κ′(0+) = ρe−ρh

ae−ah
q(0) + ρh

ae−ah
q′(0+) =

1 + ah
κ0
+ (κ0 + ah)(

ρe−ρh
ρh

) > 1, so that the solution points into the interior of this region
as long as ε ≤ κ0. Thus, the Picard-Lindelöf theorem implies that there exists a unique
solution q∗ to this initial value problem, for η ∈ (0, b), some b. Standard continuation
arguments can be used to extend the solution to either the entire domain R := ∪Rε or
until a point such that the either solution or F explodes. In other words, either:

(i) b = 1; (ii) q∗(η)→ +∞ as η → b; (iii) b satisfies bae + (1− b)ah = q∗(b)ρ̄(b).

Let us first rule out case (iii). Consider the pricing function
¯
q(η) = κ0(ae−ah)+ηae+(1−η)ah

ρ̄(η)
,

which corresponds by equation (PO) to the expert capital share
¯
κ(η) = κ0 + η. Note that

¯
q uniquely solves the alternative ODE

q′ =
¯
F(η, q) :=

ae − ah − (ρe − ρh)q
ρ̄(η)

s.t. q(0) =
κ0ae + (1− κ0)ah

ρh
.
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Since q∗(0) =
¯
q(0) and since F(η, q) >

¯
F(η, q) on R, the comparison theorem for ODEs

implies that q∗(η) >
¯
q(η) for all η > 0. Because

¯
q(η) > ηae+(1−η)ah

ρ̄(η)
, this proves that there

cannot exist any b with q∗(b) = bae+(1−b)ah
ρ̄(b) . In passing, also note that this proves that the

solution q∗(η) is necessarily such that the associated capital share κ∗(η) = q∗(η)ρ̄(η)−ah
ae−ah

from equation (PO) is such that κ∗(η) > η.
We are left with cases (i) or (ii). In either case, set

η∗ = inf{η ∈ (0, b) : q∗(η) = ae/ρ̄(η)}

with the convention that η∗ = 1 if the set is empty. Note that η∗ > 0 is immediate, since
q∗(0) = ah/ρh < ae/ρh and since d

dη q∗(0+) = q∗(0)
κ0

is bounded.
In case (ii), with b < 1 and q∗(b−) = +∞, it is clear by the continuity of the solution

q∗ that η∗ < b < 1.
In case (i) with b = 1, we may easily show by contradiction that η∗ < 1. Indeed, if

η∗ ≥ 1, then q∗(1−)ρ̄(1−) < ae, which implies F(1−, q∗(1−)) < 0. But by continuity
of q∗, the only way F could have changed signs is that there exists an η◦ ∈ (0, 1) such
that η◦ae + (1− η◦)ah = q∗(η◦)ρ̄(η◦). This latter possibility was just ruled out (case (iii)).
And so η∗ < 1.

Consequently, in cases (i)-(ii), there exists 0 < η∗ < 1 such that q∗(η∗) = ae/ρ̄(η∗).
Finally, define

q(η) :=

q∗(η), if η < η∗;

ae/ρ̄(η), if η ≥ η∗.

This function satisfies q′ = F(η, q) on (0, η∗), with boundary values q(0) = κ0ae+(1−κ0)ah
ρh

and q(η∗) = ae/ρ̄(η∗). Thus, we have found a solution to the capital price satisfying all
the desired relations. And as shown above, the capital share satisfies κ(η) > η.

Equation (23), plus the fact that κ > η, implies ς2
q > 0 on (0, η∗). Since η∗ > 0, we

thus have ςq(η) 6= 0 on a positive measure subset as desired.

Step 2: Limit as κ0 → 0. For each initial condition κ(0) = κ0, let (qκ0 , η∗κ0
) be the associated

equilibrium capital price and fire-sale threshold. Write the integral version of the ODE:

qκ0(η) =
κ0ae + (1− κ0)ah

ρh
+
∫ η

0
F(x, qκ0(x))dx, η < η∗κ0

. (A.2)

We first claim that qκ0(x) is weakly increasing in κ0, for each x. Indeed, qκ0(0) is strictly
increasing in κ0. By continuity, we may consider x∗ := inf{x : qκ̃0(x) = qκ0(x)} for some
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κ̃0 > κ0. In that case, since F does not depend on κ̃0 or κ0, we have qκ̃0(x) = qκ0(x) for all
x ≥ x∗. This proves qκ̃0(x) ≥ qκ0(x) for all x. The monotonicity of qκ0 in κ0 also proves
that η∗κ0

, by its definition, is weakly decreasing in κ0.
Because of these monotonicity results, the following limit (q0, η∗0 ) := limκ0→0(qκ0 , η∗κ0

)

exists. This limit is our candidate solution for the BSE. It suffices to show that q0 satisfies
(a) q′0 = F(η, q0) on (0, η∗0 ), (b) q0(0) = ah/ρh, and (c) q0(η

∗
0 ) = ae/ρ̄(η∗0 ).

Combine the monotonicity result for qκ0(x) with the fact that ∂qF < 0 to see that
{F(x, qκ0(x)) : κ0 ∈ (0, 1)} is a sequence which is monotonically (weakly) decreasing in
κ0, for each x. Thus, applying the monotone convergence theorem to (A.2), and recalling
that η∗0 ≥ η∗κ0

, we have

q0(η) =
ah
ρh

+
∫ η

0
F(x, q0(x))dx, η < η∗0

which proves (a), by differentiating, and (b), by substituting η = 0.
To prove (c), note that qκ0 is a bounded, continuous function for each κ0. Furthermore,

qκ0 converges to q0 uniformly (i.e., in the sup-norm), due to the fact that ∂qF < 0.14

Because the space of bounded, continuous functions (equipped with the sup-norm) is a
Banach space, it holds that q0(x) is also a bounded, continuous function. Therefore,

q0(η
∗
0 ) = lim

n→0
qn

(
lim
m→0

η∗m

)
= lim

n→0
lim
m→0

qn(η
∗
m) = lim

κ0→0
qκ0(η

∗
κ0
) = lim

κ0→0

ae

ρ̄(η∗κ0
)
=

ae

ρ̄(η∗0 )

which proves (c).

Step 3: Uniqueness. Suppose two solutions q and q̃ solved the ODE (22) with boundary
conditions κ(0) = κ̃(0) = 0. Let η∗ and η̃∗ denote the points where κ(η) and κ̃(η) reach
1. By Lemma A.1, it must be the case that κ(η) = 1 on [η∗, 1] and κ̃(η) = 1 on [η̃∗, 1], so it
suffices to consider the fire sale regions (0, η∗) and (0, η̃∗). Without loss of generality, we
may consider the situation q̃(η) > q(η) for all η < η◦. The reason: if the two solutions
ever crossed at some value of η◦, then they would necessarily coincide for all η ≥ η◦.

Since q(0) = q̃(0), we have

q(η)− q̃(η) =
∫ η

0

[
F(x, q(x))− F(x, q̃(x))

]
dx, η < η◦

Recall that F is decreasing in its second argument. Therefore, q̃ > q on (0, η◦) implies

14Indeed, differentiate (A.2) with respect to κ0 and η to see that ∂ηκ0 qκ0(η) < 0, and in particular
∂κ0 qκ0(η) ≤ ∂κ0 qκ0(0) =

ae−ah
ρh

. Thus, the convergence rate of qκ0 → q0 is bounded by the rate that κ0 → 0.
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F(x, q(x)) > F(x, q̃(x)) for x < η◦, which from the equation above implies q(η) > q̃(η),
a contradiction.

Step 4: Stationary distribution. The entire argument above holds for η > 0. Hence, for this
argument to constitute a valid equilibrium construction, it must be the case that (ηt)t≥0

never reaches 0, with probability 1. This result, along with the proof that (ηt)t≥0 has
a non-degenerate stationary distribution on (0, η∗] is presented in Lemma B.1. In fact,
there we prove these results for any boundary condition κ0 ∈ [0, 1). Hence, Corollary 1
is proved as well.

Lemma A.1. Consider a BSE with κ(0) = 0. Then, there exists a threshold η∗ > 0 such that
κ(η) < 1 for all η < η∗ and κ(η) = 1 for all η ≥ η∗.

Proof of Lemma A.1. First, note that ODE (A.1) immediately implies q′ > 0 on the set
{η : κ < 1}. Next, we prove that {η : κ < 1} = (0, η∗) for some η∗. Suppose {η : κ < 1}
were not a connected set. Then, there would exist η2 > η1 such that q(η2) < ae/ρ̄(η2)

while q(η1) = ae/ρ̄(η1). But since ρ̄(η) is an increasing function, we have

q(η2) < ae/ρ̄(η2) < ae/ρ̄(η1) = q(η1).

This implies that q′ < 0 for some η ∈ (η1, η2) ∩ {κ < 1}, which is a contradiction. This
proves that {η : κ < 1} must be an interval. By Step 1 of the proof of Proposition 1,
{η : κ < 1} includes (0, η∗) for some η∗ > 0. Hence, {η : κ < 1} = (0, η∗).

Proof of Proposition 2. The equations for the CAE are collected in Appendix A.1 be-
low. Due to Lemma A.2, we must plug ςq = ςη = 0 into those equations.

Using Lemma A.3, we obtain the ODE (A.16) for q, which holds on {η : η < κ(η) <

1}. The proposition’s stated assumption κ(0) = 0 serves as a boundary condition for this
ODE. For each σ > 0 small enough, let qσ denote a solution to this ODE (which exists
by assumption). By Lemma A.7 below, this solution qσ, if it exists, is unique.

The remainder of the proof proceeds as follows. We first prove that, for any σ > 0,
fire sales happen and so ODE (A.16) applies in some region. We then guess-and-verify
that fire sales remain in the limit σ → 0. Under the guess that the fire sale region does
not vanish, we prove that the limiting equilibrium is the BSE. Given this result, we can
then verify that the fire sale region does not vanish as σ→ 0.
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Step 1: Fire sales occur for any σ > 0. By Lemma A.6 below, there is a threshold η∗σ > 0
such that the unique solution satisfies κσ < 1 on (0, η∗σ) and κσ = 1 on [η∗σ, 1]. Based on
the result that η∗σ is positive, fire sales happen for any σ > 0.

Step 2: The limiting equilibrium is the BSE (if fire sales continue in the limit). First, we establish
that the relevant limits exist. Note that the ODE generator Fσ in (A.16) is decreasing in
σ uniformly, which implies that the solution qσ is monotonically (weakly) decreasing
in σ. By the monotone convergence theorem, the limit q0 := limσ→0 qσ exists, and by
association η∗0 := limσ→0 η∗σ exists. We will guess (and verify in Step 3) that η∗0 > 0.

Next, because qσ is decreasing in σ, implying η∗σ is increasing in σ, we have η∗0 =

infσ η∗σ. Thus, the entire family (qσ)σ>0 of solutions satisfy

qσ(η) =
ah
ρh

+
∫ η

0
Fσ(x, qσ(x))dx, η < η∗0 , (A.3)

i.e., each qσ solves its ODE in the smallest interval (0, η∗0 ). We claim that σ→ 0 implies

q0(η) =
ah
ρh

+
∫ η

0
F0(x, q0(x))dx, η < η∗0 (A.4)

Define fσ(x) := Fσ(x, qσ(x)). Our first aim is to show that fσ(x) → f0(x) pointwise.
Our second aim is to show that the functions ( fσ)σ∈(0,σ̄) are uniformly integrable (UI),
for some maximal volatility level σ̄ small enough. These two claims then imply that∫

fσ →
∫

f0, as desired.
First, we prove the claim that fσ(x) → f0(x) pointwise on {x > 0}. Fix x > 0, and

define the function φ(σ, q) := Fσ(x, q) for this x. We restrict the domain of this function
to [0, σ̄]×Q(x), where Q(x) := [qσ̄(x), ae/ρ̄(x)]. Since qσ̄(x) > (xae + (1− x)ah)/ρ̄(x),
we have that φ(σ, q) is continuous on its domain. Furthermore, we have q0(x) ∈ Q(x),
since q0(x) ≥ qσ(x) for any σ > 0. Thus,

lim
q→q0(x)

φ(σ, q) = φ(σ, q0(x)) (A.5)

for any σ ∈ [0, σ̄]. Next, note that the domain [0, σ̄]×Q(x) is a compact set. In addition,
φ(σ, q) ≤ φ(σ′, q) for all σ′ ≤ σ, since Fσ is decreasing in σ. These properties, together
with the continuity of φ, jointly satisfy all the assumptions of Dini’s theorem, and so we
establish that

lim
σ→0

φ(σ, q) = φ(0, q) (A.6)

33



uniformly for q ∈ Q(x). Combining (A.5)-(A.6), we may calculate the iterated limit
limq→q0(x) limσ→0 φ(σ, q) = φ(0, q0(x)). Since the convergence in (A.6) is uniform, the
Moore-Osgood theorem implies that the double limit and iterated limit coincide, i.e.,

lim
σ→0

q→q0(x)

φ(σ, q) = lim
q→q0(x)

lim
σ→0

φ(σ, q) = φ(0, q0(x)). (A.7)

Consequently, φ(σ, qσ(x))→ φ(0, q0(x)), or equivalently fσ(x)→ f0(x), as desired.
Next, we prove the second claim that ( fσ)σ∈(0,σ̄) are UI, i.e.,

inf
α>0

sup
σ∈(0,σ̄)

∫ η

0
1{| fσ(x)|>α}| fσ(x)|dx = 0. (A.8)

We will use the following three properties:

(P1) fσ(·) is bounded for each σ > 0 small enough.

[Proof: see Lemma A.4 below.]

(P2) Fσ(·, q0(·)) is bounded for each σ > 0 small enough.

[Proof: Recall that qσ(x) is decreasing in σ, and note the result from Lemma A.5
below that ∂qFσ(x, q)

∣∣
q=qσ

< 0. Together, these imply Fσ(x, q0(x)) ≤ Fσ(x, qσ(x)) =
fσ(x) for any σ small enough. Then, using property (P1), we obtain the result.]

(P3) f0(x) = F0(x, q0(x)) is finite for all x > 0.

[Proof: By property (P1), the associated capital share κσ satisfies κσ(x) > x for
all x > 0. Since κσ(x) is decreasing in σ (because qσ(x) is decreasing in σ), we
have κ0(x) ≥ κσ(x) > x for all x > 0. This result on κ0(x) implies that f0(x) =

F0(x, q0(x)) is finite for all x > 0 (potentially unbounded at x = 0 since κ0(0) = 0).]

By property (P1), we have for α large enough that

sup
σ∈(0,σ̄)

∫ η

0
1{| fσ(x)|>α}| fσ(x)|dx ≤

∫ η

0
1{| f0(x)|>α}| f0(x)|dx

Let us now use the triangle inequality to write

∫ η

0
1{| f0(x)|>α}| f0(x)|dx

≤
∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))
∣∣dx +

∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))− F0(x, q0(x))
∣∣dx
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for any arbitrary σ̃ > 0. Both of these integrals are well-defined. The first integral is
well-defined by property (P2). The second integral vanishes as σ̃ → 0 by the mono-
tone convergence theorem, since ∂σFσ(x, q) < 0. Hence,

∣∣Fσ̃(x, q0(x)) − F0(x, q0(x))
∣∣ is

integrable for σ̃ small enough.
Due to property (P3), there exists a threshold η∗(α), satisfying limα→∞ η∗(α) = 0,

such that 1{| f0(x)|>α} = 1{x<η∗(α)} for all α large enough. Thus, write for α large enough

∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))
∣∣dx =

∫ η∗(α)

0

∣∣Fσ̃(x, q0(x))
∣∣dx∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))− F0(x, q0(x))
∣∣dx =

∫ η∗(α)

0

∣∣Fσ̃(x, q0(x))− F0(x, q0(x))
∣∣dx

implying that

inf
α>0

{ ∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))
∣∣dx +

∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))− F0(x, q0(x))
∣∣dx
}

= lim
α→∞

{ ∫ η∗(α)

0

∣∣Fσ̃(x, q0(x))
∣∣dx +

∫ η∗(α)

0

∣∣Fσ̃(x, q0(x))− F0(x, q0(x))
∣∣dx
}
= 0

The equality to zero is because both integrals are well-defined and η∗(α)→ 0 as α→ ∞.
Putting all these results together, we have

inf
α>0

sup
σ∈(0,σ̄)

∫ η

0
1{| fσ(x)|>α}| fσ(x)|dx

≤ inf
α>0

{ ∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))
∣∣dx +

∫ η

0
1{| f0(x)|>α}

∣∣Fσ̃(x, q0(x))− F0(x, q0(x))
∣∣dx
}
= 0,

so UI holds for ( fσ)σ∈(0,σ̄). Consequently, (A.4) holds, proving that q0 solves the BSE
ODE (22) on η ∈ (0, η∗0 ).

Step 3: Verify η∗0 > 0. To confirm η∗0 > 0, we use that fact that q0 coincides with the
BSE qBSE. Proposition 1 has already proved that this BSE is unique and features η∗BSE :=
inf{η : qBSE(η) = ae/ρ̄(η)} > 0, confirming our guess.

Final notes: The qualification about “convergence in distribution” is only needed because
the BSE is driven by the sunspot shock Z, while the present limiting equilibrium is
driven by the fundamental shock W. These shocks have the same distribution but are
not pointwise identical. In addition, note that the BSE has some terms where σ is present,
for instance in the expression for r in (13). When we take σ→ 0, we are also doing so in
the BSE, so that all equilibrium objects in the CAE and BSE coincide as σ→ 0.
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Proof of Proposition 3. See Appendix A.3.

A.1 Conventional Accelerator Equilibrium (CAE)

Let us collect the relevant equilibrium equations for the CAE of Definition 3. First,
since the log utility consumption rules are unchanged, the price-output relation (PO)
still holds. Second, solving a similar portfolio choice problem as in the text, but with the
constraints xe = 0 and xh = 0, the expert and household capital Euler equations are now

ae

q
+ g + µq + σσq − r =

qke

ne

[
(σ + σq)

2 + ς2
q
]

ah
q
+ g + µq + σσq − r ≤ qkh

nh

[
(σ + σq)

2 + ς2
q
]

Differencing these equations leads to the risk-balance condition

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

(
(σ + σq)

2 + ς2
q
)]

. (A.9)

Summing the capital Euler equations, weighted by κ and 1− κ, respectively, leads to

r = ρ̄ + g + µq + σσq −
(κ2

η
+

(1− κ)2

1− η

)[
(σ + σq)

2 + ς2
q
]
. (A.10)

Applying Itô’s formula to the definition of η and using net worth dynamics, we have

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
(σ + σq)

2 (A.11)

ση = (κ − η)(σ + σq) (A.12)

ςη = (κ − η)ςq (A.13)

Finally, by the Itô condition, we have σq = q′
q ση and ςq = q′

q ςη. Combining this with
(A.12)-(A.13), we obtain

[1− (κ − η)q′/q]σq = σ(κ − η)q′/q (A.14)

[1− (κ − η)q′/q]ςq = 0 (A.15)

This completes the set of conditions. As the next result demonstrates, the sunspot shock
must be silent in this CAE, so we may set ςq = ςη = 0 everywhere above. In that case,
as mentioned in the text, the equilibrium equations for the CAE are the same as in the
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benchmark BSE, but with ςq and ςη replaced everywhere by σ + σq and ση, respectively
(and π = 0 used in the BSE expression for r).

Lemma A.2. Consider a CAE with σ > 0. The sunspot shock Z must play no role: ςη = ςq = 0.

Proof of Lemma A.2. Suppose that ςq 6= 0. If so, then (A.15) requires 1 = (κ − η)q′/q.
From (A.14), this then implies σq = ±∞. If σq is infinite, then (A.9) implies κ = η. Using
this in the requirement 1 = (κ− η)q′/q, we have that q′ = +∞. However, using κ = η in
(PO) yields q′ = ae−ah

ρ̄ − ρe−ρh
ρ̄ q, which contradicts q′ = +∞.

Lemma A.3. In a CAE with σ > 0, the ODE

q′ = Fσ(η, q) :=
(ae − ah)q

ρ̄(η)q− ηae − (1− η)ah

[
1− σ

√
(ρ̄(η)q− ηae − (1− η)ah)q

η(1− η)(ae − ah)2

]
(A.16)

holds on {η ∈ (0, 1) : η < κ(η) < 1}.

Proof of Lemma A.3. Combine equations (A.9) and (A.14), using the result from Lemma
A.2 that ςq = 0, to get

ae − ah
q

=
κ − η

η(1− η)

( σ

1− (κ − η)q′/q

)2
, if κ < 1. (A.17)

Next, use the CAE condition that σ + σq > 0 to take the square root of this equation and
keep the positive root of the quadratic term. In addition, use equation (PO) to eliminate
κ, and finally rearrange terms to get the ODE (A.16). Note that the requirement κ > η is
due to equation (A.9).

A.2 Useful lemmas and uniqueness result for the CAE

Below are a few extra lemmas regarding the CAE. These serve as intermediate results
helpful to the results above.

Lemma A.4. Consider any price and capital allocation functions (qσ, κσ) from a CAE with
σ > 0 and κ(0) = 0. Then, provided σ is small enough, we have that 0 < Fσ(η, qσ(η)) < ∞ on
{η : κσ < 1} ∪ {0}.
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Proof of Lemma A.4. To economize on notation, drop the σ subscripts and let (q, κ)

denote the CAE solution we are talking about. We will make their dependence on σ

clear when necessary. Our goal is to show that 0 < q′ < ∞ whenever κ < 1.

Step 1: κ < 1 for all η close enough to zero. Suppose, leading to contradiction, that κ = 1
for all η small. If κ = 1, then (PO) gives q(η) = ae/ρ̄(η), implying from (A.14) that
σ + σq = 1

1+(1−η)(ρe−ρh)
σ > 0. Plugging this result into (A.9) along with the guess κ = 1,

we see that (A.9) is violated for all η close enough to zero. Hence, the set {η : κ(η) < 1}
is non-empty, and in particular η∗ := inf{η : κ(η) < 1} > 0.

Step 2: 0 < q′ < ∞ holds for all η close enough to zero. By Step 1, we have that equation
(A.17) holds for all η small enough. (This equation will be simpler to work with in this
step than the ODE (A.16), which is an implication.)

We first show that |q′(0)| < ∞. If not, then |q′(0)| = ∞. In that case, equation (PO)
implies that |κ′(0)| = ∞. Moreover, it must be that q′(0) = κ′(0) = +∞, for if these
derivatives were −∞, then κ(0) = 0 would imply that κ(η) < 0 for small enough η.
Then, using κ(0) = 0 and applying L’Hôpital’s rule to (A.17), we obtain

ae − ah
ah/ρh

= (κ′(0)− 1) lim
η→0

( σ

1− (κ − η)q′/q

)2
(A.18)

For this to hold given κ′(0) = +∞, and given the left-hand-side is finite, we must have
limη→0(κ− η) q′

q = +∞. However, this would contradict the CAE condition that σ + σq >

0, which from equation (A.14) requires (κ − η) q′
q ≤ 1.

Knowing that |q′(0)| < ∞ and |κ′(0)| < ∞, we may write (A.18) as

κ′(0) = 1 +
ρh
σ2

ae − ah
ah

By equation (PO), we have

q′(0)
q(0)

=
ae − ah

ah
− ρe − ρh

ρh
+
( ae − ah

ahσ

)2
ρh

which is positive if σ < σ† for some σ† small enough.
Given 0 < q′(0) < ∞ is finite and q′(η) is continuous for η near zero,15 we have the

existence of η† > 0 such that 0 < q′(η) < ∞ for all η ∈ [0, η†) and any σ ∈ (0, σ†).

15To see this, note that the ODE (A.16) implies continuity so long as η > 0 and κ > η. Since κ(0) = 0
and κ(0) > 1 was derived above, we clearly have κ > η for small enough η.
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Step 3: q′ > 0 holds on {η ≥ η† : κ < 1}. Whenever ODE (A.16) holds, the condition for q
being an increasing function is

q′ > 0 ⇔ σ2q[ρ̄(η)q− ηae − (1− η)ah]− η(1− η)(ae − ah)
2 < 0 (A.19)

The left-hand-side of this inequality is quadratic in q, which has one positive root

q+(η; σ) :=
1

2ρ̄(η)

[
ηae + (1− η)ah +

√
(ηae + (1− η)ah)2 + 4ρ̄(η)η(1− η)(ae − ah)2σ−2

]
Using that fact, and that q > 0, the condition q′ > 0 is equivalent to

q < q+(η; σ) (A.20)

Now, for each η > 0, define σ◦(η) by the positive solution to ae
ρ̄(η)

= q+(η; σ), which after
some algebra can be written

σ◦(η) =

√
ae − ah

ae
ρ̄(η)η. (A.21)

Note that σ◦(η) is strictly positive and increasing for all η > 0. Furthermore, by the
definition of σ◦(η), and the fact that q+(η; σ) is increasing in σ, we have that ae

ρ̄(η)
<

q+(η; σ) for all σ ∈ (0, σ◦(η)). Because of the fact that κ < 1 when the ODE is in
force, we have q < ae

ρ̄(η)
, which establishes that (A.20) holds for all σ < σ◦(η). Let

σ◦min := infη≥η† σ◦(η) = σ◦(η†) > 0, by the fact that σ◦(η) is an increasing function and
η† > 0. This establishes that (A.20) holds on {η ≥ η†}× {σ ≤ σ◦min}, or equivalently that
q′ > 0 on {η ≥ η† : κ ∈ (η, 1)}, provided σ ≤ σ◦min.

Step 4: q′ > 0 holds everywhere on {η : κ < 1}. Putting Steps 2-3 together, we may now
pick any σ < σ̄ := min(σ†, σ◦min), so that q′ > 0 everywhere on {η : κ < 1}.

Step 5: q′ < ∞ holds on {η ≥ η† : κ < 1}. This is a simple consequence of Lemma A.3,
which shows that κ > η whenever ODE (A.16) holds.

Lemma A.5. Consider any price function qσ from a CAE with σ > 0 and κ(0) = 0. Then,
provided σ is small enough, and q is close enough to qσ(η), we have that ∂qFσ(η, q) < 0.

Proof of Lemma A.5. Note that qσ solves the ODE (A.16). Implicitly, we are assuming
q is close enough to qσ(η) in every subsequent step. First, differentiate Fσ(η, q) with
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respect to q:

∂

∂q
Fσ(η, q) =

( ae − ah
ρ̄(η)q− ā(η)

− (ae − ah)qρ̄(η)

(ρ̄(η)q− ā(η))2

)[
1− σ

√
(ρ̄(η)q− ā(η))q

η(1− η)(ae − ah)2

]
− σ

2
2ρ̄(η)q− ā(η)

η(1− η)(ae − ah)2
(ae − ah)q

ρ̄(η)q− ā(η)

√
η(1− η)(ae − ah)2

(ρ̄(η)q− ā(η))q

< − ae − ah
ρ̄(η)q− ā(η)

ā(η)
ρ̄(η)q− ā(η)

[
1− σ

√
(ρ̄(η)q− ā(η))q

η(1− η)(ae − ah)2

]
,

where ā(η) := ηae + (1− η)ah is defined to save space. The inequality on the third line
holds because ρ̄qσ − ā > 0 (by κσ > η) so that the term on the second line is negative. By
Lemma A.4, we have Fσ(η, qσ(η)) > 0 for all σ small enough. This implies the term in
square brackets is positive, and so ∂qFσ(η, q) < 0.

Lemma A.6. Consider a CAE with σ > 0 and κ(0) = 0. Then, provided σ is small enough,
there exists a threshold η∗ > 0 such that κ(η) < 1 for all η < η∗ and κ(η) = 1 for all η ≥ η∗.

Proof of Lemma A.6. Let σ > 0 be small enough. Suppose {η : κ < 1} were not a
connected set (an interval). Then, there would exist some η2 > η1 such that q(η2) <

ae/ρ̄(η2) while q(η1) = ae/ρ̄(η1). But since ρ̄(η) is an increasing function, we have

q(η2) < ae/ρ̄(η2) < ae/ρ̄(η1) = q(η1)

This implies that q′ < 0 for some η ∈ (η1, η2) ∩ {κ < 1}, which contradicts Lemma A.4
that q′ > 0 in the fire sale region. Hence, {η : κ < 1} is an interval. But we also know
from Step 1 of Lemma A.4 that (0, η∗) ⊂ {η : κ < 1} for some η∗ > 0. The only way
these facts can both be true is that {η : κ < 1} = (0, η∗).

Lemma A.7. For each σ > 0, at most one CAE exists satisfying κ(0) = 0.

Proof of Lemma A.7. Given the result of Lemma A.3, it suffices to show there is at most
one solution qσ to ODE (A.16), when augmented with the boundary condition κ(0) = 0,
since we can construct κ, σq, r, µη, and ση uniquely from qσ, via equations (PO), (A.14),
(A.10), (A.11), and (A.12), respectively.

From Lemma A.6, we have that the ODE (A.16) holds if and only if η ∈ (0, η∗) for
some endogenous threshold η∗ > 0.
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The rest is very similar to Step 3 of Proposition 1. Suppose two solutions qσ and
q̃σ solved the ODE (A.16) with boundary conditions κσ(0) = κ̃σ(0) = 0. Let η∗σ and
η̃∗σ denote the associated fire-sale thresholds (points where κσ(η) and κ̃σ(η) reach 1).
Without loss of generality, we may consider the situation q̃σ(η) > qσ(η) for all η < η◦.
The reason: if the two solutions ever crossed at some value of η◦, then they would
necessarily coincide for all η ≥ η◦. Since qσ(0) = q̃σ(0), we have

qσ(η)− q̃σ(η) =
∫ η

0

[
Fσ(x, qσ(x))− Fσ(x, q̃σ(x))

]
dx, η < η◦ (A.22)

By Lemma A.5, we have ∂qFσ(η, q) < 0 for all q near either qσ or q̃σ. Since qσ(0) = q̃σ(0),
we may take η small enough that ∂qFσ(η, q) < 0 for all q between qσ(η) and q̃σ(η).
Therefore, q̃ > q on (0, η◦) implies Fσ(x, qσ(x)) > Fσ(x, q̃σ(x)) for all x small enough,
which by equation (A.22) implies qσ(η) > q̃σ(η) for η small enough, a contradiction.

A.3 Perceived Accelerator Equilibrium (PAE)

Let us collect the relevant equilibrium equations for the PAE of Definition 4. First, since
the log utility consumption rules are unchanged, the price-output relation (PO) still
holds. Second, solving a similar portfolio choice problem as in the text, but with agents
perceiving capital evolution (26), the expert and household capital Euler equations are

ae

q
+ g + µ̃q + σσ̃q + ςς̃q − (σ + σ̃q)π − r =

qke

ne
(ς + ς̃q)

2

ah
q
+ g + µ̃q + σσ̃q + ςς̃q − (σ + σ̃q)π − r ≤ qkh

nh
(ς + ς̃q)

2

In these equations (µ̃q, σ̃q, ς̃q) represent the agents’ perceived price dynamics, which
may differ from the actual dynamics (µq, σq, ςq). Differencing these equations leads to
the risk-balance condition

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(ς + ς̃q)

2
]
. (A.23)

Summing the capital Euler equations, weighted by κ and 1− κ, respectively, leads to

r = ρ̄ + g + µ̃q + σσ̃q + ςς̃q − (σ + σ̃q)π −
(κ2

η
+

(1− κ)2

1− η

)
(ς + ς̃q)

2 (A.24)
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Applying Itô’s formula to the definition of η and using perceived net worth dynamics,
we have

µ̃η = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
(ς + ς̃q)

2 (A.25)

σ̃η = 0 (A.26)

ς̃η = (κ − η)(ς + ς̃q) (A.27)

These differ from the actual wealth share dynamics, discussed below.
At this point, we introduce the following two concepts. Let η̃ be the perceived wealth

share, and define the perceived pricing function q̃(·).16 The perceived wealth share η̃

is defined implicitly by the requirement q̃(η̃) = q, since the actual capital price q is
observable. We will now solve for the perceived pricing function q̃.

By the Itô condition, we have σ̃q = q̃′
q̃ σ̃η and ς̃q = q̃′

q̃ ς̃η. Combining this with (A.26)-
(A.27), we obtain σ̃q = 0 and

[1− (κ − η̃)q̃′/q̃]ς̃q = ς(κ − η̃)q̃′/q̃ (A.28)

By inspection, all these equations—price-output (PO), risk-balance (A.23), riskless rate
(A.24), perceived dynamics of η (A.25)-(A.27), and the perceived volatility equation
(A.28)—are identical to the CAE, but with (σ, σq) replaced by (ς, ς̃q) and with the per-
ceived pricing function q̃. Because of this property, any PAE (if it exists) must feature a
perceived pricing function q̃PAE which coincides with that of the CAE, qCAE, for ς = σ

(which by Lemma A.7 is unique for small enough σ). Therefore, q̃PAE → qBSE as ς → 0,
by identical arguments used for Proposition 2 (i.e., convergence of the pricing function).

Next, we consider the actual, as opposed to perceived, dynamics that emerge in this
equilibrium for any ς > 0. For η, use Itô’s formula on the definition of η to obtain

µη = η(1− η)(ρh − ρe) + η(1− η)
(
(

κ

η
)2 − (

1− κ

1− η
)2
)
(ς + ς̃q)

2 − (κ − η)ς2
q (A.29)

ση = 0 (A.30)

ςη = (κ − η)ςq (A.31)

16Agents’ mistaken beliefs require some measurement error in η. Indeed, if agents perceived the correct
wealth share level, η̃ = η, then by simply observing the market price of capital, they would be forced to
use the correct pricing function q̃ = q. In that case, following the subsequent algebra to its conclusion, we
would find the solution q to coincide with the CAE solution, implying ς̃q would coincide with the CAE
volatility function. On the other hand, by equation (A.32) would imply ςq = 0. In that case, it would not
be possible for beliefs to “converge to rational expectations”, since Proposition 2 implies ς̃q 6→ 0 = ςq.
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In the above, the perceived volatility ς + ς̃q appears in the drift, because this perception
determines risk premia and precautionary savings, which then translates into the actual
dynamics of η via its drift. Note that, as ς→ 0, all these expressions coincide with their
perceived counterparts if and only if ς̃q → ςq. For q, use the Itô conditions σq =

q′
q ση and

ςq =
q′
q ςη to get σq = 0 and

0 = [1− (κ − η)q′/q]ςq (A.32)

All these equations depend on the actual pricing function q and the actual volatility
ςq. One solution to (A.32) is the BSE pricing function qBSE. Another solution is the
fundamental equilibrium qFE.17 As these are independent of ς, their limiting values are
also qBSE and qFE, respectively.

The next task is to impose convergence to rational beliefs as ς → 0. This requires
the limiting pricing functions to coincide, i.e., limς→0 |q̃− q| = 0 in L1. (In that case, the
wealth share measurement error also vanishes, limς→0 η̃ = η.) Since we know from the
arguments above that limς→0 q̃PAE = qBSE, rational beliefs thus requires limς→0 qPAE =

qBSE. This selects the BSE solution to (A.32) for all ς small enough. Intuitively, if the
FE solution emerged in equilibrium, then perceptions as ς → 0 would retain a large
divergence to reality.

Finally, it is easy to show that the entire PAE converges to that of the BSE (i.e., all
the other objects besides q). We already know that ςq coincides with the BSE volatility
function for all ς small enough. As discussed above, the fact that ς̃q → ςq implies that
(µ̃η, σ̃η, ς̃η) → (µη, ση, ςη). Lastly, (r, π, κ) converge to the BSE because the equations
pinning them down are all deterministic functions of (ς, ς̃q, q, η).

17There may also be more solutions here. In the analysis of the BSE equations, we used the original
risk-balance condition, which differs from its perceived counterpart (A.23), to obtain these as the only two
solutions.
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B Stationarity of the BSE

Lemma B.1. In any BSE with ρe > ρh, the dynamics prevent η from reaching zero with proba-
bility one. Moreover, (ηt)t≥0 has a non-degenerate stationary distribution on (0, η∗], and when
ηt ∈ (η∗, 1), it follows a deterministic path towards η∗.

Proof of Lemma B.1. We consider the baseline model of Section 2.1 with boundary con-
dition κ(0) = κ0 ∈ [0, 1). As shown in Proposition 1, a BSE that is Markov in η exists
uniquely given this boundary condition. For reference, we re-state the dynamics of η in
such an equilibrium:

µη = (ρe − ρh) η +
ae − ah

q
[κ − 2κη + η2]1η<η∗ + (ρe − ρh) η2 (B.1)

ς2
η = η(1− η)(κ − η)

ae − ah
q

1η<η∗ , (B.2)

where equation (B.2) follows from ςη = (κ − η)ςq in (18) and ς2
q = η(1−η)

κ−η
ae−ah

q 1η<η∗ in
(23). We proceed in several steps, examining dynamics of η above η∗, in a neighborhood
just below η∗, and in a neighborhood just above 0.

Step 1: Dynamics for η > η∗. Equation (B.2) shows that ςη(η) = 0 for all η ≥ η∗.
Thus, η it follows a deterministic path towards η∗ if µη(η) < 0 for all η ∈ [η∗, 1).
Substituting κ = 1 into (B.1) and using ρe > ρh delivers the result immediately. Given
the deterministic transition toward η∗, we can ignore the sub-interval (η∗, 1) in our state
space and instead consider only (0, η∗).

Step 2: Setup of Feller conditions. In general, consider a one-dimensional process (Xt)t≥0

with dXt = µx(Xt)dt + σx(Xt)dZt that is a regular diffusion on interval (e1, e2) ⊂ R

(i.e., the dynamics of X depend only on X itself, and imply that it reaches every point
in (e1, e2) with positive probability). Our process (ηt)t≥0 satisfies these conditions for
e1 = 0 and e2 = η∗.

In such case, we may apply Feller’s boundary classification to decide whether bound-
aries e1 and e2 are inaccessible (avoided forever with probability 1) or accessible. To do
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so, let ε and x0 be arbitrary numbers within interval (e1, e2). Define s(y) := exp(−
∫ y

x0

2µx(u)
σ2

x (u)
du)

and m(x) := 2
s(x)σ2

x (x)
. Boundary e1 is inaccessible if and only if

I1 :=
∫ ε

e1

m(x)
( ∫ x

e1

s(y)dy
)

dx = +∞.

Boundary e2 is accessible if and only if

I2 :=
∫ e2

ε
m(x)

( ∫ e2

x
s(y)dy

)
dx < +∞.

We will prove these results in the next two steps.

Step 3: Dynamics near e2 = η∗. Compute

µη(η
∗−) = −η∗(1− η∗)(ρe − ρh) + (1− η∗)ρ̄(η∗)

ae − ah
ae

ς2
η(η
∗−) = η∗(1− η∗)2ρ̄(η∗)

ae − ah
ae

.

Since ς2
η(η
∗−) is bounded away from zero and µη(η∗−) is finite, it is easy to check that

I2 < +∞, meaning e2 = η∗ is an accessible boundary that is hit in finite time with
positive probability. Furthermore, we may also show

J2 :=
∫ e2

ε
m(x)

( ∫ x

ε
s(y)dy

)
dx < +∞,

which implies e2 = η∗ is a so-called “regular boundary” that must be included in the
state space. (A regular boundary is a boundary that can be reached in finite time with
positive probability.)

We must establish what occurs when ηt hits boundary point e2 = η∗. Recall from
step 1 that µη(η) < 0 and ςη(η) = 0 for all η ≥ η∗. This implies that ηt can never enter
the region (η∗, 1) from η∗ and that ηt will not stay at point η∗ for an infinite amount of
time. Consequently, the region (0, η∗] is the ergodic set.

Step 4a: General analysis of dynamics near e1 = 0. First, suppose our diffusion satisfied the
following near e1 = 0 (the notation f (x) ∼ g(x) means limx→0 f (x)/g(x) = 1):

σ2
x(x) ∼ φxβ φ > 0, β ≥ 0

µx(x)
σ2

x(x)
∼ θx−α, α ≥ 1, θ > 0.

45



As we will show below in step 4b, this asymptotic description is flexible enough to cover
all cases within our model.

If α = 1, we have, for x sufficiently small,

S1(x, θ) :=
∫ x

0

s(y)
s(x)

dy =
∫ x

0
exp

[
2θ(log(x)− log(y))

]
dy (B.3)

= x2θ lim
z↓0

x1−2θ − z1−2θ

1− 2θ
,

so letting ε be sufficiently small, we obtain

I1 =
∫ ε

0

2x2θ−β

φ
lim
z↓0

x1−2θ − z1−2θ

1− 2θ
dx.

If 2θ ≥ 1 (note that 2θ = 1 corresponds to z1−2θ

1−2θ being replaced by log(z) in the expression
above), then the interior limit is +∞ for all x > 0 and therefore I1 = +∞. This holds
independently of the value of β. If 2θ < 1, then

I1 =
∫ ε

0

2
(1− 2θ)φ

x1−βdx =
2

(1− 2θ)φ

( ε2−β

2− β
− lim

x↓0

x2−β

2− β

)
.

So, in this case, I1 = +∞ only if β ≥ 2 (for β = 2, x2−β

2−β is replaced by log(x)).
If α > 1 instead, we will show that I1 = +∞ independent of any other parameters.

We have

Sα(x, θ) :=
∫ x

0

s(y)
s(x)

dy =
∫ x

0
exp

[ 2θ

1− α
(x1−α − y1−α)

]
dy (B.4)

The corresponding expression for the case with α = 1 is S1(x, θ) in (B.3). We showed
above that for τ > 1/2, we have S1(x, τ) = +∞. Fix such a τ. We now show that
Sα(x, θ) ≥ S1(x, τ) for all x sufficiently small and all θ.

Fix any x > 0, and define f (y) := 2τ(log(x) − log(y)) and g(y) := 2θ
1−α (x1−α −

y1−α). Since both functions are strictly positive for y < x, and since limy→0 g(y)/ f (y) =
limy→0(θ/τ)y1−α = +∞, there exists ȳ ∈ (0, x) such that g(y) > f (y) for all y ∈ (0, ȳ).
From this comparison, we conclude Sα(ȳ, θ) =

∫ ȳ
0 exp(g(y))dy ≥

∫ ȳ
0 exp( f (y))dy =

S1(ȳ, τ) = +∞. Since this argument is independent of (β, θ, φ), this proves that I1 = +∞
if α > 1.

Step 4b: Model-specific analysis of dynamics near e1 = 0. Now, we map our model dynamics
into the setup of step 4a. If κ(0) = κ0 > 0, then in the limit as η → 0, equations (B.1)-(B.2)
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become

µη =
ae − ah

q(0)
κ0 −

(
ρe − ρh + 2

ae − ah
q(0)

κ0

)
η + o(η)

σ2
η =

ae − ah
q(0)

κ0η + o(η).

Hence, in terms of the notation in step 4a, we have α = 1, β = 1 and θ = 1 > 1
2 . Thus, η

avoids zero with probability one.
If κ(0) = 0, we need to know the rate at which κ → 0 as η → 0. Guess, and verify

after, that κ = ϕηω + o(ηω) in the limit as η → 0. Differentiating the price-output
condition (PO), we have

q′ =
1
ρ̄

[
(ae − ah)κ

′ − (ρe − ρh)q
]

Combining this with the sunspot differential equation for q, equation (21), we obtain

[
(ae − ah)κ

′ − (ρe − ρh)q
]
(κ − η) = ρ̄q.

Taking the limit as η → 0, we have

(ae − ah) lim
η→0

(κ′)(κ − η) = ah

Hence, the guess is verified if ω = 1/2 and ϕ2 = 2ah/(ae − ah) > 0. Substituting this
asymptotic behavior into equations (B.1)-(B.2), we have

µη =

√
2(ae − ah)

ah
ρhη1/2 + o(η1/2)

σ2
η =

√
2(ae − ah)

ah
ρhη3/2 + o(η3/2).

These dynamics match step 4a with α = 1, β = 3/2, and θ = 1. In that case, we have
shown that η cannot reach zero with probability one.

In summary, (ηt)t≥0 possesses a non-degenerate stationary distribution with support
(0, η∗], the boundary {0} is inaccessible, and the boundary η∗ is accessible but non-
absorbing.
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C Multiplicity in the conventional financial accelerator

This section investigates properties of conventional equilibria where sunspot shocks dZ
are irrelevant but fundamental shocks σdW are non-hedgeable (with σ > 0). This is the
setting studied in Brunnermeier and Sannikov (2014), and its equations are contained in
Appendix A.1. We illustrate novel multiplicity along two dimensions: the sign of the
sensitivity of capital returns to fundamental shocks σ + σq, and agents’ belief about the
worst-case scenario κ0 := κ(0).

The indeterminacy in the sign of σ + σq relates to the conjecture in footnote 16 in
Kiyotaki and Moore (1997): one type of equilibrium is the “normal equilibrium” studied
by the literature in which negative shocks reduce asset prices, while the second type
of equilibrium is a “hedging equilibrium” in which, due to coordinated capital pur-
chases/sales, asset prices and output respond oppositely to shocks. The presence of this
indeterminacy is why the definition of Conventional Accelerator Equilibria (CAE), i.e.,
Definition 3, restricts attention to σ + σq > 0.

The second indeterminacy, regarding the disaster belief κ0, is similar in spirit to the
disaster belief indeterminacy documented in Section 2.3 for the BSEs. As a result of this
indeterminacy, the convergence results in Propositions 2-3 made the assumption that
κ0 = 0.

We conclude this section with a simple refinement, based on a vanishingly-small
limited commitment friction, that selects κ0 = 0 as the only possible disaster belief that
could be associated with an equilibrium. This refinement result implies that κ0 = 0 is
natural assumption.

Because we will make repeated references to them, let us restate the two key equa-
tions of the conventional equilibrium, which are equations (PO) in the main text and
equations (A.9) and (A.14) in Appendix A.1 (with ςq = 0 due to Lemma A.2). These are

qρ̄ = κae + (1− κ)ah (C.1)

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(σ + σq)

2
]

(C.2)

σq =
(κ − η)q′/q

1− (κ − η)q′/q
σ (C.3)

This is system of three equations in the three objects (q, κ, σq), and so it can be solved in
some sense separately from the equations characterizing (r, µη, ση).
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C.1 The “hedging” equilibrium

Conventional Accelerator Equilibria are “normal” in the sense that a positive fundamen-
tal shock increases asset prices and experts’ wealth share. But technically, agents do not
care about the direction prices move when they make their portfolio choices. They only
care about risk which is measured in return variance; this can be seen in the optimality
condition (A.9) where (σ + σq)2 appears. This suggests that two types of equilibria are
possible: the “normal” one has σ + σq > 0; an alternative equilibrium has σ + σq < 0.
Because σ > 0, this means the alternative equilibrium must counter-intuitively have
σq < 0 We term this latter equilibrium the “hedging” equilibrium because asset price
movements move oppositely to exogenous shocks.

Mathematically, we need only solve a slightly different capital price ODE. Whereas
ODE (A.16) holds in the normal equilibrium, the hedging equilibrium requires

q′ =
(ae − ah)q

ρ̄q− ηae − (1− η)ah

[
1 + σ

√
(ρ̄q− ηae − (1− η)ah)q

η(1− η)(ae − ah)2

]
, (C.4)

on {η : η < κ(η) < 1}. The difference between (C.4) and (A.16) is merely the sign in
front of σ, which ensures different signs for σq in the region when κ < 1. While we
don’t provide an existence proof, Figure C.1 displays a numerical example of a hedging
equilibrium and compares it to a normal equilibrium. Notice that σq < 0 as claimed.

Figure C.1: Two equilibria (normal versus hedging) both with boundary condition κ(0) = 0. Parameters:
ρe = 0.06, ρh = 0.04, ae = 0.11, ah = 0.03, σ = 0.025.
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C.2 “Disaster belief” indeterminacy

The existing literature always imposes κ(0) := limη→0 κ(η) = 0, i.e., experts fully
deleverage as their wealth vanishes. We have already shown that this boundary condi-
tion is indeterminate in BSEs. Here, we show the same is true for conventional equilibria.

Let κ0 ∈ [0, 1) and suppose κ(0) = κ0. As in Section 2.3 for BSEs, we will call κ0 the
disaster belief about experts’ deleveraging. Existence of an equilibrium with such disaster
belief boils down simply to existence of a solution to a first-order ODE with a given
boundary condition κ(0) = κ0.

Lemma C.1. Let σ > 0, and suppose fundamental shocks are non-hedgeable. An equilibrium
with disaster belief κ0 ∈ [0, 1) exists if the free boundary problem

q′ =
(ae − ah)q

ρ̄q− ηae − (1− η)ah

[
1− σ

√
(ρ̄q− ηae − (1− η)ah)q

η(1− η)(ae − ah)2

]
, on η ∈ (0, η∗), (C.5)

subject to q(0) =
κ0ae + (1− κ0)ah

ρh
and q(η∗) =

ae

ρ̄(η∗)
, (C.6)

has a solution. In this equilibrium, (ηt)t≥0 is strictly positive with probability 1.

Proof of Lemma C.1. An equilibrium in state variable η exists if and only if equations
(C.1)-(C.3) hold, and if the time-paths (ηt)t≥0 induced by dynamics (ση, µη) avoid η = 0
almost-surely. We will demonstrate these conditions.

Suppose (C.5)-(C.6) has a solution (q, η∗) corresponding to κ0 ∈ [0, 1). If there are
multiple solutions, we pick the one such that q(η) < ae/ρ̄(η) for all η ∈ (0, η∗), which
is always possible because the boundary conditions (C.6) imply ρ̄(0)q(0) < ρ̄(η∗)q(η∗).
Set q(η) = ae/ρ̄(η) for all η ≥ η∗. Define κ = ρ̄q−ah

ae−ah
. Note that (C.1) is automatically

satisfied. Note that (C.3) is also satisfied automatically, by applying Itô’s formula to the
solution q(η) and using ση = (κ − η)(σ + σq).

We show (C.2) holds separately on (0, η∗) and [η∗, 1). For η < η∗, we just plug (C.1)
and (C.3) into the ODE (C.5) and rearrange, which shows that the second term of (C.2)
equals zero. Since η < η∗ corresponds to κ < 1, this proves that (C.2) holds on (0, η∗).

On the set [η∗, 1), we have κ = 1, so (C.2) requires

η
ae − ah

q
≥ (σ + σq)

2 for all η ≥ η∗. (C.7)

First, we show that it suffices to verify this condition exactly at η∗. Indeed, on (η∗, 1),
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we have κ = 1 and q = ae/ρ̄. Substituting these and (C.3) into (C.7), we obtain

(C.7) holds ⇔
( ae − ah

aeσ2 ρe −
ρe − ρh

ρe

)
η ≥ ρh

ρe
for all η ≥ η∗.

But since the left-hand-side is increasing in η, if it holds at η = η∗, it holds for all η > η∗.
Now, writing (C.7) at η∗, using (C.3) to replace σ + σq(η∗+) = σ

1−(1−η∗)q′(η∗+)/q(η∗) ,

and using ODE (C.5) to replace η∗ ae−ah
q(η∗) = σ

1−(1−η∗)q′(η∗−)/q(η∗) , we need to verify

(C.7) holds ⇔ σ

1− (1− η∗)q′(η∗−)/q(η∗)
≥ σ

1− (1− η)q′(η∗+)/q(η∗)
⇔ q′(η∗−) ≥ q′(η∗+).

But we clearly have q′(η∗−) ≥ q′(η∗+) by the simple fact that q < ae/ρ̄ for η < η∗ and
q = ae/ρ̄ for η ≥ η∗.

Finally, it remains to very that ηt almost-surely never reaches the boundary 0. Near
η = 0, the dynamics in (A.11)-(A.12) become

µη(η) = κ0
ae − ah

q(0)
+ o(η)

σ2
η(η) = κ0

ae − ah
q(0)

η + o(η).

By the same analysis as in Lemma B.1, the boundary 0 is unattainable.

What happens in an equilibrium of Lemma C.1 in which κ0 > 0? Behavior at the
boundary η = 0 is substantially different than the κ0 = 0 case, because equation (C.2)
can only hold there if σq → −σ as η → 0. Capital prices “hedge” fundamental shocks
to capital, in a brief region of the state space (0, ηhedge). Said differently, given the
formula (C.3), the fact that σq(0+) = −σ implies q′(0+) = −∞, so that prices rise as
experts lose wealth in a region of the state space. The hedging region is exactly what
incentivizes experts to take so much leverage (indeed, expert leverage κ/η blows up near
0). For η > ηhedge, this behavior reverses, and the equilibrium behaves very much like
the equilibrium with κ0 = 0. Overall, there is no inconsistency with equilibrium even
though q′ < 0 in the region (0, ηhedge).18

18One may think that q′(0+) = −∞, and more generally that q′ < 0 in some region of the state space,
could imply that κ hits η at some point. However, this cannot happen. Indeed, since κ0 > 0, we have
that q(0+) > q̃(0+), where q̃(η) := ((ae − ah)η + ah)/ρ̄ is the price function consistent with κ = η. Now,
assume there is an η̂ ∈ (0, 1) such that κ(η̂) = η̂ (or equivalently, q(η̂) = q̃(η̂)). If there is more than one,
consider the minimum among them, so q(η) > q̃(η) for all η ∈ (0, η̂). From the q̃(η) definition, we have
q̃′(η) = (ae − ah)/ρ̄− ((ae − ah)η̂ + ah)(ρe − ρh)/ρ̄2 < ∞, while from (C.5) it must be that q′(η̂−) → ∞.
But this implies that q crosses q̃ from below, contradicting q(η) > q̃(η) on η ∈ (0, η̂).
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Figure C.2 displays several numerical examples of equilibria with different choices
of κ0 > 0. The solid black lines, which are equilibrium outcomes with κ0 = 0.001, cor-
responds approximately to the equilibrium choice made by Brunnermeier and Sannikov
(2014). The other curves, with higher disaster beliefs κ0, are new to the literature. More
optimistic disaster beliefs raise capital prices and reduce capital price volatility. In fact,
although there is exogenous fundamental risk, agents can coordinate on κ0 sufficiently
high, such that the equilibrium behaves arbitrarily closely to an efficient equilibrium
with κ almost always equal to 1.

Figure C.2: Conventional equilibria with different disaster beliefs κ0. Parameters: ρe = 0.06, ρh = 0.04,
ae = 0.11, ah = 0.03, σ = 0.025.

C.3 Limited commitment as a refinement

Here, we add a limited commitment friction, in the spirit of Gertler and Kiyotaki (2010).
This extension will serve as a refinement that prunes all possible disaster beliefs κ0, with
the exception of κ0 = 0.

Suppose capital holders can abscond with a fraction β−1 ∈ (0, 1) of their assets and
renege on repayment of their short-term bonds. After doing this diversion, the capital
holder would have net worth ñj,t := β−1qtk j,t. To prevent diversion, bondholders will
impose some limitation on borrowing. To see this, note that diversion delivers utility
log(ñj,t) + ξt, where ξt is an aggregate process (independent of the identity j of the
diverter). This is the form of indirect utility for a log utility investor in our model, as
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shown at the beginning of Appendix A. For diversion to be sub-optimal, it must be the
case that log(ñj,t) + ξt ≤ log(nj,t) + ξt. As a result, bondholders impose the following
leverage constraint to ensure non-diversion is incentive compatible:

qtk j,t

nj,t
≤ β. (C.8)

We will study the equilibrium with constraint (C.8) additionally imposed, and then we
will take β→ ∞ so that the limited commitment friction is vanishingly small.

Risk-balance condition (C.2) is now replaced by

0 = min
[
1− κ, βη − κ,

ae − ah
q
− κ − η

η(1− η)
(σ + σq)

2
]
. (C.9)

The most important feature of equation (C.9) is that leverage constrained experts (βη =

κ) must hold less than the full capital stock (κ < 1).
Condition (C.9) implies that there exists a threshold η

β
κ0 := inf{η : βη > κ}, possibly

dependent on the disaster belief κ0, below which experts’ leverage constraints bind. By
combining βη = κ with equation (C.1) for κ, we obtain an explicit formula for the capital
price in this region:

q = qβ :=
βηae + (1− βη)ah

ρ̄
, if η ≤ η

β
κ0 . (C.10)

In addition, the expression for qβ in (C.10) serves as an upper bound for the capital price,
because q > qβ would violate the leverage constraint.

Leverage constraint β and disaster belief κ0, we define a Leverage-constrained Accel-
erator Equilibrium LAE(κ0, β) as a Markov equilibrium satisfying the conditions above
and κ(0) = κ0. For comparison, we denote by CAE(κ0) the Conventional Accelerator
Equilibrium with disaster belief κ0 (as in Figure C.2).

We construct a candidate LAE(κ0, β) as follows. Let qCAE(κ0) be the capital price from
the CAE(κ0). By the leverage constraint (C.8), or equivalently q ≤ qβ, we consider a
candidate capital price

q̂β,κ0 := min[qβ, qCAE(κ0)]. (C.11)

So long as qCAE(κ0) is unique, (C.11) is the unique pricing function which could satisfy
the additional requirements imposed by the leverage constraint. Furthermore, q̂β,κ0 au-
tomatically satisfies all the relevant equations, with the exception of (C.9): it remains to
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verify that ae−ah
q ≥ κ−η

η(1−η)
(σ+ σq)2 when the leverage constraint binds (i.e., this condition

says that experts would like to buy more capital than their leverage constraint allows).
In particular, after substituting σ + σq from (C.3) and q = qβ, it remains to verify that

ae − ah
qβ

[
1− (β− 1)η

q′β
qβ

]2
≥ (β− 1)σ2

1− η
on {η : qβ < qCAE(κ0)}. (C.12)

If (C.12) holds, then q̂β,κ0 is the LAE(κ0, β) pricing function. Otherwise, there cannot be
any LAE(κ0, β).

The non-existence of an LAE(κ0, β) is precisely how the equilibrium refinement will
work here. We specifically show that, for any κ0 > 0, there exists a β large enough so
that (C.12) fails. By contrast, if κ0 = 0, then (C.12) holds for all β large enough.

Before delving into the formal proof of these claims, we provide an illustration in
Figure C.3 to understand the idea. The figure shows that qCAE(κ0) > qβ for all η < η

β
κ0 ;

in other words, the CAE would violate the leverage constraint for all low enough values
of η. However, there is another threshold η̂β as well, defined as the smallest η such that
(C.12) is violated:

η̂β := inf
{

η ≥ 0 :
ae − ah

qβ

[
1− (β− 1)η

q′β
qβ

]2
<

(β− 1)σ2

1− η

}
. (C.13)

If η̂β < η
β
κ0 , then there cannot be an equilibrium, because the candidate pricing function

q̂β,κ0 violates (C.12) for at least some values of η in the region (η̂β, η
β
κ0). In Figure C.3,

this describes the situation. A valid equilibrium, instead, requires that η̂β ≥ η
β
κ0 .

The task for the proof is to take the limit as β → ∞, so that the limited-commitment
problem vanishes. A priori, it is not obvious that this helps refine equilibria. Indeed, the
leverage constraint becomes non-binding at all times (formally η

β
κ0 → 0).19 This means

that the condition (C.12) needs to be checked on a vanishing set of η values, suggesting
non-existence issues could vanish for any κ0. It turns out, however, that η̂β → 0 faster
than η

β
κ0 → 0, so that non-existence persists for every κ0 except κ0 = 0.

Proposition C.1. If β is sufficiently large, the unique Leverage-constrained Accelerator Equilib-
rium is LAE(0, β). Thus, as β→ ∞, the unique equilibrium converges to CAE(0).

19This intuitive property can be shown easily by taking β→ ∞ in (C.10). For any fixed η ∈ (0, 1), taking
this limit implies q→ ∞, which is ruled out by price-output relation (C.1).
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Figure C.3: A comparison of a candidate Leverage-constrained Accelerator Equilibrium LAE(κ0, β) against
a Conventional Accelerator Equilibrium CAE(κ0). Parameters: ρe = 0.06, ρh = 0.04, ae = 0.11, ah = 0.03,
σ = 0.05, β = 5. The disaster belief is set to κ0 = 0.3.

Proof of Proposition C.1. For reference, differentiate qβ and record the result:

q′β(η)

qβ(η)
= −ρe − ρh

ρ̄(η)
+

β(ae − ah)

ah + βη(ae − ah)

First, fix κ0 > 0. We will show that η̂β < η
β
κ0 for all β large enough. Indeed, η

β
κ0 > 0

for any β < ∞. This follows from the fact that qβ(0) =
ah
ρh

< κ0ae+(1−κ0)ah
ρh

= qCAE(κ0)(0)

and that q′β(η) is finite for all β < ∞ and all η ∈ [0, 1]. Hence, η
β
κ0 = inf{η : qβ >

qCAE(κ0)} > 0. On the other hand, η̂β = 0 for all β large enough. To see this, use again
that q′β(η) is finite, and then take η → 0 in (C.12) to get 1− (β− 1)ηq′β/qβ → 1, so that

lim
η→0

ae − ah
qβ

[
1− (β− 1)η

q′β
qβ

]2
< lim

η→0

(β− 1)σ2

1− η
⇐⇒ β > 1 + ρh

ae − ah
ahσ2 .

This proves that κ0 > 0 cannot be consistent with an equilibrium with leverage constraint
β, for all β large enough.

Next, we prove that κ0 = 0 remains an equilibrium for all β large enough. Indeed,
refer to Step 2 of the proof of Lemma A.4, which shows that for κ0 = 0,

q′CAE(0)(0)

qCAE(0)(0)
=

ae − ah
ah

− ρe − ρh
ρh

+
( ae − ah

ahσ

)2
ρh,
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which is finite. By contrast, q′β(η) → +∞ as β → +∞, for all η ∈ [0, 1]. Since qβ(0) =

qCAE(0)(0) = ah/ρh, we have that for all β large enough, it holds that qβ(η) > qCAE(0)(η)

for all η > 0. Thus, η
β
0 = inf{η : qβ > qCAE(0)} = 0 for all β large enough. This is thus a

valid equilibrium, which completes the proof.

Remark C.1. Notice that this limited commitment refinement does not work without fundamen-
tal volatility (i.e., σ = 0). In other words, the same argument cannot be applied directly to
the BSEs to select κ0 = 0. Indeed, when σ = 0, inequality (C.12) holds trivially for every β,
implying that experts are happy to be leverage constrained and that there is no contradiction to
equilibrium. Intuitively, agents may coordinate on σq = 0 when the leverage constraint binds,
precisely because σ = 0, and therefore capital is effectively risk-free in that region.

D General CRRA preferences

We modify the model by generalizing preferences to the CRRA type. In particular,
we replace the log(c) term in utility specification (3) with the flow consumption utility
c1−γ/(1− γ). We impose no fundamental volatility, σ = 0, to simplify the expressions.

Equilibrium. The key equation (21) still holds, repeated here for convenience, but in
terms of ςη rather than ςq:

[
1− (κ − η)

q′

q

]
ςη = 0. (D.1)

The sunspot equilibrium is associated with the term in brackets being equal to zero.
Unlike with logarithmic preferences, this condition does not pin down q(η) function,
because we can no longer write κ(q, η) from the goods market clearing condition: the
consumption to wealth ratio is not constant anymore, and depends on agents’ value
functions.

The value function can be written as Vi = vi(η)K1−γ/(1− γ) where vi(η) is deter-
mined in equilibrium. Then, consumption is ci/ni = (ηiq)1/γ−1/v1/γ

i where ηi corre-
sponds to the wealth share of sector i. Then, goods market clearing becomes

q1/γ
[( η

ve

)1/γ
+
(1− η

vh

)1/γ]
= (ae − ah)κ + ah. (D.2)
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Optimal portfolio decisions imply that

0 = min
[
1− κ,

ae − ah
q
−
(v′h

vh
− v′e

ve
+

1
η(1− η)

)
(κ − η)ς2

q

]
. (D.3)

The HJB equation for i ∈ {e, h} has the familiar form ρiVi = u(c) + E[ dVi
dt ], which be-

comes

ρi =
(ηiq)1/γ−1

v1/γ
i

+
v′i
vi

µη +
1
2

v′′i
vi

ς2
η + (1− γ)g. (D.4)

The dynamics of η satisfy

ςη = (κ − η)ςq (D.5)

µη = η(1− η)
(

πe
κ

η
ςq − πh

1− κ

1− η
ςq +

ch
nh
− ce

ne

)
− ςηςq (D.6)

and agent-specific risk prices satisfy

πe = −
v′e
ve

ςη +
ςη

η
+ ςq (D.7)

πh = −
v′h
vh

ςη −
ςη

1− η
+ ςq. (D.8)

A Markov equilibrium is a set of prices {q, σq, πe, πh}, allocation {κ}, value functions
{vh, ve} and aggregate state dynamics {ςη, µη} that solve the system (D.1)-(D.8).

The Fundamental Equilibrium corresponds to the solution for (D.1) where ςη = 0,
which implies deterministic economic dynamics. Then, the capital price has no volatility
(ςq = 0), risk prices are zero (πe = πh = 0), and experts hold the entire capital stock
(κ = 1). The capital price is then solved from (D.2), and the value functions satisfy

ρi =
(ηiq)1/γ−1

v1/γ
i

+
v′i
vi

η(1− η)

(
ch
nh
− ce

ne

)
︸ ︷︷ ︸

=µη

+(1− γ)g.

Conversely, the sunspot equilibrium corresponds to the solution for (D.1) with q′
q =

(κ − η)−1 (and potentially ςη 6= 0).

Disaster belief. With logarithmic preferences, we proved that any sunspot equilibrium
must satisfy ςq(0) = 0. This allowed us, in Section 2.3, to construct sunspot equilibria
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with κ(0) = κ0 for any κ0 ∈ [0, 1). With CRRA preferences, we attempt to construct the
same class of equilibria, with ςq(0) = 0 and κ0 ∈ [0, 1).

In order to have a non-degenerate stationary distribution, we have the following
requirements. Since ςη(0) = κ0ςq(0) = 0, the state variable avoids the boundary {0} if
µη(0) > 0. Using (D.3) for κ < 1, we have20

ae − ah
q(0)

= (πe(0)− πh(0))ςq(0)

which allows us to show that21

µη(0) = κ0
ae − ah

q(0)
> 0.

In addition, we need µη(η∗+) < 0 where η∗ := inf{η : κ(η) = 1}. This requirement
should be satisfied for ρe − ρh sufficiently large.

Numerical solution. We do not provide an existence proof but construct numerical
examples. For numerical stability, the examples are constructed for κ0 > 0, which keeps
q′(0) = q(0)/κ0 bounded.22

The numerical strategy is the following. Construct a grid {η1, . . . , ηN} with limit
points arbitrarily close to but bounded away from zero and one. Conjecture value func-
tions vh(η) and ve(η). Impose κ(η1) = κ0 and use (D.2) to solve for q(η1). At each interior
grid point, use q′ = q/(κ − η) and (D.2) to solve for κ(η) and q(η) until κ(η∗) = 1. In
this region, recover ςq from (D.3). For η ∈ (η∗, 1] impose κ(η) = 1 and ςq = 0, and solve
capital price from (D.2). The rest of equilibrium objects are calculated directly from the
system above. The guesses of the value functions are updated by augmenting the HJBs
(D.4) with a time derivative and moving a small time-step backward, as in Brunnermeier
and Sannikov (2016). The procedure terminates when the value functions converge to
time-independent functions.

In Figure D.1, we plot the equilibrium objects as functions of η, for different levels of
risk aversion γ. In Figure D.2, we make the same plots, for different levels of the disaster
belief κ0. Higher risk aversion (higher γ) or more pessimism about disasters (lower κ0)
generates sunspot equilibria featuring lower capital prices and higher volatility.

20Note that this implies πe(0)− πh(0) diverges.
21This expression also assumes that πh(0) remains bounded. This is a mild assumption that is always

confirmed numerically when we solve for the value functions.
22With logarithmic utility, we obtain a limiting result in Proposition 1, that as κ0 → 0, the equilibrium

converges to the BSE with κ(0) = 0. With CRRA, we do not prove such a result analytically, but we do
observe numerically what looks like convergence as κ0 becomes small.
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Figure D.1: Sunspot equilibrium for different risk aversion γ. The disaster belief is set to κ0 = 0.001. Other
parameters: ae = 0.11, ah = 0.03, ρe = 0.06, ρh = 0.05, g = 0.02.

Figure D.2: Sunspot equilibrium for different disaster beliefs κ0. Risk aversion is set to γ = 2. Other
parameters: ae = 0.11, ah = 0.03, ρe = 0.06, ρh = 0.05, g = 0.02.
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E More details on the Poisson Sunspot Equilibrium (PSE)

This appendix contains some additional details and derivations for the Poisson jump
setup of Section 4.

Optimal portfolios. The derivation of the portfolio choice formulas is straightforward
but tedious. Heuristically, proceed as follows. Note that the return-on-capital for an
agent with productivity a is given by

dR =
a
q
+

d(qk)
qk

= (
a
q
+ g + µq)dt +

q̂k̂− qk
qk

dJ

= (
a
q
+ g + µq)︸ ︷︷ ︸

:=µR

dt− (ζ + ζq − ζζq)dJ,

where variables with hats, e.g., “x̂”, denote post-jump levels. The net worth evolution,
and net worth jump, of any agent is

dn = (nr− c)dt + qk(dR− rdt)

n̂/n = 1− qk
n
(ζ + ζq − ζζq)

Using these, we may derive the following HJB equation for an agent’s value function V,
which is a function of individual net worth n and the aggregate wealth distribution η:

ρV = max
c,k≥0

log(c) + (nr− c + qkµR)∂nV + µη∂ηV + λ(V̂ −V)

(This step is dramatically simplified by the fact that post-jump values like V̂ are known
ex-ante.) We can guess and verify that V(n, η) = ρ−1 log(n) + ξ(η) for some function ξ

which is type-specific but independent of individual wealth. Plug this guess into the HJB
equation, take the FOC with respect to consumption to obtain the familiar rule c = ρn,
and plug everything back in to obtain:

ρξ = max
k≥0

log(ρ) + ρ−1(r− ρ) + ρ−1 qk
n
(µR − r) + λρ−1 log

(
1− qk

n
(ζ + ζq − ζζq)

)
+ µη∂ηξ + λ(ξ̂ − ξ)

From here, we take the FOC with respect to qk/n, subject to k ≥ 0, to obtain the Euler
equations in the text. Then, we can either plug qk/n back into the HJB, or we can
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simply note that all experts/households choose the same and substitute qke/ne = κ/η

and qkh/nh = (1− κ)/(1− η). As a final point, note that we need to verify our guess
for the value function, which amounts to verifying that a pair of functions ξe, ξh (one for
experts, one for households) exists satisfying the coupled equation system above. We
assume the existence of such solutions without proof.

Some other equilibrium objects. The full set of endogenous objects in the jump model
is (q, κ, ζR, ζq, ζη, r, µη), which is 7 functions of η (given a Markov equilibrium). In the
text, equations (27)-(28)-(29) and (RBJ) are 4 of equations needed. We can complete the
set of equations for the other equilibrium objects similarly to before. The goods market
clearing condition yields the same price-output relation (PO) as before, since optimal
consumption rules are still c = ρn,

ρ̄q = κae + (1− κ)ah.

The riskless rate is given by taking a (κ, 1− κ)-weighted sum of the two agents’ Euler
equations, to get

r =
κae + (1− κ)ah

q
+ g + µq − λζR

( κ

1− κ
η ζR

+
1− κ

1− 1−κ
1−η ζR

)
.

Finally, by applying Itô’s formula with jumps, the drift of η is obtained as

µη = η(1− η)(ρh − ρe) +
(κ − η)λζR(

1− κ
η ζR

)(
1− 1−κ

1−η ζR
)

Combining these 3 equations with the 4 equations in Section 4, we have 7 equilibrium
equations for the 7 unknown objects. Assuming that q is solely a function of η as
usual, this is sufficient to solve for an equilibrium. While we do not prove any exis-
tence/uniqueness results here, we provide a numerical algorithm below.

Numerical method. The numerical method for obtaining an equilibrium solution is
analogous to the differential equation approach in the Brownian model, but is more
cumbersome. The description of the algorithm is as follows. We solve for the function
q(η) on a grid η ∈ {0, η1, η2, . . . , ηN, 1}. The procedure starts from the boundary condi-
tion κ(0) = 0 to obtain q0 = q(0) = ah/ρh. Then, we perform a numerical search for
q1 = q(η1), requiring that the resulting post-jump values of the wealth share and capital
price (η̂1, q̂1) lie on the interpolated function {0, η1} 7→ {q0, q1}, i.e., q̂1 ≈ q(η̂1). Once
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this is approximately true, within some tolerance, we move on to the next grid-point η2

and numerically search for q2 = q(η2) such that the post-jump values (η̂2, q̂2) lie on the
interpolated function {0, η1, η2} 7→ {q0, q1, q2}. And so on.

The post-jump values (η̂n, q̂n) in each of these steps are determined as follows. First,
the risk-balance equation (RBJ) is a quadratic equation in ζR with two roots; the re-
quirement that ζR ∈ (0, 1) guides the choice of which root to pick.23 Then, given ζR,
equation (27) pins down ζq = ζR−ζ

1−ζ , hence the post-jump asset price q̂n. Similarly, given
ζR, equation (28) pins down ζη, hence the post-jump wealth share η̂n. The procedure
terminates once we reach the “efficient region” when capital is no longer misallocated:
once we reach a grid-point n∗ such that qn∗ > ae/ρ̄(ηn∗), we then set κ(ηn) = 1 and
q(ηn) = ae/ρ̄(ηn) for all n ≥ n∗.

23After rearranging the second term in the minimum of (RBJ), we obtain the following quadratic equa-
tion

0 = Aζ2
R −

κ(1− η) + η(1− κ)

η(1− η)
ζR + 1

where A :=
1

η(1− η)

(
κ(1− κ)− λq(κ − η)

ae − ah

)
This quadratic equation has two roots: ζ+R and ζ−R . It is easy to verify that ζ+R > 0 always. Indeed, if the
economy is such that A > 0, then both roots are positive. If the economy is such that A = 0, then the
unique root is positive. If the economy is such that A < 0, then the roots have opposite signs. Therefore,
we pick the larger root for ζR = ζ+R , unless it yields ζ+R ≥ 1, in which case we select the smaller root, if it
is positive. If no root is lies in (0, 1), then we update q to a new value.
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F Partial equity-issuance

We extend the model to allow some equity issuance by capital holders, subject to a
constraint. Let us consider the model with fundamental risk σ > 0 and no direct hedging
markets, in which case Lemma A.2 implies that the sunspot shock can play no role. As
before, we focus on the conventional case σ + σq > 0. Hence, the model we analyze here
is akin to the original Brunnermeier and Sannikov (2014) model but with partial equity
issuance, as analyzed in Brunnermeier and Sannikov (2016).

In particular, at any point of time, agents managing capital can issue some equity to
the market, but the issuer must keep at least χ ∈ [0, 1] fraction of their capital risk—this
is a so-called “skin-in-the-game” constraint. In other words, if experts and households
retain χe and χh of their capital risk, respectively, it must be the case that

χi,t ≥ χ, i ∈ {e, h}. (F.1)

Thus, the frictionless model corresponds to χ = 0, while our baseline model corresponds
to χ = 1. Outside equity contracts are risky, having risk exposure σ+ σq (the endogenous
capital return volatility), so they must promise an excess return (σ + σq)π, where π is
the equilibrium risk price vector.

Agents’ dynamic budget constraints are now given by

dni,t =
[
(ni,t − qtki,t)rt − ci,t + aiki,t

]
dt + d(qtki,t)

+ [xi,t − (1− χi,t)qtki,t](σ + σq,t)(πtdt + dWt). (F.2)

The second line of (F.2) contains the new terms pertaining to equity-issuance: xi,t ≥ 0
denotes purchases of equity contracts in the market, while χi,t denotes the fraction of
capital risk retained. Notice that it will be without loss of generality to assume χi,t = χ

at all times and for all agents, because the purchase variable xi,t is available as a control.
For example, an agent with a slack equity-issuance constraint (χi > χ) could issue equity
to the constraint (F.1) and then buy back such exposure by increasing their xi control.
Going forward, we thus put χe,t = χh,t = χ. The presence of a public equity market
implies an additional market clearing condition for equity securities, namely

xe,t + xh,t = (1− χ)qtKt. (F.3)

At this point, we may solve for equilibrium.
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Equilibrium characterization. The introduction of equity issuance changes nothing
about optimal consumption choices, so the price-output relation (PO) still holds.

Optimal portfolio choice now implies the following four FOCs:

µR,e − (1− χ)(σ + σq)π − r = χ
(χqke

ne
+

xe

ne

)
(σ + σq)

2 (F.4)

µR,h − (1− χ)(σ + σq)π − r ≤ χ
(χqkh

nh
+

xh
nh

)
(σ + σq)

2, with equality if kh > 0 (F.5)(χqke

ne
+

xe

ne

)
(σ + σq) ≥ π, with equality if xe > 0 (F.6)(χqkh

nh
+

xh
nh

)
(σ + σq) ≥ π, with equality if xh > 0 (F.7)

where µR,i := ai
q + g + µq + σσq is the expected return on capital for agent i. Equations

(F.4)-(F.5) are the FOCs for capital holdings, and (F.6)-(F.7) are the FOCs for equity pur-
chases. Note that the equality in (F.4) assumes ke > 0, which is must always be the case
in equilibrium because experts obtain a higher output from holding capital.

By analyzing these conditions, we are able to derive the following characterization.

Lemma F.1. The economy with constrained equity-issuance features two regions.

(i) If η > χ, then capital allocation and risk-sharing are efficient, with κ = 1, ση = 0,
σq = 0, and π = σ. The economy exits this region deterministically in finite time, since
µη = η(1− η)(ρh − ρe) < 0.

(ii) If η ≤ χ, then risk-sharing is incomplete, and efficient capital allocation may fail. The
equilibrium objects (q, κ, σq) jointly satisfy equations (PO) and

0 = min
[
1− κ,

ae − ah
q
− χ

χκ − η

η(1− η)
(σ + σq)

2
]

(F.8)

σq =
(χκ − η)q′/q

1− (χκ − η)q′/q
σ (F.9)

The dynamics of η are stochastic in this region, with ση 6= 0.

Proof of Lemma F.1. There will essentially be three regions to consider: (i) κ < 1 (cap-
ital misallocation); (ii) κ = 1 and xe = 0 (efficient capital allocation but constrained
risk-sharing); and (iii) κ = 1 and xe > 0 (efficient capital allocation and risk-sharing).

First, suppose κ < 1 (so that both ke > 0 and kh > 0). If experts are selling capital,
then they must be constrained in their hedging activities, and so xe = 0.24 Using xe = 0

24If xe > 0, then equations (F.4)-(F.7) would imply µR,e = µR,h, in contradiction to µR,e > µR,h.
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in the equity market clearing condition (F.3) implies xh
nh

= 1−χ
1−η . Substituting these results

into (F.4)-(F.5) and differencing these equations, we obtain

ae − ah
q

= χ
χκ − η

η(1− η)
(σ + σq)

2, if κ < 1. (F.10)

Next, by (F.7) and the derived expression xh
nh

= 1−χ
1−η , we have

π =
1− χκ

1− η
(σ + σq), if κ < 1. (F.11)

Using this expression for π, (F.6) requires χκ ≥ η when κ < 1, which holds automatically
by equation (F.10). In particular, κ < 1 can only arise η < χ (i.e., κ = 1 if η ≥ χ).

Now, suppose κ = 1, which has the two sub-cases xe = 0 and xe > 0. These sub-cases
correspond to η < χ and η ≥ χ, respectively. To show this, consider the two cases:

(i) If xe = 0, then market clearing (F.3) implies xh
nh

= 1−χ
1−η > 0. Using this expression in

(F.7), we have π = 1−χ
1−η (σ + σq). Using this π and κ = 1, we find that (F.6) holds if

and only if η ≤ χ.

(ii) If xe > 0, then (F.6)-(F.7), κ = 1, and market clearing (F.3) imply xe
ne

= 1− χ/η

and xh
nh

= 1.25 This expression for xe is positive, as required, if and only if η > χ.
Plugging xh back in (F.7), we obtain π = σ + σq.

Intuitively, experts are only constrained in their hedging activities if when they issue
maximal equity, their risk share is greater than their wealth share. In the process of
these derivations, we also obtained the risk price

π = min
(

1,
1− χ

1− η

)
(σ + σq), if κ = 1. (F.12)

And we may use the results just obtained in the capital FOCs (F.4)-(F.5), and then differ-
encing them as before, to obtain

ae − ah
q

≥ χ
χκ − η

η(1− η)
(σ + σq)

2, if κ = 1. (F.13)

Combining (F.10) and (F.13) leads to a new “risk-balance” condition (F.8), analogously
to the baseline model. One implication of (F.8) is that κ < 1 must arise for all η is low

25Note that xh > 0 must hold. Indeed, xe > 0 implies π > 0 via (F.6) while kh = xh = 0 implies the
opposite via (F.7).
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enough (provided σ + σq > 0, which we will verify below). Therefore, as claimed in the
lemma, η < χ bears the possibility of κ < 1.

Next, putting the results of (F.11)-(F.12) together, we have that

π =

σ + σq, if η > χ;
1−χκ
1−η (σ + σq), if η ≤ χ.

(F.14)

The riskless interest rate can be derived as always, by summing a (κ, 1− κ)-weighted-
average of equations (F.4)-(F.5) and using the results above to get26

r =
κae + (1− κ)ah

q
+ g + µq + σσq − (σ + σq)

2 −
(χκ

η
− 1
)

max
(

0,
χκ − η

1− η

)
. (F.15)

The dynamics of the wealth share η are derived via applying Itô’s formula to its defini-
tion, and using all the previous results. After significant algebra, this yields

µη = η(1− η)(ρh − ρe) + (χκ − 2ηχκ + η2)
χκ − η

η(1− η)
(σ + σq)

21{η≤χ} (F.16)

ση = (χκ − η)(σ + σq)1{η≤χ} (F.17)

Finally, if we assume q is a function of η, then we obtain the Itô condition σq = q′
q ση,

which combined with (F.17) implies equation (F.9). This completes the derivation of
equilibrium, and the displayed equations can be used to verify all the remaining claims
of the lemma.

Observationally near-equivalent asset prices. We can provide a precise sense in which
the equilibrium with equity-issuance looks approximately like the conventional acceler-
ator equilibrium (CAE) for any χ > 0. To do this, it is helpful to consider a change-of-
variables allowing a proper comparison.

The dynamics of η in (F.16)-(F.17) reveal that the ergodic set for ηt is (0, χ]. Indeed,
recall that µη < 0 and ση = 0 for all η ≥ χ. So for an economy with equity-retention χ,

26To derive (F.15), start by summing a (κ, 1− κ)-weighted-average of equations (F.4)-(F.5) to get

r =
κae + (1− κ)ah

q
+ g + µq + σσq − (1− χ)(σ + σq)π − χ

[
κ
(χκ

η
+

xe

ne

)
+ (1− κ)

(χ(1− κ)

1− η
+

xh
nh

)]
(σ + σq)

2.

We can simplify this equation using the following facts. First, from the discussion above, xh > 0 always
holds, so that (F.7) holds with equality, hence xh

nh
= π

σ+σq
− χ(1−κ)

1−η . Next, we may use the market clearing

condition (F.3) to obtain xe
ne

= 1−χ
η −

1−η
η

xh
nh

. We use these two facts to eliminate xe and xh from the equation
above, then we substitute the solution for π from (F.14), and finally we simplify the result to obtain (F.15).
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the appropriate region to consider is (0, χ]. Define the transformed state variable

ω :=
η

χ
, (F.18)

whose ergodic distribution has the fixed support [0, 1] for any χ. By ignoring values of
ω > 1, which have probability zero in the ergodic distribution, we have a state space
whose domain is invariant to χ. Also define q̂(ω) = q(χω) = q(η), the pricing function
under the change-of-variables. Note that q̂′(ω) = χq′(η). Similarly define κ̂(ω) = κ(χω).

Using these change-of-variables, and combining equations (F.8)-(F.9), we obtain the
ODE that holds on {ω : κ̂ < 1}:

ae − ah
q̂

=
κ̂ −ω

χω(1− χω)

( χσ

1− (κ̂ −ω)q̂′/q̂

)2
(F.19)

Define Σ(ω; χ, σ) :=
√

χ−χω
1−χω σ. Using this definition in (F.19), we have

ae − ah
q̂

=
κ̂ −ω

ω(1−ω)

( Σ(ω; χ, σ)

1− (κ̂ −ω)q̂′/q̂

)2
(F.20)

Inspecting this equation, we see that it is very similar to the CAE differential equation
(A.17) in Lemma A.3, but with two differences. First, the exogenous volatility σ re-
placed by the endogenous volatility Σ(ω; χ, σ). And second, there is an adjustment to
the wealth-weighted average discount rate: one must replace ρ̄(η) with ρ̄(χω), since
from the goods market clearing condition we have

κ̂(ω) =
q̂(ω)ρ̄(χω)− ah

ae − ah
. (F.21)

Since the two mathematical differences relative to the CAE are the volatility σ and the
discount rate ρ̄, we may control these to provide the following bounds on the equilibrium
pricing function.

Proposition F.1. Suppose that, for each χ, functions q̂χ : [0, 1] 7→ R and κ̂χ : [0, 1] 7→ [0, 1]
exist satisfying (F.19), (F.21), and κ̂χ(0) = 0. Let qCAE(x; σ, ρe) denote the CAE price at experts
wealth share is x, and with exogenous volatility σ and expert discount rate ρe. Then, for σ small
enough,

qCAE(ω; σ, ρe) ≤ q̂χ(ω; σ, ρe) ≤ qCAE(ω; Σ(ω∗χ; χ, σ), ρh), for all ω ∈ [0, 1],

where ω∗χ := inf{ω : κ̂χ(ω) = 1} is the fire-sale threshold.
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Proof of Proposition F.2. We fix σ, ρe, and χ, and let q̂χ(ω; σ, ρe) denote a solution to
(F.19), (F.21), and κ̂χ(0) = 0. Define ω∗χ := inf{ω : κ̂χ(ω) = 1}.

Consider the CAE ODE from Lemma A.3, but with ω as the independent variable, σ̂

as the exogenous volatility (to differentiate from the parameter σ), and ρ̂e as the expert
discount rate (to differentiate from the parameter ρe), and denoting q̂ as the unknown
function:

1
q̂
=

q̂[ωρ̂e + (1−ω)ρh]−ωae − (1−ω)ah
ω(1−ω)

×
( σ̂

ae − ah − (q̂[ωρ̂e + (1−ω)ρh]−ωae − (1−ω)ah)q̂′/q̂

)2
. (F.22)

First, consider the two CAE solutions. The function qCAE(ω; σ, ρe) is a solution to (F.22)
with σ̂ = σ and ρ̂e = ρe. The function qCAE(ω; Σ(ω∗χ; χ, σ), ρh) is a solution to (F.22) with
σ̂ = Σ(ω∗χ; χ, σ) and ρ̂e = ρh.

On the other hand, the function q̂χ also solves a version of (F.22). Notice that its
ODE (F.20) is identical to (F.22) but with the volatility function Σ(ω; χ, σ) replacing the
constant σ̂ and with the wealth-weighted average discount rate ρ̄(χω) = ω(χρe + (1−
χ)ρh) + (1−ω)ρh replacing ρ̄(ω). This establishes that q̂χ(ω; σ, ρe) is a solution to (F.22)
with σ̂ = Σ(ω; χ, σ) and ρ̂e = χρe + (1− χ)ρh.

Now, we establish the bounds using monotonicity properties of (F.22), since all three
functions in question solve a version of that ODE. First, note the monotonic structure of
(F.22): both σ̂ and ρ̂e affect q̂′ negatively.

The elementary inequalities χρe + (1 − χ)ρh ≤ ρe and Σ(ω; χ, σ) ≤ σ hold for all
ω. Together with the monotonicity properties above, these inequalities imply the lower
bound qCAE(ω; σ, ρe) ≤ q̂χ(ω; σ, ρe) for all ω ∈ [0, 1].

On the other hand, using the inequalities χρe + (1 − χ)ρh ≥ ρh and Σ(ω; χ, σ) ≥
Σ(ω∗χ; χ, σ), the latter of which holds for all ω ≤ ω∗χ, along with the same monotonicity
properties of the ODE (F.22), we have that q̂χ(ω; σ, ρe) ≤ qCAE(ω; Σ(ω∗χ; χ, σ), ρh) for
ω ≤ ω∗χ. We can extend this inequality to all ω ∈ [0, 1] using the assumption that
σ is small enough. Indeed, by Lemmas A.4, A.6, and A.7, qCAE(ω; Σ(ω∗χ; χ, σ), ρh) is
the unique CAE solution with those parameters, and it is necessarily monotonically
increasing until it hits its unique fire-sale threshold ω∗CAE.

Putting these inequalities together, we obtain the result.

In words, Proposition F.1 shows that the pricing function from the economy with
equity-retention χ is (on its ergodic set) between two CAE solutions without any equity-
issuance: one with the same parameters but evaluated with the transformed state vari-

68



able ω = η/χ, and another with a lower level of risk and a lower expert discount rate.
Therefore, if σ and ρe − ρh are small, the solution with equity-issuance must approxi-
mately coincide with a CAE (at least in the sense that the equilibrium pricing functions
are close). Furthermore, due to Proposition 2, which shows that the CAE converges to
the BSE as σ→ 0, we thus have that an equilibrium with any amount of equity-retention
χ > 0 necessarily converges to the BSE as σ→ 0.

Near-perfect financial markets. Now, we use Lemma F.1 and Proposition F.1 to investi-
gate what happens when χ → 0, i.e., when financial markets converge to their friction-
less level. On the one hand, because κ = 1 for all η ≥ χ, we have that limχ→0 κ(η) = 1 for
all η > 0. In this sense, the equilibrium converges to the safe Fundamental Equilibrium
(FE) as financial markets improve. On the other hand, the ergodic set for an economy
with equity-issuance is {η ∈ (0, χ]}. By taking χ → 0, we are shrinking this region, and
in the limit almost all values of η become irrelevant to the ergodic set. This makes it
unclear whether or not, in terms of the long-run distribution, fluctuations persist in the
small-χ economy.

As before, settling the question of what happens when χ → 0 is only possible when
using the transformed state variable ω = η/χ. This provides a convenient normalization,
in the sense that the ergodic set is {ω ∈ [0, 1]} under the change-of-variables.

But these differences are relatively minor for near-perfect markets: as χ → 0, notice
that Σ → 0 uniformly (since Σ(ω; χ) ≤ √χσ) and ρ̄(χω) → ρh uniformly. Therefore, a
reasonable conjecture is that the limiting solution to (F.20) as χ → 0 will coincide with
the limiting CAE as σ → 0 if discount rates are symmetric (ρe = ρh). By Proposition
2, the latter is simply the BSE with symmetric discount rates. Hence, one expects that
limχ→0 q̂(ω) = qBSE(ω; ρe = ρh). (Notice that we are using the BSE function with the
variable ω as the input.) By this argument, a non-trivial fire-sale region should survive
in the limit χ→ 0. Filling in some technical details, we are able to prove

Proposition F.2. Let σ be small enough. Suppose that, for each χ small enough, functions
q̂χ : [0, 1] 7→ R and κ̂χ : [0, 1] 7→ [0, 1] exist satisfying (F.19), (F.21), and κ̂χ(0) = 0. As χ→ 0,
the fire-sale region of the ergodic set does not vanish, in the sense that

lim
χ→0

ω∗χ > 0.

where ω∗χ := inf{ω : κχ(ω) = 1}.

Proof of Proposition F.2. As assumed, suppose there is a solution q̂χ for each χ small
enough. Let ω∗χ := inf{ω : κχ(ω) = 1}. By a similar argument as the CAE Lemma A.6,
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it must be the case that ω∗χ > 0.
Using Proposition F.1, we have that

q̂χ(ω; σ, ρe) ≤ qCAE(ω; Σ(ω∗χ; χ, σ), ρh), (F.23)

where qCAE(ω; σ̂, ρ̂e) represents the CAE solution with expert wealth share ω, exogenous
volatility σ̂, and expert discount rate ρ̂e. Note that limχ→0 Σ(ω∗χ; χ, σ) = 0. Since χ only
affects qCAE(ω; Σ(ω∗χ; χ, σ), ρh) through Σ(ω∗χ; χ, σ), we know by Proposition 2 that

lim
χ→0

qCAE(ω; Σ(ω∗χ; χ, σ), ρh) = lim
σ→0

qCAE(ω; σ, ρh) = qBSE(ω; ρh), (F.24)

where qBSE(ω; ρ̂e) is the BSE solution from Proposition 1 with expert wealth share ω and
expert discount rate ρ̂e. As established by Proposition 1, we know that qBSE(ω; ρh) <

ae/ρh for all ω small enough (i.e., the fire-sale region is non-trivial). If ρe − ρh is small
enough, then we also have qBSE(ω; ρh) < ae/ρe for all ω small enough.27

Taking the limit χ→ 0 in (F.23), using the result (F.24), and using the result qBSE(ω; ρh) <

ae/ρe for all ω small enough, we have

lim
χ→0

q̂χ(ω; σ, ρe) <
ae

ρe
, for all ω small enough.

Using equation (F.21) for the associated capital share κ̂χ, this proves that κ̂χ < 1 for all ω

small enough. Thus, limχ→0 ω∗χ > 0.

Remark F.1. While Proposition F.2 is informative about the limit χ → 0, we are unable to
analytically obtain the long-run amount of time spent in fire-sale, because volatilities explode.

Indeed, equation (F.19) implies that limχ→0(κ̂χ − ω)q̂′χ/q̂χ = 1 for all ω ∈ (0, ω∗0), i.e., in
the fire-sale region. Using the change-of-variables η = χω in (F.9), we have the price volatility

σq =
(κ̂ −ω)q̂′/q̂

1− (κ̂ −ω)q̂′/q̂
σ (F.25)

But if limχ→0(κ̂χ −ω)q̂′χ/q̂χ = 1 in the fire-sale region, then σq(ω)→ +∞ in this region.

27For a direct proof of this, one can also appeal to also the closed-form solution to the BSE for this
symmetric discount rate case ρe = ρh = ρ, given by

q(η) =
1
ρ

[
(ae − ah)η + ah +

√
((ae − ah)η + ah)2 − a2

h + (ae − ah)2κ2
0

]
, for η < η∗ =

1
2

ae − ah
ae

(1− κ2
0).

As κ0 decreases, the slope q′(η) increases, consistent with the idea that pessimism about the disaster state
raises the sensitivity of equilibrium to sunspot shocks away from disaster.
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This explosive volatility translates into analytically-challenging state dynamics. Using the
change-of-variables η = χω in (F.16)-(F.17), and substituting (F.25), we have the following drift
and diffusion of ω:

µω = ω(1− χω)(ρh − ρe) + (κ̂ − 2χωκ̂ + χω2)
κ̂ −ω

ω(1− χω)

( σ

1− (κ̂ −ω)q̂′/q̂

)2
(F.26)

σω =
(κ̂ −ω)σ

1− (κ̂ −ω)q̂′/q̂
(F.27)

Since (κ̂χ −ω)q̂′χ/q̂χ → 0 in the fire-sale region, both σω and µω explode there. A more careful
analysis must examine the rates of explosion for the drift and diffusion to understand whether or
not the state variable ω can visit the fire-sale region with non-trivial probability as χ→ 0.

Numerical illustration. We now provide a numerical illustration of how the equilibrium
depends on χ. As the analysis above suggests, the most convenient way to investigate
the equilibrium is by using the transformed state variable ω := η/χ, whose ergodic set
is [0, 1]. We thus solve ODE (F.19) for q̂ as a function of ω, then compute κ̂ via (F.21), and
finally compute the other equilibrium objects like the drift µω and σω via (F.26)-(F.27).
The results are depicted in Figure F.1.

Figure F.1: Equilibria as equity-issuance frictions improve, χ → 0. Parameters: ρe = 0.06, ρh = 0.04,
ae = 0.11, ah = 0.03, σ = 0.04. In all cases, we use the boundary condition κ(0) = 0.

It is noteworthy that, indeed as suggested by Proposition F.1-F.2, the capital price
and expert capital share stabilize as χ → 0 to functions which have a non-trivial fire-
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sale region (first and second panels). This is the sense in which the equilibrium looks
similar for any χ. That being said, the probability of fire sales shrinks as χ shrinks, and
eventually vanishes as χ→ 0 (third and sixth panels). This intuitive result is not obvious
analytically, as discussed in Remark F.1 above. In particular, the fourth and fifth panels
plot the scaled drift and diffusion, χµω and

√
χσω, respectively, which stabilize as χ→ 0,

implying that the transformed state dynamics become explosive in the limit. It turns out
that the explosiveness of the drift dominates, pushing the economy very quickly out of
the fire-sale region, such that the stationary distribution does not admit any fire sales as
χ→ 0.
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G Discrete-time model

The following discrete-time model is exactly analogous to our continuous-time model.
The setup and exposition is based on the discrete-time model in the online appendix of
Khorrami and Mendo (2024), but the analysis diverges when we study the Markovian
equilibrium with expert wealth share η as the sole state variable (whereas that paper
studies a non-Markovian equilibrium). We model each decision on a time-step of ∆, and
we will also consider limits as ∆→ 0 to compare to our baseline model.

Technology. For simplicity, we assume that aggregate capital K is fixed, i.e., there is no
exogenous growth or fundamental uncertainty (g = σ = 0).

Individual agent problem. An individual can hold two assets, riskless bonds bt and
capital kt, and decides consumption ct. The individual net worth, just before consuming,
is nt = bt + qtkt, where qt is the market price of capital. The one-period return on bonds
is R f

t = 1 + rt∆, and the return-on-capital is Rk
t+∆ := a∆

qt
+ qt+∆

qt
, where a is the agent’s

productivity per unit of time while holding capital. Then, the agent’s dynamic budget
constraint is28

nt+∆ = qtkt(Rk
t+∆ − R f

t ) + (nt − ct)R f
t . (G.1)

Each agent takes qt, R f
t , and Rk

t+∆ as given and chooses (c, k, n) to maximize

E

[
∞

∑
i=0

( 1
1 + ρ∆

)i
log(ci∆)

]
, (G.2)

subject to (G.1), subject to the no-shorting constraint kt ≥ 0, and subject to the solvency
constraint nt ≥ 0. We use the expectation operator to allow for the possibility that
sunspot shocks can drive fluctuations.

28To derive (G.1), proceed as follows. First, note that the bond market account next period, before
adjusting the portfolio of bonds and capital, will have value b′t+∆ = R f

f (bt − ct) + akt∆—that is, after
consumption expenditures are made, the residual earns the interest rate, and the cash flows from holding
capital are also added at the end of the period. Second, the capital holdings kt will have value qt+∆kt next
period. Adding these two quantities must equal tomorrow’s net worth nt+∆. Hence, nt+∆ = R f

f (bt − ct) +

akt∆ + qt+∆kt. Using the definition nt = bt + qtkt gives the result (G.1).

73



The first-order optimality conditions are the standard Euler equations

1 =
1

1 + ρ∆
R f

t Et

[ ct

ct+∆

]
(G.3)

0 ≥ 1
1 + ρ∆

Et

[ ct

ct+∆
(Rk

t+∆ − R f
t )
]
, (G.4)

where (G.4) holds with equality when kt > 0 is chosen.
In addition, it is straightforward to show that optimal consumption satisfies the stan-

dard log utility formula29

ct =
ρ∆

1 + ρ∆
nt. (G.5)

Using this fact, plus the budget constraint (G.1) in (G.3)-(G.4), we obtain

1 =
1

1 + ρ∆
R f

t Et

[
1

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
(G.6)

0 ≥ 1
1 + ρ∆

Et

[
Rk

t+∆ − R f
t

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
, with equality if θt > 0 (G.7)

where θt := qtkt
nt

is the share of wealth allocated to capital. At this point, one can prove
that (G.6) holds automatically if (G.7) holds.30 Therefore, we can drop the bond Euler
equation (G.6) from the remainder of the analysis, i.e., (G.5) and (G.7) fully characterize
the agent’s optimal choices.

Aggregation and equilibrium conditions. As in the main text, we assume there are
two types of agents: experts have productivity ae and discount rate ρe, while households
have productivity ah < ae and discount rate ρh ≤ ρe. Clearly, then, experts have a higher
return-on-capital than households: Rk

e,t+∆ > Rk
h,t+∆.

We now aggregate. The market clearing condition for goods, capital, and bonds are

29This can be showed by writing out the Bellman equation and guessing-and-verifying that the value
function takes the form vt = (1− β)−1 log(nt) + f (Ωt) for β = (1 + ρ∆)−1 and some function f that only
depends on aggregate states Ωt. Then, the envelope condition says c−1

t = ∂
∂n vt = (1− β)−1n−1

t , which is
the consumption formula.

30Indeed, if θt = 0 it is obvious that (G.6) holds. If θt > 0, then (G.7) holds with equality, so we then
have

0 = Et

[ θt(Rk
t+∆ − R f

t )

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
Adding this expression to equation (G.6), we obtain the identity 1 = 1.
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given by, respectively,

ce,t + ch,t = (aeke,t + ahkh,t)∆ (G.8)

ke,t + kh,t = K (G.9)

be,t + bh,t = ce,t + ch,t. (G.10)

Equation (G.10) says that bondholdings just after consuming (which is bt − ct) sum to
the zero net supply. By combining (G.10) with the individual net worth definition nt =

bt + qtkt, we obtain an alternative statement of bond market clearing that we will use:

ne,t + nh,t = qtK + ce,t + ch,t. (G.11)

Definition 5. An equilibrium is a collection of stochastic processes for allocations
(k j,t∆, nj,t∆, cj,t∆)

∞
t=0 for j ∈ {e, h} with ke,0 and kh,0 given, and for prices (qt∆, R f

t∆)
∞
t=0 such

that (i) given prices, allocations solve each agent type’s problem, and (ii) markets clear.

G.1 Equilibrium characterization

We have already characterized optimal decisions and market clearing conditions. In
particular, a collection of stochastic processes for allocations and prices constitute an
equilibrium if they satisfy (G.1), (G.5), and (G.7) for each agent type (experts and house-
holds), along with equations (G.8), (G.9), and (G.11) at the aggregate level.

We further tighten this characterization and reduce it to four stochastic processes sat-
isfying a set of conditions, exactly as in our continuous-time model. First, to keep track
of the distribution of wealth and capital, let ηt := (1 + ρe∆)−1ne,t/qtK and κt := ke,t/K
denote expert’s wealth and capital shares.31 Whereas κt is a “jumpy” variable because
it is linked to agent’s capital choices, ηt is a “state” variable because it is determined
via agent’s slow-moving wealths. Using the budget constraint (G.1), we can obtain the
dynamics of ηt as

ηt+∆ =
1

1 + ρe∆

(
κt(Rk

e,t+∆ − R f
t ) + ηtR

f
t

qt+∆/qt

)
. (G.12)

Next, we aggregate the consumption decisions across these two types. To do this, plug
the consumption rules from (G.5) into the goods and bond market clearing conditions

31Note that the wealth share is defined just after consumption choices are made, i.e., ηt = (ne,t −
ce,t)/(ne,t + nh,t − ce,t − ch,t) is the definition we are using.
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(G.8) and (G.11), and combine the results to obtain

qtρ̄(ηt) = κtae + (1− κt)ah, (G.13)

where ρ̄(η) := ηρe + (1 − η)ρh is a wealth-weighted average discount rate. Identical
to our continuous-time model, equation (G.13) is a price-output relation that links asset
values qt to the efficiency of the capital distribution κt. Finally, we aggregate the Euler
equations (G.7) within the two types using the fact that experts will always be on the
margin (i.e., since Rk

e,t+∆ > Rk
h,t+∆, we have ke,t > 0 at all times). We also use the fact

that θe,t = qtke,t
ne,t

= 1
1+ρe∆

κt
ηt

and θh,t =
qtkh,t
nh,t

= 1
1+ρh∆

1−κt
1−ηt

to write the results in a more
convenient way. The results are

0 = Et

[
qt+∆ + ae∆− R f

t qt
κt
ηt

(
qt+∆ + ae∆− R f

t qt

)
+ R f

t qt

]
(G.14)

0 ≥ Et

[
qt+∆ + ah∆− R f

t qt
1−κt
1−ηt

(
qt+∆ + ah∆− R f

t qt

)
+ R f

t qt

]
(G.15)

where the latter holds as an equality when households hold capital, i.e., when κt < 1.
Thus, an equilibrium is fully characterized by the collection of stochastic processes

(ηt∆, κt∆, qt∆, R f
t∆)

∞
t=0, with η0 = ke,0/K given, such that the two optimality conditions

(G.14)-(G.15) hold; the price-output relation (G.13) holds; and the law of motion for ηt is
given by (G.12). We state this characterization as a lemma.

Lemma G.1. Given η0 ∈ (0, 1), consider stochastic processes {ηt∆, qt∆, κt∆, R f
t∆}∞

t=0 such that
ηt evolution is described by (G.12). If ηt ∈ [0, 1], κt ∈ [0, 1], and equations (G.13), (G.14), and
(G.15) hold for all t ≥ 0, then {ηt∆, qt∆, κt∆, R f

t∆}∞
t=0 corresponds to an equilibrium.

Among all possible equilibria, we focus on equilibria which are Markovian in ηt. That
is, we restrict qt, κt, and R f

t (hence rt = (R f
t − 1)/∆) to be solely functions of ηt. We now

analyze the two types of equilibria: fundamental and sunspot.

G.2 Fundamental equilibrium

A fundamental equilibrium has κt = 1 for all periods. In such an equilibrium, (G.13) says
that the capital price should be

qt =
ae

ρ̄(ηt)
, if κt = 1. (G.16)

76



Substituting this result into the state dynamics (G.12), we have

ηt+∆ =
1

1 + ρe∆

[
1 + ρ̄(ηt+∆)−

ρ̄(ηt+∆)

ρ̄(ηt)
(1− ηt)R f

t

]
, if κt = κt+∆ = 1. (G.17)

As the only (t + ∆)-measurable object in (G.17), ηt+∆ evolves deterministically in a fun-
damental equilibrium. Because qt is solely a function of ηt in (G.16), qt+∆ is also known
as of time t. As a result, experts’ return-on-capital must coincide with the riskless rate,
i.e., R f

t = ae∆
qt

+ qt+∆
qt

, or

R f
t = ρ̄(ηt) +

ρ̄(ηt)

ρ̄(ηt+∆)
, if κt = κt+∆ = 1. (G.18)

Combining (G.17) and (G.18), we obtain the solved dynamics

ηt+∆ =
ηt(1 + ρe∆)−1

ηt(1 + ρe∆)−1 + (1− ηt)(1 + ρh∆)−1 , if κt = κt+∆ = 1. (G.19)

Thus, expert’s wealth share asymptotically tends toward zero. Intuitively, they earn zero
excess capital returns and consume at a higher rate than households.

G.3 Sunspot equilibrium

A sunspot equilibrium has κt < 1 for some t. We proceed with a simple binomial tree
example to show that sunspot equilibria exist, although more complicated information
structures are also likely possible. We conjecture an equilibrium with

qt+∆ =

utqt, with probability 1− pt;

dtqt, with probability pt.
(G.20)

The shock, which is whether the price goes “up” or “down”, is a pure sunspot shock.
The “up” and “down” returns ut and dt ∈ (0, ut) may be state dependent, as may the
probability of a price drop pt. In other words, (ut, dt, pt) will be functions of ηt, as will
the interest rate rt.

To start, we may solve for the optimal portfolios explicitly in this binomial environ-
ment. Using (G.12) and (G.20) in the expert Euler equation (G.14), we have

κt

ηt
= −R f

t

(1− pt)ut + ptdt +
ae∆
qt
− R f

t

(ut +
ae∆
qt
− R f

t )(dt +
ae∆
qt
− R f

t )
. (G.21)
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Doing the same for the household Euler equation (G.15), we have

1− κt

1− ηt
= −R f

t min

(
0,

(1− pt)ut + ptdt +
ah∆
qt
− R f

t

(ut +
ah∆
qt
− R f

t )(dt +
ah∆
qt
− R f

t )

)
. (G.22)

Next, note that the price-output relation (G.13) and state dynamics (G.12) are un-
changed by the binomial setup, and we repeat them here for convenience:

ρ̄(ηt) =
κtae + (1− κt)ah

qt
(G.23)

ηt+∆ =
1

1 + ρe∆

κt(
ae∆
qt

+ qt+∆
qt
− R f

t ) + ηtR
f
t

qt+∆/qt
. (G.24)

As mentioned in Lemma G.1, to find an equilibrium we only need to check that we
can pick (ut, dt, pt) to satisfy (G.21)-(G.24) at every point in the state space and that
the resulting equilibrium dynamics are “stable” in the sense that they do not cause the
dynamical system to “exit the feasible region.” To this end, we immediately note that
ηt ∈ (0, 1) on any equilibrium path, which can be verified by checking the state dynamics
(G.24).32 Consequently, by focusing on Markovian equilibria in η, we automatically
ensure “stochastic stability.” But how do we solve for such a Markovian equilibrium?

In the Markovian case, we need only check that (G.21)-(G.24) hold for appropriate
functions q(·), κ(·), R f (·), u(·), d(·), p(·) taking η as an input. Writing the first three

32Examine the state dynamics (G.24) in the down state and substitute (G.21) to obtain

dt
ηd

t+∆
ηt

=
1

1 + ρe∆
R f

t

(
1−

(1− pt)ut + ptdt +
ae∆
qt
− R f

t

ut +
ae∆
qt
− R f

t

)
> 0.

Similarly, mirroring (G.24), the symmetric condition for household’s net worth share dynamics is

1− ηt+∆ =
1

1 + ρe∆

(1− κt)(
ah∆
qt

+
qt+∆

qt
− R f

t ) + (1− ηt)R f
t

qt+∆/qt

Examining this condition in the up state and substituting (G.22), we obtain

ut
1− ηu

t+∆
1− ηt

=
1

1 + ρh∆
R f

t

(
1−min

(
0,

(1− pt)ut + ptdt +
ah∆
qt
− R f

t

dt +
ah∆
qt
− R f

t

))
> 0.

Thus, the requirement to keep ηt ∈ (0, 1) is automatically satisfied.
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equations out explicitly, we need to find functions such that

κ(η)

η
= −R f (η)

(1− p(η))u(η) + p(η)d(η) + ae∆
q(η) − R f (η)(

u(η) + ae∆
q(η) − R f (η)

)(
d(η) + ae∆

q(η) − R f (η)
) (G.25)

1− κ(η)

1− η
= −R f (η)min

 (1− p(η))u(η) + p(η)d(η) + ah∆
q(η) − R f (η)(

u(η) + ah∆
q(η) − R f (η)

)(
d(η) + ah∆

q(η) − R f (η)
)
 (G.26)

ρ̄(η) =
κ(η)ae + (1− κ(η))ah

q(η)
(G.27)

In addition, the functions u(·) and d(·) must be “consistent” with the function q(·), in
the sense that

u(η)q(η) = q

(
1

1 + ρe∆

κ(η)
( ae∆

q(η) + u(η)− R f (η)
)
+ ηR f (η)

u(η)

)
(G.28)

d(η)q(η) = q

(
1

1 + ρe∆

κ(η)
( ae∆

q(η) + d(η)− R f (η)
)
+ ηR f (η)

d(η)

)
(G.29)

Equations (G.28)-(G.29) come from ensuring that the conjectured pricing function q(·),
evaluated at next period’s η given by (G.24), equals the value of q defined by the func-
tions u and d. We call these the “Markov consistency conditions” for short.

To continue, we will specialize below to particular choices of u, d, and p. First, we will
pursue a construction which serves as an approximation to Brownian motion, allowing
us to show convergence to our BSE as ∆ → 0. Second, we demonstrate a construction
that approximates Poisson shocks and converges to our PSE of Section 4 as ∆→ 0. Thus,
the binomial setup considered here can unify all of our sunspot information structures.

As in the baseline setting, we conjecture (but do not prove here) the existence of a
threshold η∗ ∈ (0, 1) such that κ(η) = 1 if and only if η ≥ η∗. Furthermore, there will be
another threshold η̃∗, to be defined below, at which κ(η̃∗) is sufficiently close to 1, such
that positive shocks will just take the economy to the border. With these thresholds, we
split up our analysis into three regions:

(fire-sale region) D◦ := {η ∈ (0, η̃∗)}
(close-to-efficient region) D̃1 := {η ∈ [η̃∗, η∗)}

(efficient region) D1 := {η ∈ [η∗, 1)}

Because endogenous changes in variables will be proportional to the time-step ∆, the
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“close-to-efficient” region D̃1 will collapse to a null-set as ∆ → 0. Furthermore, the
efficient region D1 involves a straightforward analysis in which prices can potentially
jump down into D◦ with some probability, but where this probability vanishes as ∆→ 0
(i.e., going to continuous time, the capital price becomes continuous outside of Poisson
jumps, and so the probability of jumping from efficiency down into the fire-sale region
is of “order dt”). And so to streamline the discussion, we simply analyze D◦ below.

G.4 Brownian approximation

In the fire-sale region D◦, we construct a sunspot equilibrium by explicitly specifying
(u, d, p) to take a form that approximates Brownian motion in the ∆ → 0 limit. In
particular, we set

u = 1 + v
√

∆ (G.30)

d = 1− v
√

∆ (G.31)

p =
v−m

√
∆

2v
, (G.32)

for some endogenous functions m and v. Note that p ∈ (0, 1) requires m
√

∆ ∈ (−v, v).
Of course, we also require v ≤ 1/

√
∆, so that the downward jump is not greater than

100%. These constraints on m and v become arbitrarily loose as ∆→ 0.
One can verify that (G.30)-(G.32) imply that

Et[
qt+∆ − qt

qt
] = m(ηt)∆ and Et[(

qt+∆ − qt

qt
)2] = v(ηt)

2∆.

Thus, the interpretation of m and v are as the drift and instantaneous volatility of per-
centage price changes, analogous to the µq and σq in continuous time. In fact, one can
observe that ( qt+∆−qt

qt
)2 = v(ηt)2∆ even without the expectation operator, analogous to

the deterministic nature of quadratic variation. Finally, notice that any higher moments
of price changes are of order o(∆).

Similarly, substituting the specification (G.30)-(G.32) into (G.24), one can verify that
the state dynamics converge as ∆ → 0 to the continuous-time model. Indeed, examine
the conditional mean and second moment of ηt+∆ − ηt:

Et[ηt+∆ − ηt] =
(

κt
ae

qt
− ηtρe + (κt − ηt)(mt − rt − v2

t )
)

∆ + o(∆) (G.33)

Et[(ηt+∆ − ηt)
2] = (κt − ηt)

2v2
t ∆ + o(∆), (G.34)
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where mt = m(ηt) and vt = v(ηt). Dividing by ∆ and taking ∆ → 0, it becomes
clear that these moments coincide with those of the continuous-time model, so long as
(qt, κt, vt, mt, rt) also converge to their continuous-time versions. For reference, let us
re-write the dynamics of η in a different way:

ηt+∆ − ηt = Et[ηt+∆ − ηt] + (κt − ηt)
(qt+∆ − qt

qt
− (mt − v2

t )∆
)
+ o(∆). (G.35)

Now, we determine what m and v must be to satisfy agents’ optimality conditions.
In this Brownian approximation, the expert and household Euler equations (G.25)-(G.26)
become

κ

η
= (1 + r∆)

ae
q + m− r

v2 − ( ae
q − r)2∆

(G.36)

1− κ

1− η
= (1 + r∆)max

{
0,

ah
q + m− r

v2 − ( ah
q − r)2∆

}
. (G.37)

First we use the expert Euler equation to solve for v2:

v2 = (1 + r∆)
[ ae

q
+ m− r

]η

κ
+ (

ae

q
− r)2∆.

Then, we use the household Euler equation, when κt < 1, to also solve for v2:

v2 = (1 + r∆)
[ ah

q
+ m− r

]1− η

1− κ
+ (

ah
q
− r)2∆.

Setting these expressions equal gives an equation for m, which satisfies

m = r +
(1− κ)η

κ − η

ae

q
− κ(1− η)

κ − η

ah
q
+

κ(1− κ)
[
( ae

q − r)2 − ( ah
q − r)2]

(1 + r∆)(κ − η)
∆. (G.38)

Substituting back into the equations for v2, we solve for

v2 = (1 + r∆)
η(1− η)

κ − η

ae − ah
q

+
κ(1− η)( ae

q − r)2 − η(1− κ)( ah
q − r)2

κ − η
∆. (G.39)

Note that these equations, in the ∆ → 0 limit, are identical to the continuous-time ver-
sions (when there is zero fundamental risk and zero growth). Indeed, equation (G.39)
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says

v2 =
η(1− η)

κ − η

ae − ah
q

+ O(∆). (G.40)

Next, by doing some algebra on (G.38), it reads

m = r− ρ̄(η) +
(κ2

η
+

(1− κ)2

1− η

)
v2 + O(∆). (G.41)

Consequently, m and v are indeed the discrete-time counterparts to µq and σq. Until now,
the argument has not used the fact that the equilibrium is Markovian.

To fully solve the model, we need to check the “Markov consistency conditions” in
(G.28)-(G.29) which make sure that the function q(·) is consistent with the state dynam-
ics. Given we are planning to take ∆ → 0, we can check these in an easier way for
the Brownian case. Indeed, under the Markov assumption, we may use a second-order
Taylor expansion to obtain

qt+∆ − qt = q′(ηt)×
(

ηt+∆ − ηt

)
+

1
2

q′′(ηt)×
(

ηt+∆ − ηt

)2
+ o
(

ηt+∆ − ηt

)2

Then, using (G.35), followed by ( qt+∆−qt
qt

)2 = v2
t ∆, we have

qt+∆ − qt = q′(ηt)(ηt+∆ − ηt) +
1
2

q′′(ηt)(ηt+∆ − ηt)
2 + o(∆)

= q′(ηt)(κt − ηt)
qt+∆ − qt

qt
+ q′(ηt)

(
Et[ηt+∆ − ηt]− (κt − ηt)(mt − v2

t )∆
)

+
1
2

q′′(ηt)(κt − ηt)v2
t ∆ + o(∆)

Noticing that qt+∆− qt appears on the left- and right-hand-side, we may solve this equa-
tion to obtain

qt+∆ − qt√
∆qt

=

1√
∆

[ q′(ηt)
qt

(
Et[ηt+∆ − ηt]− (κt − ηt)(mt − v2

t )∆
)
+ 1

2
q′′(ηt)

qt
(κt − ηt)v2

t ∆ + o(∆)
]

1− q′(ηt)
qt

(κt − ηt)

From the binomial approximation, the left-hand-side is ±vt = O(1), assuming volatility
is non-zero. But the numerator of the right-hand-side is of order O(

√
∆). Consequently,
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the denominator of the right-hand-side must also be O(
√

∆). Thus, we obtain:

1− q′(η)
q(η)

(κ − η) = O(
√

∆) (G.42)

As ∆ → 0, this converges exactly to the BSE differential equation (21). This proves that
q(·) is consistent with the state dynamics for η, since (G.42) holds at every point in the
fire-sale region.

G.5 Poisson jump approximation

Now, we specialize to a discretization (u, d, p) in the fire-sale region D◦ that approxi-
mates our Poisson uncertainty from Section 4. In particular, we set

u = 1 + m∆ (G.43)

d = 1− z (G.44)

p = λ∆, (G.45)

for some endogenous functions m > 0, z ∈ (0, 1), and for ∆ < 1/λ (so that p < 1 is a
well-defined probability). The capital price either drifts up slightly, with probability 1−
λ∆, or it jumps down by percentage z, with probability λ∆. The rate of a down-jump is
exactly λ per unit of time, exactly as in the Poisson model in Section 4. Consequently, the
wealth share dynamics in (G.24) necessarily converge to the desired Poisson dynamics,
so long as z ∼ ζq and m ∼ µq as ∆→ 0.

The algebra to verify convergence as ∆→ 0 to the Poisson Sunspot Equilibrium is as
follows. The expert and household Euler equations (G.25)-(G.26) become, when κt < 1,

κ

η
= −(1 + r∆)

ae
q + m− r− λz−mλ∆

( ae
q + m− r)(( ae

q − r)∆− z)
(G.46)

1− κ

1− η
= −(1 + r∆)

ah
q + m− r− λz−mλ∆

( ah
q + m− r)(( ah

q − r)∆− z)
. (G.47)

Rearrange these two equations and group terms to get( ae

q
+ m− r

)[
1− κ

η
z +

(κ

η
(

ae

q
− r) + r

)
∆
]
= (1 + r∆)

(
λz + mλ∆

)
( ah

q
+ m− r

)[
1− 1− κ

1− η
z +

(1− κ

1− η
(

ah
q
− r) + r

)
∆
]
= (1 + r∆)

(
λz + mλ∆

)
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Now, we guess-and-verify that z = O(1) and m = O(1) as ∆ → 0. In that case, the
previous two equations can be written

ae

q
+ m− r =

λz
1− κ

η z
+ O(∆) (G.48)

ah
q
+ m− r =

λz
1− 1−κ

1−η z
+ O(∆) (G.49)

To complete the argument, take (i) the difference between (G.48)-(G.49) and (ii) a (κ, 1−
κ) weighted sum of (G.48)-(G.49) to obtain the following two equations:

ae − ah
q

=
κ − η

η(1− η)

λz2

(1− κ
η z)(1− 1−κ

1−η z)
+ O(∆) (G.50)

r =
κae + (1− κ)ah

q
+ m− λz

( κ

1− κ
η z

+
1− κ

1− 1−κ
1−η z

)
+ O(∆) (G.51)

As ∆→ 0, these equations converge to the risk-balance equation (when κ < 1) in Section
4 and the riskless rate equation in Appendix E. Consequently, in a Markov equilibrium,
z converges to the downward jump-size ζq and m converges to the drift µq as ∆→ 0. Up
to now, the argument has not relied on the fact that the equilibrium is Markovian in η.

To fully verify the limit, we must verify the “Markov consistency conditions” in
(G.28)-(G.29) converge to their Poisson Sunspot Equilibrium counterpart in Section 4.
First, since u → 1 as ∆ → 0, equation (G.28) automatically holds in the limit. Second,
condition (G.29), in the limit ∆→ 0, says

(1− z(η))q(η) = q
(−κ(η)z(η) + η

1− z(η)

)
(G.52)

Equation (G.52) is exactly identical to the PSE equation (29).33

33To see the equivalence, start from equation (29) and use the definition of η̂ := η− ζη = η− (κ− η)
ζq

1−ζq

to write

ζq = − q(η̂)− q(η)
q(η)

= −
q(η − (κ − η)

ζq
1−ζq

)− q(η)

q(η)

Doing some algebra and rearranging terms, we have

1− ζq = q
(−κζq + η

1− ζq

)
Given the conjecture that z ∼ ζq as ∆→ 0, this condition is asymptotically identical to condition (G.52).
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