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This paper presents a theory of self-fulfilling volatility. Broadly speaking, we shed
light on the following questions. Why are asset prices so volatile, in excess of cash flows
and other “fundamentals”? Excess volatility puzzles have received attention in many
contexts, still without definitive answers. More specific to our particular framework,
what is the source of idiosyncratic uncertainty? And why does idiosyncratic uncertainty
vary over time systematically?

We explore a general equilibrium model with two key features—the presence of mul-
tiple markets along with a feedback effect between financial markets and the real econ-
omy. Our model has N abstract “locations” each of which receives its own endowment.
Depending on the application, think of locations as firms, industries, or countries. Each
location has an equity market, which trades claims on its local endowment stream. It
is this equity valuation that will be subject to multiple self-confirming equilibria. The
multiplicity comes about because of an assumption connecting fundamentals to prices:
the growth rate of a location’s endowment is assumed to be positively related to its
endogenous valuation (growth-valuation link).

The contributions of the paper are (i) to characterize conditions under which multiple
equilibria emerge; (ii) to establish common properties of these equilibria; and (iii) to
argue that these properties can speak to various empirical patterns.

Growth-valuation link. A key assumption in our analysis is some dependence of growth
on asset valuations. A sufficiently strong dependence allows for self-fulfilling expecta-
tions of future price changes to take hold. For instance, if investors anticipate high
prices, their expectations for cash flow growth rates rise, which justifies the high prices
and confirms the initial expectations. Conversely, if investors anticipate low prices, ex-
pected growth rates drop as well, fulfilling the starting beliefs about low prices.

How should one understand our critical growth-valuation link? Our baseline inter-
pretation comes from the expansive literature on feedback effects between asset prices
and corporate decisions (see the survey in Bond et al., 2012). When managers can learn
information from stock or bond prices, they incorporate this data into their capital ex-
penditure decisions. The feedback between prices and investment creates a link between
publicly available prices and the cash flows underlying those prices. This is just one in-
terpretation for our reduced-form growth assumption. As we discuss in the paper, all we
need is some endogenous force that keeps valuations stationary when they deviate from
steady state—this stability property is key to supporting self-fulfilling fluctuations. For
this reason, our Internet Appendix provides three alternatives to the growth-valuation
link, each of which also supports self-fulfilling fluctuations.
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Redistributive fluctuations. A core message of our analysis is that indeterminacy is
most often redistributive. That is, the conditions for indeterminacy in the aggregate val-
uation Qt are significantly stronger than the conditions for indeterminacy in the cross-
section of valuations (qn,t)N

n=1. For instance, we prove that, if the EIS is less than one, the
aggregate valuation is pinned down uniquely in our setup, while the valuation distribu-
tion is not. Even if the EIS is above one, but the growth-valuation link is not too powerful,
the only possible indeterminacy is redistributive. These results are what justify the title
of our paper referring to “idiosyncratic risk.”

A novel prediction is that asset booms are less likely to be synchronized global phe-
nomena and more likely to be found in individual sectors and geographic locations
(Brunnermeier and Schnabel, 2015). Instead of being in sync, asset boom-bust cycles
should co-move negatively: a crash in one asset market necessarily coincides with a
boom in another.

Despite fluctuations being redistributive, the self-fulfilling volatility of our model
maintains, under some natural conditions, a systematic factor structure. In particular,
we prove that, if sunspot valuation shocks maintain a stable cross-sectional correlation,
then there is necessarily a single-factor structure to our idiosyncratic volatility. The ex-
istence of this common component to redistributive risk is one of the most important
implications of our model, since it provides a plausible microfoundation to researchers
that have modeled exogenously time-varying idiosyncratic volatility and its macroeco-
nomic effects (Di Tella, 2017, 2020; Di Tella and Hall, 2022; Iachan et al., 2022).

Market segmentation. We are particularly interested in the effects of cross-sectional
market segmentation. First of all, financial market segmentation is reasonable in many
real-world contexts, especially our applications that follow.1 Second, segmentation en-
riches our baseline theoretical predictions in several intriguing dimensions.

While the theoretical results above on equilibrium multiplicity and volatility hold
even under complete financial markets, layering on some market segmentation intro-
duces real effects. Agents in location n must hold a concentrated portfolio of their lo-
cal equity, and so their consumption responds to self-fulfilling shocks. Again, because
our fluctuations are primarily redistributive in nature, the cross-sectional wealth and
consumption distributions become central objects. For instance, capital flows become
intertwined with boom-bust cycles (Caballero et al., 2008): when one location’s valua-

1For example, there is the well known “home bias” among international asset holdings (French and
Poterba, 1991). In the firm context, there is also pervasive evidence that corporate insiders hold concen-
trated exposures to their own firms, perhaps for incentive reasons (May, 1995; Guay, 1999; Himmelberg et
al., 2002; Panousi and Papanikolaou, 2012).
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tion features a boom that coincides with a fall in another location’s valuation, the rising
market simultaneously borrows from the falling market.

In the presence of uninsurable consumption fluctuations, agents naturally command
risk premia on their local equity, which is exposed to these same shocks. As with the
level of self-fulfilling volatility, the associated risk premia also contain a single-factor
structure. Thus, our theory sheds light on time-varying compensation for idiosyncratic
risk exposure.

Applications. We consider two applications of our framework. First, we interpret our
locations as firms, and we interpret the agents in the model as corporate insiders that
hold concentrated positions in the firm. With this interpretation, our model produces
firm-level idiosyncratic stock returns whose volatility has a factor structure. Because
corporate insiders hold undiversified exposures to their own stocks, firm-specific shocks
command a risk premium, whose magnitude is a function of the aggregate idiosyncratic
volatility factor. These patterns are supported by the empirical finance literature on firm
dynamics (Hopenhayn, 1992; Sutton, 1997; Luttmer, 2007; Gabaix, 2009) and firm-specific
stock returns (Campbell et al., 2001; Herskovic et al., 2016).

Second, we extend the model to include “non-tradable” consumption goods and in-
terpret our locations as countries. Self-fulfilling volatility in asset prices now spills over
into real exchange rates. This volatility is in excess of fundamentals, it creates unshared
risks, and it garners a risk premium, all of which help resolve various exchange rate
puzzles (e.g., the PPP, Backus-Smith, and UIP puzzles). The paper discusses these puz-
zles in more detail, along with a growing international macro literature that embraces
market incompleteness in pursuit of resolutions (Gabaix and Maggiori, 2015; Lustig and
Verdelhan, 2019; Itskhoki and Mukhin, 2021).

Contributions to the multiplicity literature. Our construction of self-fulfilling equilibria
shares a similar flavor to seminal studies that build sunspot shocks around a stable
steady state. We differ from this literature in some of the assumptions we adopt—we
require neither overlapping generations (Azariadis, 1981; Cass and Shell, 1983; Farmer
and Woodford, 1997) nor aggregate increasing returns (Farmer and Benhabib, 1994) to
induce stability. Instead, we provide several new examples of “stabilizing forces.” Our
equilibrium construction is also more general in permitting an arbitrary numbers of
markets, arbitrary fundamental shocks, and a broad class of self-fulfilling shocks.

A key feature of our analysis is that self-fulfilling fluctuations are less likely to be
aggregate phenomena. This result echoes Loewenstein and Willard (2006), who show
that noise-trader volatility in De Long et al. (1990) cannot survive the endogeneity of the
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interest rate in general equilibrium. This result also distinguishes our mechanism from
several other studies that build multiplicity through collateral constraints or other financ-
ing frictions (Krishnamurthy, 2003; Benhabib and Wang, 2013; Miao and Wang, 2018;
Schmitt-Grohé and Uribe, 2021), which continue to operate in single-location, closed-
economy settings.

Our results are closer to the OLG model of Gârleanu and Panageas (2020) and the
limited enforcement model of Zentefis (2022). Like those models, our multiplicity arises
when there are multiple traded assets and a link between valuations and some funda-
mental. Our contribution is to provide a much more general analysis, explore the conse-
quences of market segmentation, and apply our model to a few applications connecting
volatility to puzzles in the literature.

Outline. The remainder of the paper proceeds as follows. Section 1 describes the model.
Section 2 analyzes the deterministic equilibria of the model. Section 3 analyzes stochastic
complete-markets equilibria. Section 4 layers on some financial market segmentation.
Section 5 studies some applications of the model. That section also contains lengthy
discussions of the existing literature in the context of each application.

1 Model

An endowment economy is set in continuous time that is indexed by t ≥ 0.

Endowments. There are N “locations” in the economy. Each location can represent a
firm, a sector, an industry, a country, or a distinct financial market. Each location n
receives an endowment stream yn,t, with the aggregate endowment denoted by Yt :=

∑N
n=1 yn,t. The endowment of location n follows

dyn,t = yn,t

[
gn,tdt + νdBt + ν̂dB̂n,t − ν̂

N

∑
i=1

yi,t

Yt
dB̂i,t

]
, (1)

where (B, B̂1, . . . , B̂N) is an (N + 1)-dimensional standard Brownian motion. We think of
B as the aggregate fundamental shock and B̂ := (B̂n)N

n=1 as location-specific fundamental
shocks. For simplicity, each location has symmetric shock exposures ν and ν̂. Our results
do not rely on the presence of fundamental shocks, and we could very well set ν = ν̂ = 0.
In fact, in most of the derivations presented in the body of the paper, we will shut down
these fundamental shocks for clarity. We leave the local expected growth rate gn arbitrary
for now and discuss this growth rate in more detail below. Summing across n in Eq. (1),
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the aggregate endowment follows

dYt = Yt[gtdt + νdBt]. (2)

We have purposefully specified location-specific shock exposures in Eq. (1) in order that
the aggregate volatility is the constant ν in Eq. (2).

Financial Markets. Each location offers a single asset in positive net supply that is
a claim to its local endowment yn,t—we refer to this as the local equity market. The
equilibrium equity price in location n is qn,tyn,t, where qn,t is the price-dividend ratio. In
addition to these N distinct equity markets, there is a risk-free bond in zero net supply
that offers equilibrium interest rate rt. Finally, there is an integrated futures market for
trading claims on the fundamental shocks (B, B̂1, . . . , B̂N), with each future in zero net
supply. Allowing these futures markets is not critical but affords theoretical clarity to
our results on multiplicity, in the sense that we isolate the minimal needed deviation
from perfect markets.

A different representative agent lives in each location. In the first part of the paper
(Sections 2-3), we will assume markets are complete, in the sense that these agents can
invest in all local equity markets, the short-term bond market, and the futures markets.
This complete-markets case transparently conveys the construction of our equilibrium
multiplicity. In the second part of the paper (Sections 4-5), we will assume markets are
segmented, in the sense that representative agent n can only invest in local equity market
n, in addition to the bond and futures markets. (Hence, the bond and futures markets
will be integrated throughout the paper.)

In the complete-markets case, there will be a unique stochastic discount factor (state-
price density) ξt. In the segmented-markets case, each location will have a potentially
different state-price density ξn,t (in fact, because this case features incomplete markets,
each location could potentially have many state-price densities, but we will focus on the
one which corresponds to the marginal utility of agent n). To capture both cases at once,
we will often write ξn,t for the location-n state-price density.

Budgets and Constraints. Based on the assumptions so far, the financial wealth wn,t of
the representative agent in location n evolves as

dwn,t = (wn,trt − cn,t)dt + ϑn,t(ηtdt + dBt) + ϑ̂n,t · (η̂tdt + dB̂t) (3)

+
N

∑
i=1

θn,i,t

( 1
qi,t

dt +
d(qi,tyi,t)

qi,tyi,t
− rtdt

)
, wn,0 = qn,0yn,0.
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The terms ϑn,t and ϑ̂n,t represent positions in the futures markets, which have unit ex-
posure to the shocks (B, B̂) and earn those shocks’ market prices of risk (η, η̂), to be
determined in equilibrium. The term θn,i,t is agent n’s position in equity market i. In the
complete market case, these positions are unrestricted. In the segmented market case,
agents will face an additional constraint that says θn,i,t = 0 for all i 6= n (no investment
in other equity markets). Note that wn,t − ∑N

i=1 θn,i,t represents the amount of saving
(borrowing, if negative) in the bond market. The initial condition wn,0 = qn,0yn,0 says
that the agent’s initial endowment is a single share of the local equity, although this does
not necessarily pin down their initial wealth, as the price qn,0 is endogenous. In addi-
tion to Eq. (3), the agent must obey the solvency constraint wn,t ≥ 0 (this is the natural
borrowing limit) and the No-Ponzi condition

lim
T→∞

ξn,T

(
wn,T −

N

∑
i=1

θn,i,T

)
= 0. (4)

The No-Ponzi condition prohibits asymptotic indebtedness.

Preferences. Agents have infinite lives, CRRA utility with elasticity of intertemporal sub-
stitution (EIS) ρ−1, time discount rate δ > 0, and rational expectations. Mathematically,
preferences are represented by

E0

[ ∫ ∞

0
e−δt c1−ρ

n,t − 1
1− ρ

dt
]
. (5)

The limiting case ρ = 1 corresponds to logarithmic utility, which we will use to illustrate
many results.

Market Clearing. Clearing of the goods and bond markets is standard: ∑N
n=1 cn,t = Yt

and ∑N
n=1(wn,t − ∑N

i=1 θn,i,t) = 0. In addition, all the futures markets need to clear, so

∑N
n=1 ϑn,t = 0 and ∑N

n=1 ϑ̂n,t = 0. Local equity market clearing is ∑N
i=1 θi,n,t = qn,tyn,t for

each n. Finally, combining the bond and equity market clearing conditions leads to the
convenient aggregate wealth constraint ∑N

n=1 wn,t = ∑N
n=1 qn,tyn,t = QtYt, where Qt is the

aggregate price-dividend ratio.

Growth Rates. To obtain our interesting multiplicity results, we will model a type of
endogeneity in fundamental growth rates. We assume local growth rates take the form

gn,t = g + λ(qn,t − q∗), λ ≥ 0, (6)
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for some common parameters g, λ, and q∗. We will usually take q∗ to be the “steady
state” valuation ratio. The assumption of a linear growth-valuation link is convenient
analytically, and in many cases it is without much loss of generality.2

Eq. (6) is a reduced-form representation of a microfounded link between dividend
growth and asset prices. One microfoundation of this link is that asset prices carry
payoff-relevant information. Corporate managers filter this information from stock prices
and update their investment decisions accordingly (Chen et al., 2007; Bakke and Whited,
2010; Goldstein and Yang, 2017; Bond et al., 2012). Under this interpretation, λ > 0
is sensible: when valuations are above their typical level, managers will infer positive
information and invest more. Internet Appendix C provides three alternatives to the
endogenous growth in Eq. (6) that also generate the possibility of non-fundamental
volatility—we discuss these alternatives in Section 3.4 in more detail.

Under the linear growth-valuation link (6), the aggregate growth rate is given by

gt :=
N

∑
n=1

yn,t

Yt
gn,t = g + λ(Qt − q∗), (7)

where recall the aggregate valuation ratio is Qt. Eq. (7) illustrates the convenience of
the linear functional form: aggregate growth only depends on the aggregate valuation,
rather than the entire cross-sectional distribution of valuations.

Extrinsic Shocks. To introduce and allow the possibility of non-fundamental volatil-
ity, conjecture that the price-dividend ratio of each location’s asset follows a stochastic
process of the form

dqn,t = qn,t

[
µ

q
n,tdt + ς

q
n,tdBt + ς̂

q
n,t · dB̂t + σ

q
n,t · dZt

]
, (8)

where Z is an N-dimensional Brownian motion, independent from B and B̂. The shock
Zt is extrinsic, and it is the source of self-fulfilling fluctuations, if any exist.

We refer to σ
q
n,t as the self-fulfilling volatility of location n. If σ

q
n,t > 0 for some n, we

will say that the economy exhibits self-fulfilling volatility; if σ
q
n,t = 0 for all n, we will

say self-fulfilling volatility does not exist.
Economically, the extrinsic Z shocks arise from sources that we do not explicitly

model—they are sunspot shocks. In all papers with sunspot shocks, a common ques-
tion is “what is the sunspot?” We do not take any stand on this, but there are several

2Indeed, much of the analysis is confined local to steady state, so any nonlinear growth-valuation
link would effectively be linearized anyway. In a previous working paper version, we allowed in many
theoretical results an arbitrary nonlinear link gn,t = Γ(qn,t), for some increasing function Γ(·).
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possibilities explored in the literature. One popular candidate is investor sentiment or
signals that coordinate beliefs (Benhabib et al., 2015); other candidates highlighted by
the literature are shocks with vanishingly small impacts on fundamentals so that they
are effectively extrinsic but still retain a coordination role (Manuelli and Peck, 1992).

No-Bubble Assumption. As a consequence of the No-Ponzi conditions (4) and individ-
ual agents’ transversality condition limT→∞ Et[ξn,Twn,T] = 0, it is possible to show that
limT→∞ ξn,Tqn,Tyn,T = 0 holds in any equilibrium. This is enough for our purposes, but
we impose the following slightly stronger “no-bubble” condition for theoretical clarity.

Condition 1. For each n, it holds that limT→∞ Et[ξn,Tqn,Tyn,T] = 0.

Because of Condition 1, equity prices equal present values of future dividends. Self-
fulfilling volatility in our model is thus consistent with classical no-bubble theorems
(e.g., Santos and Woodford, 1997; Loewenstein and Willard, 2000) that give conditions
under which bubbles are not possible.

Equilibrium. This completes the description of the model. An equilibrium is a set
of adapted processes (yn,t, cn,t, wn,t, qn,t, ξn,t, (θn,i,t)

N
i=1, ϑn,t, ϑ̂n,t)t≥0 for 1 ≤ n ≤ N and

(rt, ηt, η̂t)t≥0, adapted to the augmented filtration generated by (B, B̂, Z), such that:
agents maximize (5) subject to their budget constraint (3), their No-Ponzi condition (4),
and their solvency constraint wn,t ≥ 0; Eqs. (1), (6), and (8) all hold; all markets clear;
and Condition 1 holds. In Appendix A, we derive the complete set of conditions char-
acterizing equilibrium that we will use going forward. In expositing our results below,
we will bring forth and explain any critical equations, so it will not be necessary for the
reader to consult Appendix A unless a detailed derivation is desired.

Endowment and consumption shares. Because of the scalability properties of our
model, we will repeatedly make use of the endowment and consumption shares to char-
acterize equilibrium:

αn,t :=
yn,t

Yt
and xn,t :=

cn,t

Yt
. (9)

The dynamics of all stationary variables can be described without reference to Yt, once
we know (αn,t, xn,t)N

n=1. In Sections 2-3, markets will be complete so that xn,t will play
no role; but when market segmentation is introduced in Sections 4-5, the consumption
distribution will become important.
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2 Multiplicity of deterministic equilibria

To get to the core forces quickly, we start with the deterministic equilibria of our model.
Let us shut down all fundamental shocks (ν = ν̂ = 0), and let us examine equilibria with
ς

q
n,t = 0, ς̂

q
n,t = 0, and σ

q
n,t = 0. These equilibria will highlight most of the intuition that

will also be present in the more complex stochastic equilibria to come.

2.1 Derivation of equilibrium

In a deterministic equilibrium, each location’s equity is priced according to the following
Euler equation:

q̇n,t

qn,t
+ gn,t +

1
qn,t

= rt. (10)

At the same time, aggregating optimal consumption dynamics ċn,t/cn,t = ρ−1(rt − δ)

across locations, we obtain the equilibrium interest rate

rt = δ + ρgt. (11)

Substituting (11) into (10) and using the expressions for the growth rates gn,t and gt, we
obtain

q̇n,t

qn,t
+

1
qn,t

= δ + (ρ− 1)
(

g− λq∗ + λQt

)
− λ

(
qn,t −Qt

)
. (12)

From Eq. (12), we see that the steady state of this economy features q∗ = 1
δ+(ρ−1)g and

hence gn,t = g for all n. (Consequently, we will always implicitly assume δ+(ρ− 1)g > 0
so that a steady-state equilibrium exists.)

Eq. (12) suggests both the mathematics and the intuition for how the growth-valuation
link matters for determinacy. Consider the log case (ρ = 1), and imagine Qt is fixed at
steady state q∗ = δ−1. Then, the dynamical system for qn,t becomes

q̇n,t = −1 + qn,t
(
δ + λq∗

)
− λq2

n,t.

This dynamical system has two steady states, but only the one with qn = q∗ is relevant
(because that one coincides with the aggregate valuation). As long as λ > δ/q∗ = δ2,
this larger steady state is locally stable, in the sense that ∂q̇n

∂qn

∣∣
qn=q∗ = δ− λq∗ < 0. The

left panel of Figure 1 plots the dynamical system for various values of λ. When the
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economy has this stability property, equilibrium is indeterminate: one may start with
any qn,0 close enough to q∗, and the valuation will drift towards q∗.

Figure 1: Valuation dynamics.
Notes. The left panel plots the dynamics of a single location’s valuation with ρ = 1 and various levels of λ.
The right panel plots the aggregate valuation dynamics with λ = 2δ2 and various levels of ρ. Both panels
assume δ = 0.05 and g = 0.

Why is the arbitrary initial valuation qn,0 self-fulfilled? Intuitively, if the asset val-
uation is low, then the growth-valuation link induces growth to be low as well. Low
growth is disappointing for investors, whose required return of rt must instead be met
by capital gains. In other words, q̇n,t/qn,t must rise to satisfy investors—this force brings
valuations back up towards steady state. An analogous argument holds if qn,0 takes any
value slightly above steady state.

The point of the ensuing analysis in this section is to generalize these arguments. We
would like to consider how the EIS ρ−1 matters and to understand the consequences of
local indeterminacy on the aggregate valuation ratio Qt. We will provide a complete
answer to these questions.

Let us now compute the dynamics of the aggregate valuation ratio Qt. From its
definition, we have

Q̇t =
N

∑
n=1

(α̇n,tqn,t + αn,tq̇n,t)
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The dynamics of endowment shares are given by

α̇n,t = αn,t(gn,t − gt). (13)

Then, using Eqs. (10), (11), and (13), we obtain

Q̇t = −1 +
[
δ + (ρ− 1)(g− λq∗)

]
Qt + λ(ρ− 1)Q2

t . (14)

Similar to the location-specific valuations, we may compute the local stability of the
aggregate valuation. Notice that ∂Q̇

∂Q

∣∣
Q=q∗ = δ + (ρ − 1)g + λ(ρ − 1)q∗. If ρ ≥ 1, then

the steady state is unstable, in the sense that ∂Q̇
∂Q

∣∣
Q=q∗ > 0. This instability suggests

there can be no indeterminacy in Qt, which must always equal its steady-state value q∗.
Conversely, if ρ < 1, then the dynamics of Qt are stable if λ is large enough. The right
panel of Figure 1 plots the aggregate valuation dynamics for various levels of ρ. Thus, it
seems that the EIS is critical for whether there can be aggregate indeterminacy.

The intuition for why the EIS affects the nature of indeterminacy—i.e., whether val-
uations in aggregate can be indeterminate or not—is as follows. A higher conjectured
aggregate valuation Qt leads to a higher aggregate growth rate gt, through Eq. (7).
Higher aggregate growth increases the demand for borrowing and consumption today,
which raises the interest rate rt because current aggregate output is pre-determined at
Yt. Whereas higher aggregate growth gt tends to raise Qt, the rise in rt tends to offset
this and lower Qt; the balance of these effects controls whether or not aggregate indeter-
minacy can arise. If the EIS is high, a small rise in rt is enough to induce savings, and
so Qt can rise in a self-fulfilled way. If the EIS is low, however, the rise in rt must be
more significant, and so the conjectured boom in Qt cannot be self-justified. This feed-
back through the interest rate is what starkly distinguishes the questions of aggregate
indeterminacy from that in the local economies.

2.2 General classification of equilibria

Let us now provide a general result. Staring at Eqs. (12) and (14), we see that this con-
stitutes an autonomous dynamical system for (qn,t)N

n=1 and Qt. This dynamical system
is nonlinear, but we may linearize it near steady state to evaluate its stability properties,
which is the key criterion for whether or not equilibrium indeterminacy exists.

The equilibrium vector is qt := (q1,t, . . . , qN,t, Qt)′, and so local stability properties
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are determined via the eigenvalues of the (N + 1)× (N + 1) Jacobian matrix

J :=
[

∂q̇t

∂q′t

∣∣∣
ss

]
.

In the appendix, we solve Jv = ηv to compute the eigenvalues and eigenvectors of J. It
turns out that J has two eigenvalues,

η− = δ + (ρ− 1)g− λq∗

η+ = δ + (ρ− 1)g + (ρ− 1)λq∗,

with the corresponding eigenvectors

v(η+) = 1N+1

v(η−) ∈ {e1, . . . , eN},

where en is the nth elementary vector. In other words, the eigenvalue η− has multiplicity
N. Using this result, the appendix shows that the various asset prices can be written,
close to steady state, as

qn,t ≈ q∗ + (qn,0 −Q0)eη−t + (Q0 − q∗)eη+t, n = 1, . . . , N;

Qt ≈ q∗ + (Q0 − q∗)eη+t

From these standard results, we simply examine how the various parameters influence
the signs of η− and η+ to prove the following theorem. (All proofs are in Appendix B.)

Theorem 1. Consider deterministic equilibria. Then,

(i) Suppose λ > [δ + (ρ− 1)g]2 > (1− ρ)λ, so that η− < 0 < η+. Then, any equilibrium
local to steady state must have Q0 = q∗, but (qn,0)

N
n=1 can deviate locally from steady state

in arbitrary directions that satisfy q∗ = ∑N
n=1 αn,0qn,0.

(ii) Suppose (1− ρ)λ > [δ + (ρ− 1)g]2, so that η− < η+ < 0. Then, Q0 and (qn,0)
N
n=1 can

all deviate locally from steady state in arbitrary directions that satisfy Q0 = ∑N
n=1 αn,0qn,0.

Theorem 1 allows us to make three central points that we have already hinted at.
First, if the growth-valuation link is strong enough, λ > [δ + (ρ− 1)g]2, then the steady
state is locally stable, which permits some amount of indeterminacy. Quantitatively,
the required connection between growth rates and valuations is not too extreme: if the
steady-state valuation ratio is q∗ = 25, then growth rates must be at least 0.4% above
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average when valuations are 10% above average.3 Second, if the EIS is smaller than or
equal to one, ρ ≥ 1, then any indeterminacy is purely redistributive indeterminacy in the
sense that the aggregate valuation ratio cannot deviate from steady state. Redistributive
indeterminacy means that if some locations’ valuations are high, then other locations’
valuations must be low. Third, if the EIS is larger than one, ρ < 1, and the strength
of growth-valuation link is sufficiently high, λ > [δ+(ρ−1)g]2

1−ρ , then even the aggregate
valuation ratio can be indeterminate.

Figure 2: Indeterminacy Regions.
Notes. When (1− ρ)λ > (q∗)−2, “Aggregate Indeterminacy” is possible, in the sense that Q is not pinned
down. When (1− ρ)λ < (q∗)−2 < λ, only “Redistributive Indeterminacy” is possible, in the sense that Q
is pinned down, but (qn)N

n=1 are not. When λ < (q∗)−2, a “Unique Equilibrium” results. The plot uses
q∗ = 25.

Figure 2 displays the indeterminacy regions implied by Theorem 1. In making the
plot, λ and ρ are allowed to take various values, but q∗ is held fixed. (Note that, unless
g = 0, q∗ changes with ρ. So implicitly we are varying δ along with ρ in order to keep q∗

fixed. One can think of this as “recalibrating” the primitive model parameters to match
a given observed valuation ratio.)

In this paper, we are particularly interested in the redistributive indeterminacy, for a
few reasons. First of all, only redistributive indeterminacy can exist if the EIS is below

3For a (100× p)% higher valuation, the growth rate is higher by λ((1 + p)q∗)− λ(q∗) = pλq∗ > p/q∗,
where the last inequality uses the requirement λ > (q∗)−2. For a 10% higher valuation (p = 0.1) with
q∗ = 25, we have p/q∗ = 0.004 = 0.4%. More generally, the semi-elasticity dgn,t

d log qn,t
must at least be 1/q∗.
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one. While there is significant debate on the magnitude of the EIS, we view EIS below
one as plausible.4 Second, even if the EIS is above one, aggregate indeterminacy requires
a significantly stronger growth-valuation link than is required to produce redistributive
indeterminacy (e.g., with ρ = 0.5, the growth-valuation link must be twice as strong
to induce aggregate indeterminacy). While no evidence exists directly measuring the
magnitude of the growth-valuation link, we think too large of a link is less plausible. In
sum, redistributive indeterminacy exists under much broader conditions than aggregate
indeterminacy, and so we view it as more likely (see also Figure 2).

Finally, it is very clear from this deterministic environment (which necessarily has
complete financial markets) that market segmentation is not critical to asset-price inde-
terminacy. Here, all agents consume multiples of each other and yet asset prices are
indeterminate. The same will be true in the next section, where we introduce volatility
but maintain complete markets.5

3 Stochastic equilibria under complete markets

In this section, we want to generalize the indeterminacy results of Section 2 by allowing
for self-fulfilling stochastic fluctuations. First, we will generalize the claim that redis-
tributive multiplicity is, in many cases, the only type of multiplicity (i.e., when the EIS
is below one or when the EIS is above one but the growth-valuation link is insufficiently
strong). Second, we will provide a general construction of redistributive stochastic fluc-
tuations to highlight the factor structure in volatility. And finally, we will provide con-
ditions under which such a construction constitutes an equilibrium.

3.1 Prevalence of redistribution

Let us first generalize the claim that redistributive indeterminacy is the “more common”
type of indeterminacy in this model. In particular, any indeterminacy is necessarily re-
distributive when ρ ≥ 1, and a local version of this result also holds when ρ < 1 if
additionally the growth-valuation link is insufficiently strong. To provide a transpar-

4For instance, micro evidence such as Campbell and Mankiw (1989) suggests an EIS significantly below
one, whereas some macro-finance evidence stemming from the literature on “long-run risks” beginning
with Bansal and Yaron (2004) point to an EIS above one. Still other studies that consider heterogeneity,
such as Guvenen (2009) and Gârleanu and Panageas (2015), suggest significant heterogeneity in EIS but
do not require calibrations of the EIS above one to match aggregate asset-price data.

5The reader may expect the First Welfare Theorem to hold with complete markets, so how could inde-
terminacy emerge? Intuitively, one can understand our growth-valuation link as a pecuniary externality.
Such externalities cause deviations from the First Welfare Theorem and allow equilibrium non-uniqueness.
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ent derivation, assume the absence of fundamental shocks (ν = ν̂ = 0)—this will be
generalized in the formal results below.

With complete markets, there is perfect consumption risk-sharing, so no agent retains
exposure to extrinsic shocks. In particular, the Euler equation ·cn,t/cn,t = ρ−1(rt − δ)

still holds here. A first implication of this perfect risk sharing is the absence of non-
fundamental risk premia: the pricing equation for local equity is now the analogous
expression (recall µ

q
n,t is the geometric drift of qn,t)

µ
q
n,t + gn,t +

1
qn,t

= rt. (15)

A second implication of perfect risk sharing is the lack of any precautionary savings due
to extrinsic shocks, and so the equilibrium interest rate is

rt = δ + ρgt, (16)

exactly as in a deterministic equilibrium. For these reasons, much of the analysis of
Section 2 will carry over to this section.

In particular, the valuation drifts will remain identical to the deterministic case. Sub-
stituting the expressions for rt in (16) and growth rates gn,t and gt in (6) and (7) into the
pricing equation (15), we have

µ
q
n,t +

1
qn,t

= δ + (ρ− 1)
(

g− λq∗ + λQt

)
− λ

(
qn,t −Qt

)
. (17)

Using (13), (17), and the definition of Qt, the aggregate valuation ratio satisfies

dQt =
[
− 1 +

(
δ + (ρ− 1)(g− λq∗)

)
Qt + λ(ρ− 1)Q2

t

]
dt + σQ

t · dZt, (18)

where σQ
t := ∑N

n=1 αn,tqn,tσ
q
n,t. As before, Qt still has unstable dynamics when ρ ≥ 1, and

so all indeterminacy is redistributive. The following lemma provides a general result
that also allows for fundamental shocks.6

6Eq. (18) is a one-dimensional backward stochastic differential equation (BSDE). One solution is
Qt = (δ + (ρ − 1)g)−1. Lemma 1 uses standard mathematical results on uniqueness of solutions to
infinite-horizon BSDEs to prove that this is the only solution. Essentially, these BSDE tools generalize
to stochastic environments the idea that unstable dynamics induce unique solutions. Note that Lemma 1
relies on a linear growth-valuation link, because otherwise the dynamics of Qt would depend on the entire
distribution of valuations (qn,t)N

n=1. Although we see no clear reason why this would modify the result
that redistribution is necessary, the analysis of a multi-dimensional BSDE system is substantially more
complex than the one-dimensional case (especially when, as we expect to be the case for our model, the
distribution of valuations is indeterminate even when the aggregate valuation is pinned down uniquely).
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Lemma 1. Suppose financial markets are complete. Suppose ρ ≥ 1. Then, the only bounded
solution for the aggregate valuation is Qt = q∗ forever.

Using a very similar methodology, but also restricting attention to all possible equi-
libria where Qt does not exceed steady state by too much, we may also provide a coun-
terpart to Lemma 1 for ρ < 1 and for a sufficiently tame growth-valuation link.

Lemma 2. Suppose financial markets are complete. Suppose ρ < 1, and λ < ( 1
1+ε )

2( 1
1−ρ )(

1
q∗ )

2,
for some ε > 0. Then, among equilibria where Qt ≤ q∗(1 + ε) forever, the only solution for the
aggregate valuation is Qt = q∗ forever.

3.2 General construction of redistributive fluctuations

If Qt is constant, any indeterminacy is purely redistributive. Here, we flesh out the im-
plications of redistributive fluctuations—the analysis of this section applies even beyond
complete financial markets, and will be used later when markets are segmented.

In particular, constant aggregate valuations require, from Eq. (18),

N

∑
n=1

αn,tqn,tσ
q
n,t = 0. (19)

In other words, extrinsic shocks must offset across local prices. There are infinite number
of choices for (σq

n,t)
N
n=1 that satisfy (19). The general solution is as follows. Let Mt be any

N × N matrix-valued process with unit length columns and rank(Mt) < N. Then, for
an arbitrary vector vt in the null-space of Mt, set[

α1,tq1,tσ
q
1,t α2,tq2,tσ

q
2,t · · · αN,tqN,tσ

q
N,t

]
= Mtdiag(vt). (20)

Every collection of diffusions (σ
q
n,t)

N
n=1 that solve Eq. (19) must take the form (20) for

some Mt and vt. However, this solution is a bit too general to be useful. By appealing to
a few sensible properties, that in particular restrict Mt, we aim to characterize a “broad
class” of redistributive equilibrium volatilities.

Assumption 1. In equilibria satisfying Eq. (19), equivalently Eq. (20), we assume that Mt ≡ M
is constant over time and satisfies rank(M) = N − 1.

Assumption 1 restricts Mt in two ways. First, setting Mt ≡ M to be a constant matrix
equivalently restricts the cross-sectional price correlations to be constant (it will be clear
soon that corrt[d log qi,t, d log qj,t] = (Mtei)

′Mtej). The idea here is that coordination
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determines these cross-sectional correlations, and it seems sensible and more sustainable
for such coordination to be relatively anchored over time. As the simplest way to capture
such anchored correlation, we restrict Mt ≡ M to be a constant matrix.

Second, we only consider matrices with one degree of degeneracy. This restriction
is justified by the following mathematical property: among all possible choices of M,
those with rank(M) = N − 1 are of “full measure” in the sense that a random singular
matrix would have a rank of N− 1 with probability 1. Intuitively, one can imagine agents
trying to coordinate on a volatile equilibrium; almost-surely they will coordinate on one
where rank(M) = N− 1. For this reason, assuming rank(M) = N− 1 is really a generic
property of our volatile equilibria.

Let us now explain how to construct all possible volatile and redistributive equilib-
ria. More specifically, the following procedure can be used to construct every possible
solution to Eqs. (19)-(20) that satisfies Assumption 1.

Lemma 3. Consider the following procedure:

1. Pick any non-negative, non-zero N × 1 vector v∗ with unit length. Set the matrix M to
any N × N matrix with null(M) = span(v∗).

2. Let (ψt)t≥0 be any non-negative scalar process.

3. Set

σ
q
n,t = ψt

v∗n
αn,tqn,t

Men, (21)

where v∗n is the nth element of v∗, and en is the nth elementary vector.

Then, (σq
n,t)

N
n=1 solves Eq. (19) for each t. Furthermore, every solution to Eq. (19) that also

satisfies Assumption 1 can be constructed by the above procedure.

The key implication of Lemma 3 is a single-factor structure in volatilities. Indeed, note
that the level of volatility in each location is given by

‖σq
n,t‖ = ψt

v∗n
αn,tqn,t

. (22)

These volatilities feature a scalar process ψt that moves all volatilities up and down
together. As explained by the lemma, this is a necessary outcome: every set of redis-
tributive volatilities satisfying Assumption 1 has such a structure. Whereas it is often dif-
ficult to pinpoint generic predictions in models of multiple equilibria, this single-factor
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volatility structure prevails in almost all (in the precise mathematical sense) redistribu-
tive sunspot equilibria with constant cross-location correlations.

3.3 Constructing a volatile equilibrium with redistribution

Consider redistributive fluctuations constructed via the procedure in Lemma 3. The
remaining question is which choices of ψt and v∗ constitute an equilibrium? Can we
have ψt > 0 at some times, so that there exists self-fulfilling volatility?

To answer this question, we will appeal to stability considerations: as long as we
construct volatilities in a way that keeps valuations non-explosive, we will have an equi-
librium. How can one ensure non-explosion? Start from Eq. (17), and substitute Qt = q∗

and the diffusion (21), to get the following dynamic equation for local valuations:

dqn,t =
[
− 1 + qn,t

(
δ + (ρ− 1)g− λ(qn,t − q∗)

)]
dt + ψt

v∗n
αn,t

(Men) · dZt, (23)

The key issue for equilibrium is whether the dynamics in (23) keep qn,t from hitting
zero or from exploding towards infinity (and thereby violating some Ponzi condition).
Luckily, the drift of qn,t in (23) is identical to the deterministic equilibrium case, so we
expect the stability properties to carry over here. The following proposition settles how
ψt can be chosen to ensure equilibrium (generalized to allow fundamental shocks).

Proposition 1. Suppose financial markets are complete. Suppose λ > (q∗)−2. Assume either
N ≥ 3 or ν̂ = 0. Then, an equilibrium exists with redistributive self-fulfilling volatility, which
can be constructed as follows. Set v∗ and M according to Step 1 of Lemma 3. Let (ψt)t≥0 be any
non-negative process satisfying the following two properties:

(P1) ψt/ minn αn,t is bounded;

(P2) ψt vanishes as minn qn,t approaches 1
q∗ (ε + λ−1) from above, for 0 < ε < (q∗)2− λ−1, or

as maxn qn,t approaches Kq∗ from below, for some K > 1.

In this construction, we have 1
λq∗ < qn,t < Kq∗ for all t, almost-surely.

Proposition 1 proves the existence of a large class of equilibria with self-fulfilling
volatility, indexed by the scalar process ψt. The amount of volatility is only restricted
by the requirements (P1) and (P2), which say that volatility vanishes “far from steady
state” (P2) and that all volatilities stay bounded (P1). If so, then volatility never pushes
valuations outside of their “stable region” which ensures that no explosion or free dis-
posal condition is violated. While conditions (P1)-(P2) involve the endogenous objects
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minn αn,t and minn qn,t and maxn qn,t, it should be clear how ψt can be picked to satisfy
these conditions by vanishing if these endogenous objects become venture into extreme
territory.7

Remark 1. The remainder of the paper is primarily focused on redistributive volatility,
where Qt is not subject to sunspot shocks. That said, it is possible to construct an
example where Qt also has sunspot volatility, as long as the EIS is larger than one (ρ < 1)
and the growth-valuation link is sufficiently strong (λ > 1

(1−ρ)(q∗)2 ). Internet Appendix
D contains a formal result and example construction.

Remark 2. This section and main results have been presented focusing on indeterminacy
of the sunspot volatilities (σ

q
n,t)

N
n=1. However, by following the logic closely, the reader

will rightly guess that there is also an indeterminacy on how the local valuations qn,t

load on the fundamental shocks; that is, (ςq
n,t)

N
n=1 and (ς̂

q
n,t)

N
n=1 are also indeterminate.

For example, suppose we consider redistributive indeterminacy. Then, the fundamen-
tal exposures would be subject to redistribution conditions analogous to Eq. (19), e.g.,

∑N
n=1 αn,tqn,tς

q
n,t = 0 for the exposures to the aggregate shock dBt. Besides satisfying

this redistribution condition, the exposures could take nearly arbitrary values cross-
sectionally. If we further impose a constant-correlation assumption (as in Assumption
1), redistributive aggregate exposures would necessarily take the form ς

q
n,t = ψt

v∗n
αn,tqn,t

for
some scalar process ψt and some vector v∗. This paper does not explore these possibil-
ities in more detail for two reasons: (i) we view it as simpler and theoretically clearer
to study indeterminacies via an extrinsic shock; and (ii) redistribution of fundamental
exposures is required under identical conditions as redistribution of sunspot exposures.

3.4 Alternative sources of endogeneity and stability

By now, it should be clear that endogenous growth rates are essential. Having un-
derstood that the role of endogenous growth is to induce stable dynamical systems, a
natural question is whether alternative sources of endogeneity might work similarly. In-
ternet Appendix C provides three additional examples of endogeneity that also work as
“stabilizing forces.”

In Internet Appendix C.1, we show that valuation-dependent beliefs can create a sta-
ble dynamical system and hence support self-fulfilling volatility. In particular, we sup-
pose that, while true growth rates remain constant, investors become more optimistic

7For instance, let ψ̄t be any scalar process. Pick any number L > 0. Define the endogenous variable

¯
ψt := minn αn,t ∧ (Kq∗ −maxn qn,t) ∧ (minn qn,t − ε+λ−1

q∗ ). Then, ψt = ψ̄t ∧ L
¯
ψt satisfies (P1)-(P2).
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about growth when valuations rise. Perhaps agents use asset prices to construct their
beliefs about growth to simplify a complex underlying filtering problem, or perhaps ris-
ing asset prices just create euphoria amongst investors. Either way, such optimism about
growth encourages asset demand which fulfils the initial conjecture of a higher valua-
tion. This specification mirrors our baseline model’s growth-valuation link, but only in
investors’ heads. An interesting outcome is that beliefs are endogenously extrapolative
(Barberis et al., 2015).

In Internet Appendix C.2, we show that under-investment, of the type induced by
“debt overhang” (e.g., Hennessy, 2004; DeMarzo et al., 2012), creates the needed sta-
bility. The main idea is that potential gains from investment are high relative to actual
investment, which leaves some surplus on the table. As prices rise and boost investment,
debt overhang problems shrink, and some of this surplus is captured by local investors.
The extra returns gained this way compensate investors for lower dividend yields and
ensure stable price-dividend ratios. An intriguing implication is that under-investment
can be a self-fulfilling phenomenon for reasons other than those previously identified
(e.g., non-convex technologies or borrowing constraints).

In Internet Appendix C.3, we show that an overlapping generations economy with
“creative destruction” (e.g., Aghion and Howitt, 1992; Gârleanu and Panageas, 2020)
also produces the required stability. Creative destruction here is represented as new
firms entering and displacing incumbents. If the amount of creative destruction is itself
a function of asset prices, high asset prices can be self-fulfilled by a reduction in new
firm entry, and vice versa. High valuations reduce dividend yields to investors, but
living cohorts are compensated with the preservation of their firms, which removes the
need for valuations to continue growing and thus creates stability.

Economically, Eq. (6) and the examples in Internet Appendix C share a common
property: when valuations rise so that dividend yields fall, investors are compensated
somehow. This compensation can take the form of higher dividend growth rates, higher
perceived growth rates, a drop in under-investment wedges, or less creative destruction.
It is likely that many other examples of stabilizing forces also exist. By identifying
several, we stress that a wide range of plausible environments all generate a similar type
of stability that can support self-fulfilling volatility.

4 Segmented markets

While the previous sections with complete markets demonstrated transparently how to
detect indeterminacies and construct self-fulfilling volatility, we are particularly inter-
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ested in a situation where markets are segmented. We begin with an example con-
struction of an equilibrium with self-fulfilling volatility. Then, we explore some key
properties, including the effects of price volatility on consumption, risk premia, and the
bond market.

4.1 Construction: log utility and self-fulfilling volatility

Let us first generalize the construction of self-fulfilling fluctuations to an environment
with market segmentation. Because the analysis becomes substantially more complex
with segmentation, we assume from here on that ρ = 1 (i.e., log utility).

The first property that carries over to this environment is redistribution. Investors with
log utility consume a fraction δ of their wealth, so the aggregate wealth-consumption
(price-dividend) ratio is Qt = δ−1. Therefore, any self-fulfilling volatility is necessarily
redistributive across locations, and the volatility construction of Lemma 3 continues to
hold. Due to analytical complexity, we do not prove the necessity of redistribution for
the non-log case, but we would expect this to be true (i.e., we expect versions of Lemmas
1-2 to carry over to the segmented-markets setting).8

The next proposition provides a segmented-markets counterpart to the complete-
markets existence and characterization result from Proposition 1. The upshot is that, as
before, a large class of equilibria exists with self-fulfilling volatility, indexed by the single
volatility factor ψt.

Proposition 2. Suppose ρ = 1 and λ > δ2. Assume either N ≥ 3 or ν̂ = 0. Then, an
equilibrium exists with redistributive self-fulfilling volatility, which can be constructed as follows.
Set v∗ and M according to Step 1 of Lemma 3. Let (ψt)t≥0 be any non-negative process satisfying
the following two properties:

(P1) ψt/ minn αn,t and ψt/ minn xn,t are bounded;

(P2) ψt vanishes as minn qn,t approaches δ(ε + λ−1) from above, for 0 < ε < δ−2− λ−1, or as
maxn qn,t approaches Kδ−1 from below, for some K > 1.

In this construction, we have δ
λ < qn,t < Kδ−1 for all t, almost-surely.

8Intuitively, we expect such results to hold, because the complete- and segmented-markets model dy-
namics coincide when endogenous volatilities “vanish far from steady state.” Ultimately, the stability or
instability properties of Qt dynamics when such volatilities vanish are what determines whether or not
there can be aggregate indeterminacy or not. However, proving this formally is substantially more difficult
with segmentation because the BSDE for the aggregate valuation now depends on the full cross-section of
endowment shares, consumption shares, wealth-consumption ratios, and asset valuations.
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Remark 3 (Bond market). While we assume local equity markets are segmented, we do
require some amount of integration. In particular, the bond market must remain integrated
for our multiplicity results. One obvious way to see this is to imagine a single location
living in autarky (i.e., both equity and bond markets are segmented from all other loca-
tions). That would correspond to a single-location model (N = 1), and we already know
such an economy cannot exhibit indeterminacy when ρ = 1.

Another way to understand the importance of the bond market is to think through
the mechanics of equilibrium. If the valuation q1,t increases to an extrinsic shock, agent 1
will have higher future endowments via the growth-valuation link. Knowing her future
endowments will be higher, it is optimal to consume now. But her local endowment
y1,t has not changed in the short run; to consume in excess of her endowment—i.e., to
consume c1,t > y1,t—she must borrow from other locations. The reverse holds for agent
2 who supplies funds to the bond market, due to a reduction in his local valuation ratio:
his future endowments are lower, which incentivizes savings to smooth consumption.
Without the bond market, no valuation changes could be justified.

Remark 4 (Partial equity-issuance). Our equity markets are completely segmented, but
this is not essential. Indeed, imagine agent n could issue equity to outsiders, up to
maximum of φqn,tyn,t. Then, local investors still must retain a fraction 1− φ of their local
equity shocks, which is enough to create the phenomena we will discuss below—self-
fulfilling consumption fluctuations, risk premia, and precautionary savings demand.

4.2 Real effects and risk premia

So far, the equilibria with segmented markets are similar to those with complete markets:
self-fulfilling fluctuations exist, are characterized by a single factor, and are redistributive
across markets.

The novelty under segmented markets is that each agent n is exposed to non-tradable
shocks, through the extrinsic shocks hitting their local asset price. Two consequences
arise: (i) self-fulfilling asset-price volatility has real effects by creating fluctuations in
the cross-sectional consumption distribution; (ii) agents now command risk premia as
compensation for self-fulfilling fluctuations.

The argument is as follows. In segmented markets, agent n must hold the entirety of
asset n, so price shocks hit her wealth. With log utility, these wealth shocks transmit one-
for-one to consumption. Therefore, redistribution in asset valuations causes consump-
tion redistribution. Furthermore, because marginal utility fluctuates with consumption,
agents necessarily demand risk compensation for their sunspot exposures.
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Figure 3: Valuation dynamics with segmented equity markets.
Notes. Parameters are ρ = 1, δ = 0.05, λ = 2δ2, and ν = ν̂ = 0. The economy has N = 2 locations, and
features v∗ = (1, 1). Finally, for plotting purposes, the right panel assumes xn,t = αn,t = 0.5 for each n
(consumption and endowment shares coincide).

Figure 3 plots the expected capital gains qn,tµ
q
n,t in a “symmetric” stochastic equilib-

rium example with N = 2 locations. (In particular, we assume M and v∗ are such that
a single extrinsic shock redistributes across the two locations.) The different values of ψ

correspond to different levels of volatility, since recall αn,tqn,t‖σq
n,t‖ = ψt. For ψ = 0 (solid

line), dynamics are identical to the deterministic equilibrium. For ψ > 0, the presence of
volatility steepens the drift, because low-valuation locations have higher return volatility
and thus higher risk premia. Risk premia must be met by higher expected capital gains,
so this force increases µ

q
n,t when qn,t is low, and vice versa when qn,t is high.

Indeed, the formula for the valuation drift without fundamental shocks and with log
utility (ρ = 1) is

qn,tµ
q
n,t = −1 + δ(1 + λ/δ2)qn,t − λq2

n,t︸ ︷︷ ︸
deterministic component

+ δ
(v∗nψt)2

αn,txn,t︸ ︷︷ ︸
risk premium

− qn,tδ
2

N

∑
i=1

(v∗i ψt)2

xi,t︸ ︷︷ ︸
precautionary savings

(24)

where recall xn,t is the location-n consumption share. (The general formula for µ
q
n,t is
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in Eq. (A.2) of Appendix A.) The term labeled “deterministic component” is the entire
drift when ψt = 0 and is identical to q̇n,t in Eq. (10). The term labeled “risk premium”
arises because investor n demands compensation for the self-fulfilling volatility in his
local equity, a risk premium which must be delivered via future capital gains. We will
elaborate in detail on term labeled “precautionary savings,” which arises from the equi-
librium interest rate, in Section 4.3 below. To see transparently the steepening effect that
ψ > 0 has in Figure 3, simply observe that qn,t scales the precautionary savings term, so
that tends to dominate the risk premium term when qn,t is high, and vice versa.

4.3 Precautionary savings and the bond market

How does self-fulfilling volatility feed back into the bond market? The equilibrium
interest rate of our model is given by

rt = δ + ρgt −
1
2

ρ(ρ + 1)ν2︸ ︷︷ ︸
representative-agent

interest rate

− 1
2

ρ(ρ + 1)
N

∑
n=1

xn,t‖σc
n,t‖2

︸ ︷︷ ︸
idiosyncratic

precautionary savings

(25)

If all locations were perfectly integrated, a representative agent would exist and the
equilibrium interest rate would be δ + ρgt− 1

2 ρ(ρ + 1)ν2, which reflects discounting plus
growth minus the precautionary savings motive due to aggregate volatility.

If locations are segmented, and self-fulfilling volatility takes hold, then an additional
precautionary savings term arises. In particular, ‖σc

n,t‖ is agent n’s consumption growth
exposure to extrinsic shocks. Consumption growth is exposed to extrinsic shocks be-
cause local equity is exposed and agents cannot share this risk with other locations.
Such risk is idiosyncratic, because it necessarily aggregates to zero across locations (i.e.,

∑N
n=1 xn,tσ

c
n,t = 0, because aggregate consumption Yt is not exposed to extrinsic shocks).

As in classical models of exogenous idiosyncratic risks, all agents want to save to self-
insure against this idiosyncratic risk, which has the effect of reducing rt (Bewley, 1986;
Huggett, 1993; Aiyagari, 1994).

In our log utility (ρ = 1) example construction from Proposition 2, the idiosyncratic
precautionary savings term becomes

N

∑
n=1

xn,t‖σc
n,t‖2 =

N

∑
n=1

1
xn,t

(δαn,tqn,t)
2‖σq

n,t‖
2 = (δψt)

2
N

∑
n=1

(v∗n)2

xn,t

A rise in the volatility factor ψt increases all agents’ idiosyncratic risks, which increases
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the precautionary savings motive.
The poorest agents (i.e., locations with low xn,t) have the highest marginal utility

and are thus most sensitive to a rise in volatility. In equilibrium, these poor agents will
decrease their consumption to pay down existing debt balances as ψt rises, while richer
agents will consume more today by reducing their savings. To see this dynamic, examine
the expected consumption growth rate of each location in equilibrium:

µc
n,t = rt − δ + ν2 + (

δψtv∗n
xn,t

)2

(This is simply agent n’s Euler equation, with extrinsic consumption volatility σc
n,t substi-

tuted in.) If ψt rises, consumption growth rises in poor locations (those with small xn,t)
and falls in rich locations (high xn,t). As suggested earlier, this happens because poor
locations strongly increase their precautionary savings when idiosyncratic risk rises.

5 Applications

In this section, we discuss two applications of self-fulfilling volatility in segmented mar-
kets. The first considers “locations” to be firms and explores the growth and risk pre-
mium consequences of excess idiosyncratic volatility. The second application interprets
“locations” as countries in an international macroeconomy, which features excess volatil-
ity of exchange rates and can speak to some international finance puzzles. For all results
of this section, we assume consumers have log utility (ρ = 1).

5.1 Firm-specific risks and undiversified insiders

In this section, we interpret each “location” n as a firm, and “representative investor”
n as the corporate insiders of that firm (e.g., CEOs). With the model applied to firms,
many microfoundations of a growth-valuation link seem plausible. Endogenous cash
flow growth rates can be thought of here as “feedback effects” between stock prices and
investment (Bond et al., 2012). Alternatively, as discussed in Internet Appendix C.2,
one could consider firms with debt outstanding, in which case debt-overhang problems
lead to a connection between valuations and investment efficiency. Either interpretation
seems appropriate for firms, and both foster self-fulfilling volatility.

Our segmentation assumptions also seem plausible in this application. In fact, firm
insiders are often not fully diversified (May, 1995; Guay, 1999; Himmelberg et al., 2002;
Panousi and Papanikolaou, 2012) and their individual preferences and other character-
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istics seem to matter in firms’ decision processes (Bertrand and Schoar, 2003; Graham et
al., 2013). Such concentrated risk exposure can arise as an optimal pay-for-performance
compensation contract in the presence of moral hazard or signalling/selection issues
(Holmström, 1979; Leland and Pyle, 1977; Rock, 1986). Our model partly captures this
phenomenon. We say “partly” because our investors have access to a futures market
that allows them to share risks from the location-specific fundamental shocks dB̂t. If we
wanted to better capture a setting of corporate insiders, we could also eliminate this par-
ticular futures market, in which case the insiders would effectively be holding a portfolio
of their firm’s equity along with outside borrowing/lending (position in riskless bonds)
and trading in the aggregate stock market index (futures on dBt).9

Self-fulfilling volatility is in many cases redistributive, in that it aggregates to zero.
Yet this idiosyncratic volatility features a common component: firm-n self-fulfilling return
volatility is ‖σq

n,t‖ = ψtv∗n/αn,tqn,t, which scales with the common factor ψt. (Recall:
the single-factor structure comes from assuming a stable cross-correlation structure, and
then examining the “full measure” of remaining volatile equilibria.) In the data, Camp-
bell et al. (2001) and Herskovic et al. (2016) document a significant and highly time-
varying common component in idiosyncratic return volatility.

Not only should idiosyncratic stock returns contain a common factor, fundamentals
should too. Indeed, firms that are doing particularly well in the stock market should
also have particularly high investment and growth rates. Firms doing poorly should be
“underinvesting.” This spread between firm-level growth rates is also magnified by the
common volatility factor ψt.

The firm dynamics literature (Hopenhayn, 1992; Sutton, 1997; Luttmer, 2007; Gabaix,
2009) has emphasized random log-normal growth (plus a “friction”) as a possible reason
for the fat-tailed firm size distribution. One quantitative difficulty has been explaining
the thickness of the tail with realistic levels of firm-specific volatility. Our framework
can alleviate this issue, since larger firms will tend to grow faster. In general, a positive

9In such an extension, the key modification would be that fundamental idiosyncratic risk demands a
risk premium from undiversified insiders. Mathematically, the absence of a futures market for dB̂t implies
ϑ̂n,t = 0 for each n, which implies insider consumption growth has the following exposure to dB̂t:

1
dt

Covt[
dcn,t

cn,t
, dB̂t] =

δαn,tqn,t

xn,t
(ν̂n,t + ς̂n,t).

(See Eq. (A.12) in Appendix A with ϑ̂n,t = 0 substituted.) Consequently, the expected capital gain in
Eq. (A.2) must be augmented by the risk premium from this exposure, namely δαn,tqn,t

xn,t
‖ν̂n,t + ς̂n,t‖2. This

modification would substantially complicate the type of equilibrium construction done in Proposition
2, because now the dynamics of qn,t become coupled with those of αn,t and xn,t, even when valuation
volatility vanishes. However, the spirit of the analysis does not change.
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correlation between size and growth rates will magnify the size dispersion in any real
variable such as sales.

Although it is redistributive, self-fulfilling volatility commands a risk premium, be-
cause insiders hold concentrated, undiversified exposures to their own stocks. While the
other implications above would hold even without this concentrated exposure, segmen-
tation is required for this risk premium implication. From Eq. (24), the idiosyncratic risk
premium for firm-n equity is given by

risk premium =
δ(ψtv∗n)2

xn,tαn,tqn,t
.

When self-fulfilling volatility spikes (ψt rises), measured risk premia also rise. In the
data, Herskovic et al. (2016) find that the common component in idiosyncratic volatility
is priced, consistent with this implication.

The expression for the idiosyncratic risk premium also hints at how certain stock mar-
ket anomalies may be related to our mechanisms. The risk premium is higher for firms
with low valuations (so-called value firms with low qn,t) and low market cap (so-called
small firms with low αn,tqn,t)—see Fama and French (1992). Given the vast amount of re-
search on these issues, we should not overemphasize this connection, but it is interesting
that it emerges naturally from our framework.

5.2 International macro and exchange rates

Our next application interprets “locations” as countries. In this context, there are several
plausible justifications for our growth-valuation link, or the related endogeneity mech-
anisms discussed in Internet Appendix C. Many mechanisms that work at the more
micro level also aggregate to the country level. For instance, an entire country can have
extrapolative beliefs about their growth rate (Internet Appendix C.1) or macro-level debt
overhang problems (Internet Appendix C.2). Second, to engender self-fulfilling volatil-
ity, the creative destruction version of the model (Internet Appendix C.3) only requires
displacement risk within a country and as a function of the local economy valuation—this
is a plausible description of how entrepreneurship works, given that the outside option
is another activity within the same country.

Partial equity market segmentation is also a reasonable assumption in international
finance, and several studies have argued it can potentially speak to some puzzling obser-
vations (Gabaix and Maggiori, 2015; Lustig and Verdelhan, 2019; Itskhoki and Mukhin,
2021). We will discuss how our model, simply through non-fundamental fluctuations in
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asset prices, can help address excess exchange rate volatility (e.g., the PPP puzzle), inter-
national risk-sharing puzzles (e.g., Backus-Smith puzzle), and carry trade returns (e.g.,
UIP puzzle). Because our non-fundamental volatility has a factor structure, it also con-
nects to an international finance literature that has discovered a latent factor governing
the lion’s share of exchange rate and global financial market movements.

To tailor our model to the international setting, we introduce a non-tradable endow-
ment ŷn,t. For simplicity and theoretical clarity on what is new with our framework, we
assume ŷn,t follows the same time-series growth process as the tradable yn,t in Eq. (1);
in particular, let ŷn,t = κyn,t for all n. The representative agent of country n consumes
ĉn,t of the non-tradable, which in equilibrium is ĉn,t = ŷn,t. The tradable market still
clears globally via ∑N

n=1 cn,t = ∑N
n=1 yn,t. Agents have preferences over a Cobb-Douglas

aggregate of tradables and their local non-tradable, i.e.,

E0

[ ∫ ∞

0
e−δt

(
φ log(cn,t) + (1− φ) log(ĉn,t)

)
dt
]
. (26)

We set the tradable good as the numéraire, so let pn,t be the relative price of the country
n non-tradable. We let qn,t still be the local valuation ratio, so that the total value of the
local endowment is qn,t(yn,t + pn,tŷn,t). Finally, we continue assume a growth-valuation
link according to the linear functional form (6), so that the country n output growth rate
is gn,t = g + λ(qn,t − δ−1).

This non-tradables setting is identical to Backus and Smith (1993) and many other
studies. The solution is as follows. In this model, the consumption basket and price
index of country n are given by

Cn,t := cφ
n,t ĉ

1−φ
n,t

Pn,t :=
cn,t + pn,t ĉn,t

Cn,t
.

The total expenditure of country n is thus Pn,tCn,t. Because of log utility, agents optimally
spend δ fraction of their wealth, so

Pn,tCn,t = δwn,t. (27)

Cobb-Douglas period utility implies the optimal expenditure shares of tradables and
non-tradables are φ and 1− φ, respectively:

cn,t = φPn,tCn,t and pn,t ĉn,t = (1− φ)Pn,tCn,t. (28)
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Using Eqs. (27)-(28) and non-tradable market clearing ĉn,t = ŷn,t, the price index can be
written

Pn,t = φ−1
( cn,t

ŷn,t

)1−φ
= φ−φ

(δwn,t

ŷn,t

)1−φ
.

The real exchange rate E i,j
t between countries i and j, defined as the ratio of their price

indexes, is

E i,j
t :=

Pj,t

Pi,t
=
(xj,t/xi,t

ŷj,t/ŷi,t

)1−φ
, (29)

where xi,t is the tradable consumption share of country i (because of log utility, xi,t is
equivalently the wealth share of country i).

The remainder of equilibrium is very similar to the baseline model without non-
tradables. Most importantly, there exist non-fundamental equilibria in which the valu-
ation ratios (qn,t)N

n=1 are hit by sunspot fluctuations that necessarily redistribute across
countries. We will continue to refer to ψt as the corresponding volatility factor. The full
details of equilibrium derivation with non-tradables are in Internet Appendix E.

The sunspot equilibria of this model are helpful in resolving a surprising number of
exchange rate puzzles. First, real exchange rates in Eq. (29) inherit additional sources of
volatility from the wealth shares (xn,t)N

n=1. Indeed, the dynamics of xn,t are given by

dxn,t

xn,t
= (δψt)

2
[( v∗n

xn,t

)2
−

N

∑
i=1

xi,t

( v∗i
xi,t

)2]
dt + δψt

( v∗n
xn,t

)
Men · dZt. (30)

Because wealth shares are driven by extrinsic shocks, our model features higher volatility
of the real exchange rate over and above macroeconomic aggregates. This provides a
partial resolution to the classic volatility puzzles of Meese and Rogoff (1983) and Mussa
(1986).10 In terms of the direction, our model predicts a positive link between capital
flows and exchange rates, as in Gabaix and Maggiori (2015): an extrinsic shock that
raises xn,t is necessarily accommodated by a capital flow into country n from the rest of
the world (so that cn,t can rise above yn,t), and this causes an appreciation of country n’s
real exchange rate (i.e., E i,n

t increases).
Second, sunspot volatility and segmented markets help break a tight positive link

between exchange rates and relative aggregate consumptions across countries, provid-

10Meese and Rogoff (1983) show that the nominal exchange rate is significantly more volatile than
macroeconomic aggregates like consumption and output, while Mussa (1986) shows that the real and
nominal exchange rate behaviors are tightly linked. See also the survey in Rogoff (1996) on the Purchasing
Power Parity (PPP) puzzle.
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ing some resolution to the Backus and Smith (1993) puzzle (see also Kollmann, 1995
and Corsetti et al., 2008).11 Different to complete-market models, sunspot shocks in our
incomplete-markets model actually induce a negative comovement between exchange
rates and relative consumptions. To see this, notice that the relative aggregate consump-
tions can be written

Ci,t

Cj,t
=
( ci,t

cj,t

)φ( ĉi,t

ĉj,t

)1−φ
=
( xi,t

xj,t

)φ( ŷi,t

ŷj,t

)1−φ
.

The critical observation is that E i,j
t and Ci,t/Cj,t move in opposite directions in response to

the wealth ratio xi,t/xj,t. Therefore, the presence of extrinsic shocks that move the wealth
distribution can substantially reduce the correlation between E i,j

t and Ci,t/Cj,t. (Note
that without the wealth distribution dynamics, our model would have E i,j

t = Ci,t/Cj,t, a
particularly stark representation of the Backus and Smith (1993) puzzle.)

The “disconnect” between bilateral exchange rates and macroeconomic fundamentals
also has a factor structure. In our equilibria, the volatilities of all bilateral exchange
rates all rise and fall together, since there is a common factor ψt in sunspot volatility.
The common volatility factor ψt could be related to the empirical factor structure in
exchange rates and capital flows, documented in Lustig et al. (2011) and Rey (2015),
respectively. Interestingly, both of these studies link their factors to global equity market
volatility, which accords with our factor ψt that governs non-fundamental volatility in
equity valuations.

Finally, our self-fulfilling fluctuations help explain carry trade returns and uncovered
interest parity (UIP) deviations (Fama, 1984; McCallum, 1994; Engel, 1996). We compute
the price of a pure discount bond that pays off one unit of the country-n consumption
basket:

bn,t→T := Et

[ξn,T

ξn,t

Pn,T

Pn,t

]
.

Note that, due to the normalization by Pn,t, the price bn,t→T is denominated in units of
the country-n consumption basket. One can then show that the yield-to-maturity of this

11To compare to these papers, use Eq. (27) to write the exchange rate in terms of the aggregate con-
sumption baskets:

E i,j
t =

Ci,t

Cj,t

wj,t

wi,t
.

Critically, the wealth ratio wj,t/wi,t = xj,t/xi,t is not constant in our incomplete-markets model. By con-
trast, in any complete-markets, symmetric preference model, the wealth distribution is constant.

30



bond, YTMn,t→T := − 1
T−t log(bn,t→T), is given by12

YTMn,t→T = δ− 1
T − t

log Et

[( xn,t

xn,T

)φ( ŷn,t

ŷn,T

)1−φ( Yt

YT

)φ]
, (31)

The key observation is that poor countries with high expected wealth share growth—i.e.,
countries with low xn,t—will have high bond yields.

It turns out that these same countries have high UIP deviations in the model. Indeed,
the expected excess carry return going long the country-j bond and short the country-i
bond is

Ri,j
t→T := YTMj,t→T − YTMi,t→T︸ ︷︷ ︸

>0 if xj,t � xi,t

+
1

T − t
Et[log E i,j

T − log E i,j
t ]︸ ︷︷ ︸

>0 if xj,t � xi,t

. (32)

Since E i,j
t is increasing in the wealth ratio xj,t/xi,t, poor countries will experience an ex-

pected appreciation of their exchange rate. Such an expected appreciation further exac-
erbates the expected carry return Ri,j

t→T beyond what is predicted by the yield advantage
of country j.13

So far, our discussion of various exchange rate puzzles have been based on redis-
tributive non-fundamental volatility and segmented markets. The presence of endoge-
nous growth adds additional testable predictions regarding the dynamic co-movement
between exchange-rates and growth rates. Suppose E i,n

t rises due to an extrinsic shock
that raises country-n consumption through capital inflows. Recall that this also raises the
country-n stock market valuation qn,t, which then feeds back into a higher growth rate
gn,t. Thus, inflows and exchange-rate appreciations positively forecast future growth.

Much attention has been given to the possibility that longer-term growth prospects
may drive exchange-rate variation (Colacito and Croce, 2011, 2013; Colacito et al., 2018).

12To derive this equation, substitute the price index Pn,t = φ−1(cn,t/ŷn,t)1−φ and use the optimal con-
sumption rule ξn,t = e−δtφc−1

n,t .
13In this discussion, we have ignored the effects of ŷi,t and ŷj,t, because their role in bond yields is offset

by their role in exchange rates. To see this transparently, suppose as an approximation we take

log Et

[( xn,t

xn,T

)φ( ŷn,t

ŷn,T

)1−φ( Yt

YT

)φ]
≈ Et log

[( xn,t

xn,T

)φ( ŷn,t

ŷn,T

)1−φ( Yt

YT

)φ]
.

Then, under this approximation, we have

Ri,j
t→T ≈

1
T − t

Et

[
log(

xj,T

xj,t
)− log(

xi,T

xi,t
)
]
.

Thus, approximately the entire UIP deviation emerges due to wealth distribution dynamics.
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A key difference in our framework is the prediction that future relative growth rates drive
today’s exchange-rate variation. By contrast, the existing literature has mostly consid-
ered how a global growth factor, with international heterogeneity in exposures, could
account for exchange rate dynamics and risk premia. An additional theoretical dif-
ference is that this literature requires recursive preferences with particular parameter
constellations (i.e., EIS greater than one and risk aversion above the EIS), whereas our
mechanisms hold for a larger class of preferences.

6 Conclusion

This paper provides a theory of self-fulfilling fluctuations that are redistributive in na-
ture. Theoretically, the existence of such self-fulfilling volatility relies on multiple mar-
kets and an endogenous force that connects asset valuations to some aspect of the real
economy—our baseline model studies a growth-valuation link, but alternatives studied
in the Internet Appendix include beliefs about growth rates (as in “price extrapolation”
models), underinvestment wedges (as in “debt overhang” models), and entry/exit pat-
terns (as in “creative destruction” models). Our framework helps explain the factor
structure in firm-specific volatility and various dimensions of exchange rate disconnect
such as the PPP puzzle, the Backus-Smith puzzle, and the UIP puzzle.

32



References
Aghion, Philippe and Peter Howitt, “A Model of Growth Through Creative Destruction,” Econo-

metrica, 1992, pp. 323–351.

Aiyagari, S Rao, “Uninsured idiosyncratic risk and aggregate saving,” The Quarterly Journal of
Economics, 1994, 109 (3), 659–684.

Azariadis, Costas, “Self-fulfilling prophecies,” Journal of Economic Theory, 1981, 25 (3), 380–396.

Backus, David K and Gregor W Smith, “Consumption and real exchange rates in dynamic
economies with non-traded goods,” Journal of International Economics, 1993, 35 (3-4), 297–316.

Bakke, Tor-Erik and Toni M Whited, “Which firms follow the market? An analysis of corporate
investment decisions,” The Review of Financial Studies, 2010, 23 (5), 1941–1980.

Bansal, Ravi and Amir Yaron, “Risks for the long run: A potential resolution of asset pricing
puzzles,” The Journal of Finance, 2004, 59 (4), 1481–1509.

Barberis, Nicholas, Robin Greenwood, Lawrence Jin, and Andrei Shleifer, “X-CAPM: An ex-
trapolative capital asset pricing model,” Journal of Financial Economics, 2015, 115 (1), 1–24.

Benhabib, Jess and Pengfei Wang, “Financial constraints, endogenous markups, and self-
fulfilling equilibria,” Journal of Monetary Economics, 2013, 60 (7), 789–805.

, , and Yi Wen, “Sentiments and aggregate demand fluctuations,” Econometrica, 2015, 83 (2),
549–585.

Bertrand, Marianne and Antoinette Schoar, “Managing with style: The effect of managers on
firm policies,” The Quarterly Journal of Economics, 2003, 118 (4), 1169–1208.

Bewley, Truman, “Stationary monetary equilibrium with a continuum of independently fluctu-
ating consumers,” Contributions to mathematical economics in honor of Gérard Debreu, 1986, 79.

Blanchard, Olivier J, “Debt, Deficits, and Finite Horizons,” Journal of Political Economy, 1985, 93
(2), 223–47.

Bond, Philip, Alex Edmans, and Itay Goldstein, “The real effects of financial markets,” Annual
Review of Financial Economics, 2012, 4 (1), 339–360.

Briand, Philippe and Fulvia Confortola, “Quadratic BSDEs with random terminal time and
elliptic PDEs in infinite dimension,” Electronic Journal of Probability, 2008, 13 (54), 1529–1561.

Brunnermeier, Markus K and Isabel Schnabel, “Bubbles and central banks: Historical perspec-
tives,” 2015. Unpublished working paper.

Caballero, Ricardo J, Emmanuel Farhi, and Pierre-Olivier Gourinchas, “Financial Crash, Com-
modity Prices, and Global Imbalances,” Brookings Papers on Economic Activity, 2008, pp. 1–55.

Campbell, John Y and N Gregory Mankiw, “Consumption, income, and interest rates: Reinter-
preting the time series evidence,” NBER Macroeconomics Annual, 1989, 4, 185–216.

33



, Martin Lettau, Burton G Malkiel, and Yexiao Xu, “Have individual stocks become more
volatile? An empirical exploration of idiosyncratic risk,” The Journal of Finance, 2001, 56 (1),
1–43.

Cass, David and Karl Shell, “Do sunspots matter?,” Journal of Political Economy, 1983, 91 (2),
193–227.

Chen, Qi, Itay Goldstein, and Wei Jiang, “Price informativeness and investment sensitivity to
stock price,” The Review of Financial Studies, 2007, 20 (3), 619–650.

Colacito, Ric, Mariano M Croce, Federico Gavazzoni, and Robert Ready, “Currency risk factors
in a recursive multicountry economy,” The Journal of Finance, 2018, 73 (6), 2719–2756.

Colacito, Riccardo and Mariano M Croce, “Risks for the long run and the real exchange rate,”
Journal of Political Economy, 2011, 119 (1), 153–181.

and , “International asset pricing with recursive preferences,” The Journal of Finance, 2013,
68 (6), 2651–2686.

Corsetti, Giancarlo, Luca Dedola, and Sylvain Leduc, “International risk sharing and the trans-
mission of productivity shocks,” The Review of Economic Studies, 2008, 75 (2), 443–473.

DeMarzo, Peter M, Michael J Fishman, Zhiguo He, and Neng Wang, “Dynamic agency and the
q theory of investment,” The Journal of Finance, 2012, 67 (6), 2295–2340.

Engel, Charles, “The forward discount anomaly and the risk premium: A survey of recent
evidence,” Journal of Empirical Finance, 1996, 3 (2), 123–192.

Fama, Eugene F, “Forward and spot exchange rates,” Journal of Monetary Economics, 1984, 14 (3),
319–338.

and Kenneth R French, “The cross-section of expected stock returns,” The Journal of Finance,
1992, 47 (2), 427–465.

Farmer, Roger EA and Jess Benhabib, “Indeterminacy and increasing returns,” Journal of Eco-
nomic Theory, 1994, 63, 19–41.

and Michael Woodford, “Self-fulfilling prophecies and the business cycle,” Macroeconomic
Dynamics, 1997, 1 (4), 740–769.

French, Kenneth R and James M Poterba, “Investor diversification and international equity
markets,” American Economic Review, 1991, 81 (2), 222–226.

Gabaix, Xavier, “Power laws in economics and finance,” Annu. Rev. Econ., 2009, 1 (1), 255–294.

and Matteo Maggiori, “International liquidity and exchange rate dynamics,” The Quarterly
Journal of Economics, 2015, 130 (3), 1369–1420.

Gârleanu, Nicolae and Stavros Panageas, “Young, Old, Conservative, and Bold: The Implica-
tions of Heterogeneity and Finite Lives for Asset Pricing,” Journal of Political Economy, 2015,
123 (3), 670–685.

34



and , “What to Expect when Everyone is Expecting: Self-Fulfilling Expectations and Asset-
Pricing Puzzles,” Journal of Financial Economics, 2020.

Goldstein, Itay and Liyan Yang, “Information disclosure in financial markets,” Annual Review of
Financial Economics, 2017, 9, 101–125.

Graham, John R, Campbell R Harvey, and Manju Puri, “Managerial attitudes and corporate
actions,” Journal of Financial Economics, 2013, 109 (1), 103–121.

Guay, Wayne R, “The sensitivity of CEO wealth to equity risk: an analysis of the magnitude and
determinants,” Journal of Financial Economics, 1999, 53 (1), 43–71.

Guvenen, Fatih, “A Parsimonious Macroeconomic Model for Asset Pricing,” Econometrica, 2009,
77 (6), 1711–1750.

Hennessy, Christopher A, “Tobin’s Q, debt overhang, and investment,” The Journal of Finance,
2004, 59 (4), 1717–1742.

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh, “The common
factor in idiosyncratic volatility: Quantitative asset pricing implications,” Journal of Financial
Economics, 2016, 119 (2), 249–283.

Himmelberg, Charles P, R Glenn Hubbard, and Inessa Love, “Investor Protection, Ownership,
and the Cost of Capital,” 2002. Unpublished working paper.

Holmström, Bengt, “Moral hazard and observability,” The Bell Journal of Economics, 1979, pp. 74–
91.

Hopenhayn, Hugo A, “Entry, exit, and firm dynamics in long run equilibrium,” Econometrica:
Journal of the Econometric Society, 1992, pp. 1127–1150.

Huggett, Mark, “The risk-free rate in heterogeneous-agent incomplete-insurance economies,”
Journal of Economic Dynamics and Control, 1993, 17 (5), 953–969.

Iachan, Felipe S, Dejanir Silva, and Chao Zi, “Under-diversification and idiosyncratic risk ex-
ternalities,” Journal of Financial Economics, 2022, 143 (3), 1227–1250.

Itskhoki, Oleg and Dmitry Mukhin, “Exchange rate disconnect in general equilibrium,” Journal
of Political Economy, 2021, 129 (8), 2183–2232.

Khorrami, Paymon, “Entry and slow-moving capital: using asset markets to infer the costs of
risk concentration,” 2018. Unpublished working paper. Imperial College London.

Kollmann, Robert, “Consumption, real exchange rates and the structure of international asset
markets,” Journal of International Money and Finance, 1995, 14 (2), 191–211.

Krishnamurthy, Arvind, “Collateral constraints and the amplification mechanism,” Journal of
Economic Theory, 2003, 111 (2), 277–292.

Leland, Hayne E, “Corporate debt value, bond covenants, and optimal capital structure,” The
Journal of Finance, 1994, 49 (4), 1213–1252.

35



and David H Pyle, “Informational asymmetries, financial structure, and financial intermedi-
ation,” The Journal of Finance, 1977, 32 (2), 371–387.

Loewenstein, Mark and Gregory A Willard, “Rational equilibrium asset-pricing bubbles in con-
tinuous trading models,” Journal of Economic Theory, 2000, 91 (1), 17–58.

and , “The limits of investor behavior,” The Journal of Finance, 2006, 61 (1), 231–258.

Long, J Bradford De, Andrei Shleifer, Lawrence H Summers, and Robert J Waldmann, “Noise
trader risk in financial markets,” Journal of Political Economy, 1990, 98 (4), 703–738.

Lustig, Hanno and Adrien Verdelhan, “Does incomplete spanning in international financial
markets help to explain exchange rates?,” American Economic Review, 2019, 109 (6), 2208–44.

, Nikolai Roussanov, and Adrien Verdelhan, “Common risk factors in currency markets,” The
Review of Financial Studies, 2011, 24 (11), 3731–3777.

Luttmer, Erzo GJ, “Selection, growth, and the size distribution of firms,” The Quarterly Journal of
Economics, 2007, 122 (3), 1103–1144.

Manuelli, Rodolfo and James Peck, “Sunspot-like effects of random endowments,” Journal of
Economic Dynamics and Control, 1992, 16 (2), 193–206.

May, Don O, “Do managerial motives influence firm risk reduction strategies?,” The Journal of
Finance, 1995, 50 (4), 1291–1308.

McCallum, Bennett T, “A reconsideration of the uncovered interest parity relationship,” Journal
of Monetary Economics, 1994, 33 (1), 105–132.

Meese, Richard A and Kenneth Rogoff, “Empirical exchange rate models of the seventies: Do
they fit out of sample?,” Journal of International Economics, 1983, 14 (1-2), 3–24.

Miao, Jianjun and Pengfei Wang, “Asset bubbles and credit constraints,” The American Economic
Review, 2018, 108 (9), 2590–2628.

Mussa, Michael, “Nominal exchange rate regimes and the behavior of real exchange rates: Ev-
idence and implications,” in “Carnegie-Rochester Conference series on public policy,” Vol. 25
Elsevier 1986, pp. 117–214.

Panousi, Vasia and Dimitris Papanikolaou, “Investment, idiosyncratic risk, and ownership,”
The Journal of Finance, 2012, 67 (3), 1113–1148.

Rey, Hélène, “Dilemma not trilemma: the global financial cycle and monetary policy indepen-
dence,” Technical Report, National Bureau of Economic Research 2015.

Rock, Kevin, “Why new issues are underpriced,” Journal of Financial Economics, 1986, 15 (1-2),
187–212.

Rogoff, Kenneth, “The purchasing power parity puzzle,” Journal of Economic Literature, 1996, 34
(2), 647–668.

Santos, Manuel S and Michael Woodford, “Rational asset pricing bubbles,” Econometrica: Journal
of the Econometric Society, 1997, pp. 19–57.

36



Schmitt-Grohé, Stephanie and Martín Uribe, “Multiple equilibria in open economies with col-
lateral constraints,” Review of Economic Studies, 2021, 88 (2), 969–1001.

Sutton, John, “Gibrat’s legacy,” Journal of Economic Literature, 1997, 35 (1), 40–59.

Tella, Sebastian Di, “Uncertainty shocks and balance sheet recessions,” Journal of Political Econ-
omy, 2017, 125 (6), 2038–2081.

, “Risk premia and the real effects of money,” American Economic Review, 2020, 110 (7), 1995–
2040.

and Robert Hall, “Risk premium shocks can create inefficient recessions,” The Review of Eco-
nomic Studies, 2022, 89 (3), 1335–1369.

Zentefis, Alexander K, “Self-fulfilling asset prices,” Review of Asset Pricing Studies, 2022, 12 (4),
886–917.

37



Appendix

A Derivation of Equilibrium
In this appendix, we derive the complete set of equilibrium conditions that will be used through-
out the entire analysis. We write these conditions generally to accommodate both segmented and
integrated financial markets.

Step 1: State prices. Each location has its own state-price density ξn,t, which follows

dξn,t = −ξn,t

[
rtdt + ηtdBt + η̂t · dB̂t + πn,t · dZt

]
. (A.1)

The market prices of risk (η, η̂) associated to (B, B̂) are location-invariant, because markets for trad-
ing futures on these shocks are perfectly integrated. In the case of complete markets, the extrinsic
shock risk prices will also be the same across locations, i.e., πn,t = πt for each n. In the case of
segmented equity markets, these risk prices may differ across locations.

In terms of these state prices, we have the no-arbitrage pricing relation for location-n equity:

µ
q
n,t + gn,t +

1
qn,t

+ νς
q
n,t + ν̂n,t · ς̂q

n,t − rt = (ν + ς
q
n,t)ηt + (ν̂n,t + ς̂

q
n,t) · η̂t + σ

q
n,t · πn,t, (A.2)

where with some abuse of notation we have defined the idiosyncratic risk exposure vector for yn,t,

ν̂n,t := ν̂

[
en −

( α1,t
...

αN,t

)]
=

1
dt

Covt[
dyn,t

yn,t
, dB̂t], (A.3)

where en is the nth elementary vector, and recall that αn,t := yn,t/Yt are the endowment shares. Eq.
(A.2) suffices to ensure no arbitrage in the equity market, so long as qn,t > 0, which must hold
in any equilibrium by free-disposal. The endowment share evolution is derived by applying Itô’s
formula to the definition of αn,t, namely

dαn,t

αn,t
= (gn,t − gt)dt + ν̂n,t · dB̂t. (A.4)

Step 2: Optimality. Integrating the dynamic budget constraint (3), using state-price dynamics (A.1),
the pricing Eq. (A.2), and the individual transversality condition

lim
T→∞

Et[ξn,Twn,T] = 0, (A.5)

we obtain the standard static budget constraint

Et

[ ∫ ∞

t

ξn,s

ξn,t
cn,sds

]
= wn,t. (A.6)

Note in passing that (A.6) implies wn,t > 0, so the solvency constraint holds automatically. Agents’
optimization problem is thus simply to maximize (5) subject to (A.6). The first-order condition of
this optimization problem is

e−δtc−ρ
n,t = ξn,t. (A.7)
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Apply Itô’s formula to Eq. (A.7) to obtain the following optimal consumption dynamics

dcn,t

cn,t
=

1
ρ

[
rt − δ +

ρ + 1
2ρ

(
η2

t + ‖η̂t‖2 + ‖πn,t‖2
)]

dt +
1
ρ

[
ηtdBt + η̂t · dB̂t + πn,t · dZt

]
. (A.8)

To solve for the initial consumption cn,t, given initial wealth wn,t and the dynamics of state prices
and beliefs, substitute (A.7) back into (A.6) to get an equation for the wealth-consumption ratio

ωn,t :=
wn,t

cn,t
= Et

[ ∫ ∞

t
e−δ(s−t)

( cn,s

cn,t

)1−ρ
ds
]
. (A.9)

In general, Eq. (A.9) is useful because the dynamics of cn,t are given by Eq. (A.8) in terms of the
state price density, so given all asset prices and initial wealth wn,t, Eq. (A.9) allows us to compute
cn,t. (In particular, this will be useful when we study the log utility case with ρ = 1, since then
Eq. (A.9) collapses to wn,t/cn,t = δ−1.) To instead represent (A.9) as a dynamic evolution equation,
suppose

dωn,t = ωn,t[µ
ω
n,tdt + ςω

n,tdBt + ς̂ω
n,t · dB̂t + σω

n,t · dZt]

and then apply Itô’s formula to ξn,tωn,tcn,t = Et[
∫ ∞

0 ξn,scn,sds] −
∫ t

0 ξn,scn,sds, and match drifts to
obtain

µω
n,t =

δ

ρ
− 1

ωn,t
+

ρ− 1
2ρ2

[
η2

t + ‖η̂t‖2 + ‖πn,t‖2
]
+

ρ− 1
ρ

[
rt + ηtς

ω
n,t + η̂t · ς̂ω

n,t + πn,t · σω
n,t

]
. (A.10)

At the same time, since ωn,t = wn,t/cn,t, the wealth-consumption ratio diffusion coefficients are

ςω
n,t =

ϑn,t

wn,t
+

N

∑
i=1

θn,i,t

wn,t
(ν + ς

q
i,t)− ρ−1ηt (A.11)

ς̂ω
n,t =

ϑ̂n,t

wn,t
+

N

∑
i=1

θn,i,t

wn,t
(ν̂i,t + ς̂

q
i,t)− ρ−1η̂t (A.12)

σω
n,t =

N

∑
i=1

θn,i,t

wn,t
σ

q
i,t − ρ−1πn,t (A.13)

which identifies optimal portfolio choices (ϑn, ϑ̂n), and partly identifies the equity holdings (θn,i),
given the wealth-consumption volatilities, asset price volatilities, and state price dynamics. With
segmented equity markets, the equity holdings are also identified since θn,i = 0 for i 6= n. Eqs.
(A.11)-(A.13) simplify with log utility, since as mentioned earlier the wealth-consumption ratio is
constant, ωn,t = δ−1. For instance, with ρ = 1 and segmented equity markets, Eq. (A.13) states that
θn,tσ

q
n,t = wn,tπn,t, so that σ

q
n,t · ei > 0 if and only if πn,t · ei > 0, for each i.

Step 3: Aggregation. Recall the consumption shares xn,t := cn,t/Yt. Using (A.8), apply Itô’s formula
to the goods market clearing condition ∑N

n=1 cn,t = Yt, and match drift and diffusion coefficients to
obtain an equation for the riskless rate

rt = δ + ρgt −
1
2

ρ(ρ + 1)ν2 − ρ + 1
2ρ

N

∑
n=1

xn,t‖πn,t‖2 (A.14)

expressions for the fundamental risk prices

ηt = ρν (A.15)
η̂t = 0 (A.16)
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and finally an equation linking the extrinsic risk prices

0 =
N

∑
n=1

xn,tπn,t. (A.17)

In the case that markets are complete, πn,t = πt so Eq. (A.17) implies πt = 0.
These expressions are all derived conditional on the consumption shares (xn,t)N

n=1. Consumption
share dynamics are obtained by applying Itô’s formula to the definition of xn,t, with the result being
(after substituting several results above)

dxn,t

xn,t
=

ρ + 1
2ρ2

(
‖πn,t‖2 −

N

∑
i=1

xi,t‖πi,t‖2
)

dt +
πn,t

ρ
· dZt. (A.18)

Next, the combination of bond and equity market clearing imply the aggregate wealth constraint

N

∑
n=1

wn,t =
N

∑
n=1

qn,tyn,t. (A.19)

Apply equity and futures market clearing conditions to Eqs. (A.11)-(A.13), also using Eq. (A.19)
and the expressions for the various risk prices, to obtain

N

∑
n=1

αn,tqn,tς
q
n,t =

N

∑
n=1

xn,tωn,tς
ω
n,t (A.20)

N

∑
n=1

αn,tqn,t(ν̂n,t + ς̂
q
n,t) =

N

∑
n=1

xn,tωn,tς̂
ω
n,t (A.21)

N

∑
n=1

αn,tqn,tσ
q
n,t =

N

∑
n=1

xn,tωn,t

[
ρ−1πn,t + σω

n,t

]
(A.22)

In the case of segmented equity markets, Eq. (A.23) can be replaced by the stronger location-by-
location condition

αn,tqn,tσ
q
n,t = xn,tωn,t

[
ρ−1πn,t + σω

n,t

]
(A.23)

Finally, let us also note the dynamics of the aggregate valuation ratio Qt := ∑N
n=1 αn,tqn,t, using Eqs.

(A.2), (A.4), (A.15), and (A.16):

dQt = Qt

[
rt − gt + ρν2 − 1

Qt
+ (ρ− 1)νςQ

t +
N

∑
n=1

αn,tqn,t

Qt
σ

q
n,t · πn,t

]
dt (A.24)

+ Qt

[
ςQ

t dBt + ς̂Q
t · dB̂t + σQ

t · dZt

]
,

where the diffusions (ςQ
t , ς̂Q

t , σQ
t ) are given by ςQ

t := ∑N
n=1

αn,tqn,t
Qt

ς
q
n,t for the aggregate shock, ς̂Q

t :=

∑N
n=1

αn,tqn,t
Qt

(ν̂n,t + ς̂
q
n,t) for the idiosyncratic shocks, and σQ

t := ∑N
n=1

αn,tqn,t
Qt

σ
q
n,t for the extrinsic.
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B Proofs

B.1 Proof of Theorem 1
First, let us compute the Jacobian J, by differentiating Eqs. (12) and (14) evaluated at the steady
state qn = q∗ for all n:

∂q̇n,t

∂qm,t

∣∣∣
ss
=

{
δ + (ρ− 1)g− λq∗, m = n;
0, m 6= n.

∂q̇n,t

∂Qt

∣∣∣
ss
= ρλq∗,

and

∂Q̇t

∂qm,t

∣∣∣
ss
= 0, ∀m

∂Q̇t

∂Qt

∣∣∣
ss
= δ + (ρ− 1)g + λ(ρ− 1)q∗

With these computations, we populate the entries of J.
Next, write out the equations of the eigenvalue problem Jv = ηv:

(δ + (ρ− 1)g− λq∗)vn + ρλq∗vN+1 = ηvn, 1 ≤ n ≤ N
(δ + (ρ− 1)g− λq∗ + ρλq∗)vN+1 = ηvN+1

If vn = vN+1 for all n ≤ N, then the two equations become identical for any η. Since vN+1 6= 0 in
such case (otherwise the entire eigenvector would be zero), we obtain η = δ+ (ρ− 1)g+ (ρ− 1)λq∗.
This corresponds to the single eigenvalue η+ and its unique eigenvector v(η+) = 1N+1. If instead
vn 6= vN+1 for any n, then we may take the difference between the two equations to obtain

(δ + (ρ− 1)g− λq∗)(vn − vN+1) = η(vn − vN+1), 1 ≤ n ≤ N,

which implies η = δ + (ρ− 1)g− λq∗. In this case, it is clear that unless ρ = 0 or λ = 0 we must
have vN+1 = 0. This corresponds to the eigenvalue η−, which has multiplicity N because the set
of vectors having vN+1 = 0 is N-dimensional. We can use the basis (e1, . . . , eN) for a basis of this
N-dimensional space, hence our choice of the set of eigenvectors for v(η−).

Given the eigenvalues-eigenvectors, we want to prove that we can write

qn,t ≈ q∗ + (qn,0 −Q0)eη−t + (Q0 − q∗)eη+t, n = 1, . . . , N;

Qt ≈ q∗ + (Q0 − q∗)eη+t.

The algebra is as follows. First, note that J admits the eigen-decomposition J = VDV−1, where

V =
(
e1 e2 · · · eN 1N+1

)
and D =


η− 0 0 · · · 0
0 η− 0 · · · 0
0 0 η− · · · 0
...

...
. . .

...
0 0 0 · · · η+
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Next, let zt := qt − q∗1N+1. Then, solving the linearly approximated differential equation żt ≈ Jzt,
we have

zt ≈ V exp(Dt)V−1z0

=
(

e1 exp(η−t) e2 exp(η−t) · · · eN exp(η−t) ([exp(η+t)− exp(η−t)]1N , eη+t)′
)

z0

=


(z1,0 − zN+1,0) exp(η−t) + zN+1,0 exp(η+t)

...
(zN,0 − zN+1,0) exp(η−t) + zN+1,0 exp(η+t)

zN+1,0 exp(η+t)


To complete the proof of the theorem, we map the signs of the eigenvalues into the behavior of

the valuations. If η+ > 0, then Qt necessarily deviates permanently from q∗. In such case, it is easy
to show that the aggregate dynamics (14) feature a second steady state q∗∗ < q∗, which is stable, but
which is inconsistent with the location-specific dynamics (12). And so any equilibrium must feature
Qt = q∗ at all times.

On the other hand, if η+ < 0, then the dynamics of Qt are stable near q∗, meaning that any local
deviation of Qt from q∗ will eventually close. In such case, there are a multiplicity of equilibria that
may be indexed by Q0, which may differ from q∗.

The analysis of the local prices is similar. If η− > 0, then each local price has unstable dynamics,
so qn,t = q∗ at all times. If η− < 0, then local prices have stable dynamics, so there exist a multiplicity
of equilibria indexed by (qn,0)N

n=1, with the restriction that ∑N
n=1 αn,0qn,0 = Q0.

B.2 Existence and Uniqueness Theorem for BSDEs
Here, we cite a useful mathematical theorem from Briand and Confortola (2008) that helps us prove
Lemma 1. We adapt their hypotheses and results to our situation with a finite-dimensional Brow-
nian motion. In the results of this section, let B be a d-dimensional Brownian motion, defined on
a filtered probability space (Ω, F , (Ft)t≥0, P), where Ft is the completion of the sigma-algebra
generated by B.

Let τ be an (Ft)t≥0 stopping time, and let ξ be a bounded Fτ-measurable random variable.
Consider the following backward stochastic differential equation (BSDE):

dYt = − f (t, Yt, Zt)dt + ZtdBt, where Yτ = ξ on {τ < ∞}, (B.1)

where the generator function f is a progressively-measurable mapping,

f : Ω× [0, ∞)×R×Rd 7→ R

and where (y, z) 7→ f (t, y, z) is continuous for all t ≥ 0. A solution to the BSDE (B.1) is a pair
of progressively measurable processes (Y, Z) such that Y is a path-continuous process; such that
on {τ < ∞}, we have Yt = ξ and Zt = 0 for t ≥ τ; and such that ( f (t, Yt, Zt))t∈[0,T] belongs to
L 1(0, T; R) and (Zt)t∈[0,T] belongs to L 2(0, T; Rn) for every T > 0.

Suppose there exist two constants α > 0 and K ≥ 0 such that f satisfies the following hypotheses:

(H.i) | f (t, y, z)| ≤ K(1 + ‖y‖+ ‖z‖2) for all y, z

(H.ii) | f (t, y, z)− f (t, y, z′)| ≤ K(1 + ‖z‖+ ‖z′‖)‖z− z′‖ for all y

(H.iii) (y− y′)( f (t, y, z)− f (t, y′, z)) ≤ −α(y− y′)2 for all y, y′, z
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A solution to the BSDE is a pair (Yt, Zt)t≥0 of progressively-measurable processes such that (B.1)
holds on every interval [t, T]. The following result is Theorem 3.3 in Briand and Confortola (2008).

Theorem B.1. Under conditions (H.i)-(H.iii) above, there exists a unique solution (Y, Z) to the BSDE (B.1)
such that Y is a bounded process.

B.3 Proof of Lemma 1
Adding fundamental shocks. For the proof, we may generalize the equations listed in Section 3 to
allow for aggregate and idiosyncratic fundamental shocks (i.e., ν > 0 and ν̂ > 0). The equations are
the same as in Appendix A but where complete markets additionally imposes πn,t is independent
of n. And so Eq. (A.17) implies πn,t = 0 for all n.

Using the result πt = 0 in Eq. (A.24), as well as the expression for rt in (A.14) and the expression
for growth gt in (7), the aggregate valuation ratio Qt satisfies

dQt = Qt

[
δ + (ρ− 1)(g− λq∗) + (ρ− 1)λQt −

1
2

ρ(ρ− 1)ν2 − 1
Qt

+ (ρ− 1)νςQ
t

]
dt

+ Qt

[
ςQ

t dBt + ς̂Q
t · dB̂t + σQ

t · dZt

]
,

where q∗ := [δ + (ρ− 1)g− 1
2 ρ(ρ− 1)ν2]−1 is now the deterministic steady state after accounting for

the presence of aggregate shocks. As usual, we implicitly make parameter assumptions such that
q∗ > 0. (Note that there is a second value of Qt that sets the drift above equal to zero, when ςQ

t = 0,
but this value is negative, which is not possible in equilibrium with free disposal.)

Corner cases ρ = 1. We first handle two corner cases. If ρ = 1, then the formulas of Appendix A
prove that each agent consumes δ fraction of her wealth, and so Qt = δ−1 = q∗ automatically by the
aggregate wealth constraint. Therefore, the remainder of the proof assumes that ρ > 1.

Setting up the BSDE. The goal of the proof is to apply the existence/uniqueness Theorem B.1 in
Section B.2. First, we will write the problem in a way that fits the setting of Section B.2. Applying
Itô’s formula to Ut := log(Qt/q∗), we have

dUt =
[
δ + (ρ− 1)(g− λq∗) + (ρ− 1)λq∗ exp(Ut)−

1
2

ρ(ρ− 1)ν2 − (q∗)−1 exp(−Ut) + (ρ− 1)νςQ
t

− 1
2
(ςQ

t )
2 − 1

2
‖ς̂Q

t ‖2 − 1
2
‖σQ

t ‖2
]
dt + ςQ

t dBt + ς̂Q
t · dB̂t + σQ

t · dZt.

Now, let us rewrite these in a more canonical form, by collecting all shocks and exposures into the
Brownian shock vector W := (B, B̂′, Z′)′ and the diffusion vector Vt:

dUt = − f (Ut, Vt)dt + VtdWt (B.2)

f (u, v) :=
1
2
‖v‖2 − (ρ− 1)νv1 − (ρ− 1)λq∗[exp(u)− 1] + (q∗)−1[exp(−u)− 1], (B.3)

where v1 := e1 · v is the first element of v. These dynamics constitute a 1-dimensional BSDE for
(U, V). One solution to this BSDE is clearly (U, V) = 0 (i.e., Qt = q∗ for all t).

Second, to be able to apply the results from Section B.2, despite the presence of the exponential
function in (B.3), we need to “linearize” the generator f for extreme values of u. In particular, let
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L > 0 be an arbitrary number. Define the linearized generator fL by

fL(u, v) :=


f (u, v), if u ∈ [−L, L];
f (u, v) + ∆L(u), if u > L;
f (u, v) + ∆−L(u), if u < −L.

(B.4)

where

∆L(u) := − f (L, v) + (u− L)
∂ f
∂u

(L, v) = (ρ− 1)λq∗
[

exp(u)− exp(L)− exp(L)(u− L)
]

− (q∗)−1[exp(−u)− exp(−L) + exp(−L)(u− L)]

∆−L(u) := − f (−L, v) + (u + L)
∂ f
∂u

(−L, v) = (ρ− 1)λq∗
[

exp(u)− exp(−L)− exp(−L)(u + L)
]

− (q∗)−1[exp(−u)− exp(L) + exp(L)(u + L)].

The linearized generator fL(u, v) is continuous, as needed, and in fact is continuously differentiable.
The linearized generator defines a linearized BSDE

dUt = − fL(Ut, Vt)dt + VtdWt. (B.5)

Note that (U, V) = 0 is clearly a solution to the linearized BSDE (B.5), for each L > 0. Our goal is
to show that this solution is unique. Indeed, if we are able to prove this, then since L is arbitrary
and can be made arbitrarily large, we will have proved that (U, V) = 0 is also the unique bounded
solution to the original BSDE (B.2)-(B.3).

Verify the hypotheses of the BSDE theorem. We will apply Theorem B.1 in Section B.2, with
an almost-sure infinite stopping time (τ = +∞), in which case the “terminal condition” becomes
irrelevant. We verify the assumptions (H.i)-(H.iii) directly preceding the theorem, which will then
prove that the solution (U, V) = 0 is the unique solution to (B.5).

Condition (H.i). By its linearized construction, fL has a maximum (absolute value) slope with
respect to u of Ku := max[(ρ− 1)λq∗ exp(L), (q∗)−1 exp(L)]. Next, the (absolute value) slope of fL
with respect to ‖v‖2 is at most Kv := 1

2 + |(ρ− 1)ν|, which can be seen by applying the following
basic inequality: |(ρ− 1)νv1| ≤ |(ρ− 1)ν|‖v‖2 + |(ρ− 1)ν|. The remaining components of fL that do
not depend on (u, v) may be bounded by the constant K0 := |(ρ− 1)ν|+ |(ρ− 1)λq∗|(1+ exp(L)L)+
(q∗)−1(1 + exp(L)L). Thus, hypothesis (H.i) of Section B.2 is satisfied with K = max[K0, Ku, Kv].

Condition (H.ii). Second, we have

| fL(u, v)− fL(u, v′)| =
∣∣∣1
2
(‖v‖2 − ‖v′‖2)− (ρ− 1)ν(v1 − v′1)

∣∣∣
≤ 1

2

∣∣‖v‖2 − ‖v′‖2∣∣+ ∣∣(ρ− 1)ν
∣∣‖v− v′‖

≤
(1

2
(‖v‖+ ‖v′‖) +

∣∣(ρ− 1)ν
∣∣)‖v− v′‖

where the third line uses the triangle inequality. Hence, hypothesis (H.ii) of Section B.2 holds with
K = max[ 1

2 , |(ρ− 1)ν|].
Condition (H.iii). Finally, to verify the strict monotonicity hypothesis, compute

∂ fL(u, v)
∂u

=


−(ρ− 1)λq∗ exp(u)− (q∗)−1 exp(−u), if u ∈ [−L, L];
−(ρ− 1)λq∗ exp(L)− (q∗)−1 exp(−L), if u > L;
−(ρ− 1)λq∗ exp(−L)− (q∗)−1 exp(L), if u < −L.
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Note that, for any L > 0, we have α := infu∈[−L,L]{(ρ− 1)λq∗ exp(u)+ (q∗)−1 exp(−u)} > 0, because
ρ > 1 and λ ≥ 0. Consequently, we have

∂ fL(u, v)
∂u

≤ −α < 0,

which proves that hypothesis (H.iii) of Section B.2 holds.

Conclude. Having verified the hypotheses (H.i)-(H.iii), Theorem B.1 then implies the unique so-
lution (U, V) = 0 is the unique one for the linearized BSDE (B.5), for each L > 0. Since L can be
made arbitrarily large, we then have that (U, V) = 0 is the unique solution, with U bounded, to the
original BSDE (B.2).

B.4 Proof of Lemma 2
This proof follows a very similar procedure to that of Lemma 1. As stated, we assume that λ <
( 1

1+ε )
2( 1

1−ρ )(
1
q∗ )

2, with ε > 0 some arbitrary number.
The key modification is that we linearize the generator (B.3) at different points. For any L > 0,

and recalling ε > 0, define the linearized generator fL,ε by

fL,ε(u, v) :=


f (u, v), if u ∈ [−L, log(1 + ε)];
f (u, v) + ∆ε(u), if u > log(1 + ε);
f (u, v) + ∆L(u), if u < −L.

(B.6)

where f (u, v) is defined in (B.3) and

∆ε(u) := (ρ− 1)λq∗
[

exp(u)− (1 + ε)− (1 + ε)(u− log(1 + ε))
]

− (q∗)−1
[

exp(−u)− 1
1 + ε

+
1

1 + ε
(u− log(1 + ε))

]
∆L(u) := (ρ− 1)λq∗

[
exp(u)− exp(−L)− exp(−L)(u + L)

]
− (q∗)−1[exp(−u)− exp(L) + exp(L)(u + L)]

At this point, we can easily verify the hypotheses (H.i) and (H.ii) of Section B.2 in an identical
manner to what we performed in the proof of Lemma 1. We omit this argument because it is
identical. It remains to verify the monotonicity hypothesis (H.iii).

Compute

∂ fL,ε(u, v)
∂u

=


−(ρ− 1)λq∗ exp(u)− (q∗)−1 exp(−u), if u ∈ [−L, log(1 + ε)];
−(ρ− 1)λq∗(1 + ε)− (q∗)−1 1

1+ε , if u > log(1 + ε);
−(ρ− 1)λq∗ exp(−L)− (q∗)−1 exp(L), if u < −L.

It is easy to show that ∂2 fL,ε(u,v)
∂u2 > 0 for u ∈ [−L, log(1 + ε)]. Therefore, the largest slope of this

linearized generator is

sup
u

∂ fL,ε(u, v)
∂u

= −(ρ− 1)λq∗(1 + ε)− (q∗)−1 1
1 + ε

< 0,
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where the inequality uses the assumptions that ρ < 1 and 0 ≤ λ < ( 1
1+ε )

2( 1
1−ρ )(

1
q∗ )

2. In other

words, we can set α := supu
∂ fL,ε(u,v)

∂u < 0 in order to satisfy condition (H.iii) of Theorem B.2.
This proves that the solution (U, V) = 0 is the unique solution to the linearized BSDE dUt =

− fL,ε(Ut, Vt)dt + VtdWt. Because we can make L arbitrarily large in this argument, the same
uniqueness point applies to the BSDE dUt = − f∞,ε(Ut, Vt)dt + VtdWt, which only linearizes for
u > log(1 + ε). Finally, because the lemma only requires us to consider solutions satisfying
Qt ≤ q∗(1 + ε), i.e., Ut ≤ log(1 + ε), solving this latter linearized BSDE suffices.

B.5 Proof of Lemma 3
It is easy to see directly that Lemma 3 constructs a redistributive set of diffusions. To see that every
collection of redistributive diffusions that satisfies Assumption 1 can be constructed this way, refer
back to Eq. (20), which recall is equivalent to Eq. (19). We may rewrite this equation as

αn,tqn,tσ
q
n,t = ψt Menv∗n,

where, due to Assumption 1, v∗ is the unique vector in the null-space of M. After rearranging, we
obtain Eq. (21). That every possible solution can be constructed follows from Step 1 of Lemma 3,
which allows us to pick every possible v∗ and corresponding matrix M. Finally, we also note that
requiring v∗ ≥ 0 is without loss of generality, because the signs of any column of M can be flipped
without changing its rank.

B.6 Proof of Proposition 1
The proposition only asks us to consider a redistributive equilibrium, so we have Qt = q∗ = [δ +
(ρ− 1)g− 1

2 ρ(ρ− 1)ν2]−1 forever. The proof is almost identical to that of Proposition 2 below, so we
provide a streamlined version.

First, using Eq. (A.8), Eq. (A.19), and Qt = q∗ in Eq. (A.9), we must have constant wealth-
consumption ratios ωn,t = q∗. Thus, we may set the loadings ς

q
n,t and ς̂

q
n,t on dBt and dB̂t, respec-

tively, in an identical way to Proposition 2.
Using these results—along with πt = 0, ηt = ρν, η̂t = 0, rt = δρg − 1

2 ρ(ρ + 1)ν2, and gn,t =
g + λ(qn,t − q∗)—in Eq. (A.2), we have

(if n 6= n∗t ) dqn,t = D(qn,t)dt +
v∗n
αn,t

ψt(Men) · dZt

(if n = n∗t ) dqn,t =
[

D(qn,t)− ν̂n,t · ς̂q
n,t

]
dt +

v∗n
αn,t

ψt(Men) · dZt + qn,tς̂
q
n,tdB̂t

where

D(q) := −1 +
( 1

q∗
+ λq∗

)
q− λq2

and where, if ν̂ 6= 0 and N ≥ 3, the location index n∗t differs from arg minn qn,t and arg maxn qn,t.
With this modification, the arguments go through identically, so we omit them here. In particular,
conditions (P1) and (P2) allow us to verify that D( ε+λ−1

q∗ ) > 0 and D(Kq∗) < 0, which allows us
to prove that (qn,t)N

n=1 are positive, bounded processes. Unlike Proposition 2, we do not need to
examine the consumption shares xn,t, because they are constant in the complete-markets case.
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B.7 Proof of Proposition 2
Consider gn,t = g + λ(qn,t − δ−1) with λ > δ2 and fixed ε that satisfies 0 < ε < δ−2 − λ−1. Recall
that Qt = q∗ = δ−1 holds in equilibrium. The general proof strategy will be to conjecture asset price
processes that feature extrinsic volatility and then verify that the conjectured dynamics are consis-
tent with equilibrium—namely, asset valuations remain positive and bounded, and consumption
shares remain positive.

Construction of diffusions. Follow Lemma 3 to construct σ
q
n,t = ψt

v∗n
αn,tqn,t

Men for some matrix M
with rank(M) = N − 1, some v∗ in the null-space of M, and some scalar process ψt. Given ρ = 1,
Eq. (A.9) implies that all wealth-consumption ratios are constant over time and across locations at
ωn,t = δ−1. Substituting ωn,t and σ

q
n,t into Eq. (A.23) implies

πn,t =
δv∗nψt

xn,t
Men.

We also conjecture an equilibrium with ς
q
n,t = 0, which satisfies Eq. (A.20). Finally, conjecture an

equilibrium with the following idiosyncratic volatilities. If ν̂ 6= 0 but N ≥ 3, set ς̂
q
n,t = 0 for all

n 6= n∗t , where n∗t is some location index that differs from arg minn qn,t and arg maxn qn,t (such an
index exists with probability one, if N ≥ 3). If instead ν̂ = 0, just set ς̂

q
n,t = 0 for all n, and let n∗t be

an arbitrary location index. To satisfy Eq. (A.21), we must then set

ς̂
q
n∗t ,t = −

N

∑
n=1

qn,tαn,t

qn∗t ,tαn∗t ,t
ν̂n,t.

Under these conjectures, we will use properties (P1) and (P2) in Proposition 2 to verify the conditions
of equilibrium.

Boundedness of valuations. Define

D(q) := −1 + (δ + λδ−1)q− λq2. (B.7)

Note that D(q) = 0 is a quadratic equation that has two roots: δ−1 and δλ−1. Moreover, D(q) > 0
if and only if q ∈ (δλ−1, δ−1). Substituting the above conjectures and all other equilibrium objects
into the asset-pricing Eq. (A.2), we have

(if n 6= n∗t ) dqn,t =
[

D(qn,t)−
(

δ2ψ2
t

N

∑
i=1

(v∗i )
2

xi,t

)
qn,t + δ

(v∗nψt)2

αn,txn,t

]
dt +

v∗n
αn,t

ψt(Men) · dZt (B.8)

(if n = n∗t ) dqn,t =
[

D(qn,t)−
(

δ2ψ2
t

N

∑
i=1

(v∗i )
2

xi,t

)
qn,t + δ

(v∗nψt)2

αn,txn,t
− ν̂n,t · ς̂q

n,t

]
dt +

v∗n
αn,t

ψt(Men) · dZt + qn,tς̂
q
n,tdB̂t

(B.9)

An important fact to observe is the following: under the assumptions of the proposition, the dy-
namics of

¯
qt := minn qn,t and q̄t := maxn qn,t both take the form of Eq. (B.8). Indeed, if N ≥ 3, then

the definition of n∗t implies that Eq. (B.8) applies to d
¯
qt and dq̄t. On the other hand, if ν̂ = 0, then

Eqs. (B.8) and (B.9) are equivalent, so again (B.8) applies to d
¯
qt and dq̄t.

We now show that if properties (P1) and (P2) are satisfied, then qn,t remains bounded for all n.
Under property (P2), we have ψt = 0 if

¯
qt = δ(ε + λ−1), and so

if
¯
qt = δ(ε + λ−1), d

¯
qt = D

(
δ(ε + λ−1)

)
dt > 0.
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Therefore,
¯
qt can never cross δ(ε + λ−1) from above in a path-continuous way. Under property

(P1), the drift and diffusion coefficients of
¯
qt are bounded, so

¯
qt is almost-surely path-continuous.

This proves that the entire path is bounded below: if
¯
q0 ≥ δ(ε + λ−1), then

¯
qt ≥ δ(ε + λ−1) for

all t almost-surely. An analogous argument applies to q̄t: properties (P1) and (P2) imply q̄t can
never cross Kδ−1 from below. Thus, if q̄0 ≤ Kδ−1, then q̄t ≤ Kδ−1 for all t, almost-surely. Since

¯
qt ≤ qn,t ≤ q̄t for all n, we have proved that {(qn,t)N

n=1 : t ≥ 0} is positive and bounded almost-
surely. Note that free disposal automatically holds by the fact that (qn,t)N

n=1 ≥ 0.

Survival of consumption shares. Next, we show that limT→∞ Et[e−δTx−1
n,T] = 0. Substituting equi-

librium objects into (A.18), we have

dxn,t = ψ2
t δ2
[
(1− xn,t)

(v∗n)2

xn,t
− xn,t ∑

i 6=n

(v∗i )
2

xi,t

]
dt + ψtδv∗ndZ̃n,t. (B.10)

Decompose xn,T into two parts as follows. Define

xψ
n,T := xn,01{ψ0>0} +

∫ T

0
1{ψt>0}dxn,t and x0

n,T := xn,01{ψ0=0} +
∫ T

0
1{ψt=0}dxn,t.

Clearly, xψ
n,T + x0

n,T = xn,T. From Eq. (B.10), notice that dx0
n,T = 1{ψT=0}dxn,T = 0, so that (xn,T)

−1 =

(xn,0)−1 + (xψ
n,T)

−1 − (xψ
n,0)
−1. Putting these pieces together, we have

lim
T→∞

Et[e−δT(xn,T)
−1] = lim

T→∞
Et

[
e−δT

(
(xn,0)

−1 + (xψ
n,T)

−1 − (xψ
n,0)
−1
)]

= lim
T→∞

Et[e−δT(xψ
n,T)

−1]

Finally, since ψt/xn,t ≤ ψt/ mini xi,t is bounded, by requirement (P1), we have (xψ
n,t)
−1 bounded,

which proves that limT→∞ Et[e−δT(xψ
n,T)

−1] = 0.

Verify No-Bubble and No-Ponzi conditions. At this point, it remains to verify that the No-Ponzi
conditions hold. We actually start by verifying the no-bubble Condition 1:

lim
T→∞

Et[ξn,Tqn,Tyn,T] = lim
T→∞

Et[αn,Tqn,Te−δT 1
xn,T

]

≤ lim
T→∞

Et[qn,Te−δT 1
xn,T

]

≤ Kδ−1 lim
T→∞

Et[e−δT 1
xn,T

] = 0.

In the first line, we have used (A.7); in the second line, we have used the fact that αn,T ≤ 1; in the
third line, we have used the boundedness of qn by Kδ−1, and then the result proved earlier that
limT→∞ Et[e−δT 1

xn,T
] = 0. This proves that Condition 1 holds.

Next, note that wn,t = δ−1cn,t = δ−1xn,tYt, so that wn,t ≥ 0 if and only if xn,t ≥ 0. The latter
inequality is proved by inspecting the dynamics (A.18).

Now, since wn,t and qn,t are both positive, and since ξn,t is the local state-price density, we
know (ξn,twn,t)t≥0 and (ξn,tyn,tqn,t)t≥0 are both continuous, positive super-martingales. So by Doob’s
super-martingale convergence theorem, we know that limT→∞ ξn,Twn,T and limT→∞ ξn,Tyn,Tqn,T both
exist and are finite. Next, transversality condition (A.5) and no-bubble Condition 1 imply there
exists a sub-sequence of times {Tj}∞

j=1 along which limj→∞ ξn,Tj wn,Tj = 0 and limj→∞ ξn,Tj yn,Tj qn,Tj =

0. But these limits must be the same along any subsequence, by the first step (i.e., that the limits
exist), which shows limT→∞ ξn,Twn,T = limT→∞ ξn,Tyn,Tqn,T = 0. Finally, combine the previous limits
with equity market clearing θn,T = qn,Tyn,T to obtain (4).
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Segmentation and Beliefs:
A Theory of Self-Fulfilling Idiosyncratic Risk

Paymon Khorrami and Alexander Zentefis
February 13, 2024

C Other stabilizing forces
This online appendix provides three additional microfoundations for sources of endogeneity that
keep valuation ratios stable—therefore, we call these stabilizing forces. In Section C.1, we replace the
growth-valuation link with a connection between valuations and beliefs about growth. In Section
C.2, we model firms that invest, subject to a debt overhang problem, which microfounds connection
between valuations and growth—this is similar to our baseline model but with a particular micro-
foundation. In Section C.3, we model a creative destruction process that depends on valuations. In
all of the extensions in this appendix, we will assume that agents have log utility (ρ = 1).

C.1 Valuation-dependent beliefs as a “stabilizing force”
In the main text, we study a positive connection between asset valuations and growth. Here, we
explore a model in which asset valuations increase beliefs about growth rather than actual growth. For
reasons that will become clear, self-fulfilling volatility requires segmented futures markets (i.e., no
cross-location trading on the dBt shock); if futures markets were integrated, all agents would agree
on the aggregate risk price, and beliefs would not affect asset valuations. Unfortunately, the analysis
of this setting is substantially more complex than our baseline model, so we will specialize to an
economy with constant true growth rates g, without any idiosyncratic risk (ν̂ = 0), and with an
additional cross-location entry/exit margin that facilitates analysis of the wealth distribution. More
details on this entry/exit margin below. Furthermore, we will eventually specialize to a two-location
economy, in which one location is vanishingly small (like a small open economy).

Endowments. Each location receives identical geometric Brownian motions

dyn,t

yn,t
= gdt + νdBt

Therefore, the aggregate output also follows dYt/Yt = gdt + νdBt. Furthermore, each locations’
endowment share is constant over time. Therefore, we write αn for the location-n endowment share,
dropping the time subscript.

Beliefs. Let P be the objective probability measure. Subjective beliefs are modeled as follows.
For some process γn,t, we define the likelihood ratio between subjective beliefs and the physical
probability as

Hn,t :=
(dP̃n

dP

)
t
= exp

[ ∫ t

0
γn,sdBs −

1
2

∫ t

0
γ2

n,sds
]
. (C.1)
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By Girsanov’s theorem, this amounts to assuming that agents in location n believe that dB̃n,t :=
dBt − γn,tdt is a Brownian motion. Meanwhile, agents have rational beliefs about all other shocks.
As with the endogeneity in fundamental growth rates in Eq. (6), we assume that

γn,t =
λ

ν
(qn,t − δ−1), λ > 0. (C.2)

Equation (C.2) says that investors become more optimistic about growth when prices rise. An im-
plication of these assumptions is that agent n holds the following subjective belief g̃n,t := 1

dt Ẽn
t [

dyn,t
yn,t

]

about his local endowment growth rate:

g̃n,t = g + λ(qn,t − δ−1). (C.3)

This mirrors Eq. (6), but for perceived growth rather than true growth.

Valuations. In general, as there are no dB̂t shocks, asset valuations take the form

dqn,t

qn,t
= µ

q
n,tdt + ς

q
n,tdBt + σ

q
n,t · dZt

However, we will conjecture an equilibrium in which ς
q
n,t = 0 for all n.

Optimization and risk prices. Without hedging markets for the aggregate dBt shock, location n has
its own aggregate risk price, and its SDF follows

dξn,t = −ξn,t

[
rtdt + ηn,tdBt + πn,t · dZt

]
.

Different to the baseline model, marginal utility incorporates the belief distortion, so optimal con-
sumption sets

Hn,te−δtc−1
n,t = ξn,t.

Thus, optimal consumption dynamics for each location n are then

dcn,t

cn,t
=
[
rt − δ− γn,t(γn,t + ηn,t) + (γn,t + ηn,t)

2 + ‖πn,t‖2
]
dt + (γn,t + ηn,t)dBt + πn,t · dZt. (C.4)

As before, with log utility, the location-n wealth-consumption ratio is equal to ωn,t := wn,t
cn,t

= δ−1.
Apply Itô’s formula to this result, using the dynamic budget constraint (3) with the following
substitutions: ϑn,t = 0 (since there are no futures markets), ηt replaced by the location-specific risk
price ηn,t (again, since there are no futures markets), θn,t = qn,tyn,t (equity market clearing), and
imposing the conjecture ς

q
n,t = 0. The results are

ηn,t + γn,t =
δαnqn,t

xn,t
ν (C.5)

πn,t =
δαnqn,t

xn,t
σ

q
n,t. (C.6)

In other words, the risk exposures of representative agent n coincide with the risks they hold
through their local equity.
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Aggregation. Applying Itô’s formula to the goods market clearing condition ∑N
n=1 cn,t = Yt, we

obtain

rt = δ + g +
N

∑
n=1

xn,tγn,t(γn,t + ηn,t)−
N

∑
n=1

xn,t[(γn,t + ηn,t)
2 + ‖πn,t‖2] (C.7)

from matching drifts, and

N

∑
n=1

αnqn,t = δ−1 (C.8)

N

∑
n=1

αnqn,tσ
q
n,t = 0 (C.9)

from matching diffusion coefficients and substituting Eqs. (C.5)-(C.6) above for ηn,t and πn,t. Eq.
(C.8) is simply the aggregate wealth constraint. Eq. (C.9) is a constraint on the relative extrinsic
volatilities. To satisfy this constraint, follow Step 1 of Lemma 3 to pick a matrix M and vector v∗.
Then, introduce a positive process ψt (as in Proposition 2) and let

αnqn,tσ
q
n,t = ψtv∗n Men. (C.10)

Clearly, Eq. (C.10) solves Eq. (C.9). The dynamics of xn,t = cn,t/Yt are given by applying Itô’s
formula to its definition:

dxn,t

xn,t
=
[
rt − δ− g− γn,t(γn,t + ηn,t)− ν(γn,t + ηn,t) + ν2 + (γn,t + ηn,t)

2 + ‖πn,t‖2
]
dt (C.11)

+ (γn,t + ηn,t − ν)dBt + πn,t · dZt.

Finally, the equilibrium asset-pricing condition is

µ
q
n,t + g +

1
qn,t
− rt = νηn,t + σ

q
n,t · πn,t. (C.12)

This completes the set of equilibrium equations, analogous to Appendix A. The key question is
whether the dynamics above induce stationary valuations (qn,t)N

n=1 and stationary consumption
shares (xn,t)N

n=1.

Entry/exit margin. We assume in reduced-form that entry/exit occurs between the locations in a
way that keeps ηn,t + γn,t ≤ η̄ for all n, t. Such an assumption is reasonable, because the Sharpe
ratios represent risk-adjusted profits to investors. In fact, with log utility, with an entry cost that
is proportional to wealth, and in an equilibrium without self-fulfilling volatility, this is actually the
optimal entry process, as shown in Khorrami (2018). Different entry costs map into different values
of η̄. We will assume η̄ > ν, i.e., entry occurs when Sharpe ratios are somewhat above the perfect
risk-sharing Sharpe ratio. Using Eq. (C.5), such an entry process translates into a lower bound for
xn,t:

xn,t ≥ ¯
xn,t := η̄−1δαnqn,tν. (C.13)

When xn,t falls, Sharpe ratios rise, which provides an incentive for investors to flow from other
locations into location n, keeping xn,t ≥ ¯

xn,t. Thus,
¯
xn,t is a reflecting boundary for xn,t. Modeling

entry in this way substantially simplifies the analysis of the equilibrium dynamical system.
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Steady state. The equilibrium dynamical system for (xn,t, qn,t)N
n=1 is governed by Eqs. (C.12) and

(C.11). If there is no self-fulfilling volatility, ψt = 0, then this dynamical system has a deterministic
steady state which is given by xn,t = αn and qn,t = δ−1 for all n. Although the stability properties
of the dynamical system are much more complicated in this model than in our baseline model, by
specializing to N = 2 locations and treating one location as “small”, we may obtain some sharp
analytical results.

Example with one small and one large location. To transparently establish the existence of a
sunspot equilibrium, we now specialize to N = 2 locations. With N = 2, we can focus on location-1
and determine the location-2 equilibrium objects via market clearing. In particular, drop the location
subscripts and denote α := α1, xt := x1,t, and qt := q1,t. Then, the location-2 objects are α2 = 1− α,
x2,t = 1− xt, and

q2,t =
δ−1 − αqt

1− α

Furthermore, we will assume that

M =

[
1 −1
0 0

]
so that v∗ = (1, 1)′ ∈ null(M).

This specification is equivalent to assuming there is only one extrinsic shock. Therefore, let us define
abuse notation and define Zt := Z1,t.

Let us focus now on the location-1 valuation qt and consumption share xt. Substitute Eqs. (C.2),
(C.5), (C.6), and (C.10) into Eq. (C.12) to obtain

dqt =
[
− 1 +

δψ2
t

αxt
+
(

rt − g + λδ−1
)

qt −
(

λ− δα

xt
ν2
)

q2
t

]
dt +

ψt

α
dZt. (C.14)

Then, substituting (C.7) into (C.14) and doing some algebra, we obtain

dqt =
[
− 1 +

( δ

αxt
− δ2qt

xt(1− xt)

)
ψ2

t + A1,tqt + A2,tq2
t + A3,tq3

t

]
dt +

ψt

α
dZt (C.15)

where A1,t := δ +
λδ−1

1− α
− ν2

1− xt

A2,t := α
(δν2

xt
+

2δν2

1− xt
− 2λ

1− α

)
− λ

A3,t := α
( λδ

1− α
− α(δν)2

xt(1− xt)

)
Similarly, substitute various results into Eq. (C.11), we obtain

dxt =
[

xt
λδ−1α

1− α
(1− δqt)

2 − λ(qt − δ−1)αδqt − αδqtν
2 (C.16)

+
(αδqt)2

xt
ν2 − (xt − αδqt)2

1− xt
ν2 +

(δψt)2

xt
− (δψt)2

1− xt

]
dt + (δαqt − xt)νdBt + δψtdZt.

Given the entry process, consumption shares also obey xt ≥ η̄−1δναqt and 1− xt ≥ η̄−1δν(1− α)q2,t.
Combining these bounds and using the expression for q2,t, equilibrium has

η̄−1δναqt ≤ xt ≤ 1 + η̄−1δναqt − η̄−1ν. (C.17)
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Equilibrium requires the dynamics (C.15) to be such that qt > 0 and qt < δ−1/α (so that q2,t > 0) for
all t.

Figure C.1 provides an illustration of the drifts of Eqs. (C.15) and (C.16) when ψt = 0. The
dynamics look like they could be locally stable (see the solid and dotted lines in the left panel,
near the higher steady state), but this conclusion seems to depend on the level of xt relative to α
(consumption versus endowment shares). Of course, this figure also depends on a specific choice
of other parameters. So the question is whether some more general statements can be made about
dynamical stability.

Figure C.1: Valuation and consumption share dynamics.

Notes. Parameters are δ = 0.05, g = 0.02, ν = 0.1, α = 0.1, λ = δ2

1−δ + δν2.

Proving the general stationarity of (qt)t≥0 is technically difficult, so we sketch the main ideas
in a limiting case in which one location is vanishingly small. This is essentially a “small open
economy” limit. In particular, for each α, the equilibrium is indexed as follows. Let ψt = αψ∗t
be the self-fulfilling volatility process (this intentionally vanishes with α). Let xα

t and qα
t be the

resulting consumption share and valuation in equilibrium. Thus, (xt, qt, ψt)t≥0 = (xα
t , qα

t , αψ∗t )t≥0
is the equilibrium for a fixed α. We will take α → 0 and establish the desired stability properties
in that limiting equilibrium. Let x∗t := limα→0 xα

t and q∗t := limα→0 qα
t be the limiting equilibrium

objects.
In this limiting equilibrium, x∗t = 0 with probability 1. Indeed, inspecting the dynamics (C.16)

with α→ 0 and ψt = αψ∗t → 0, we see that

dx∗t = −(x∗t ν)2dt− x∗t νdBt.

The initial consumption share of location 1 is xα
0 = αδqα

0 , so x∗0 = 0. Using the dynamics above, we
then have x∗t = 0 for all t.
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Define x̃∗t := limα→0 xα
t /α, and note its initial value x̃∗0 = δq∗0 . Given the entry/exit margin,

captured in Eq. (C.13), we have x̃∗t ≥ η̄−1δνq∗t (the upper bound scaled by 1/α diverges and becomes
irrelevant as α shrinks).

We can now examine the limiting dynamics for q∗t and x̃∗t :

dq∗t =
[
− 1 +

δ

x̃∗t
(ψ∗t )

2 +
(

δ + λδ−1 − ν2
)

q∗t +
(δν2

x̃∗t
− λ

)
(q∗t )

2
]
dt + ψ∗t dZt (C.18)

dx̃∗t =
[ (δq∗t )

2

x̃∗t
ν2 − δq∗t [ν

2 + λ(q∗t − δ−1)] +
(δψ∗t )

2

x̃∗t

]
dt + (δq∗t − x̃∗t )νdBt + δψ∗t dZt (C.19)

where x̃∗t ≥ η̄−1δνq∗t . (C.20)

A steady state of this system is (x̃∗t , q∗t , ψ∗t ) = (1, δ−1, 0). To show that self-fulfilling volatility is
possible (i.e., ψ∗t 6= 0), we need to show that q∗t > 0 for all t with probability 1. To do this, we need
the following parameter restrictions:

δ > ν2 (C.21)

λ > δ2 + δν2 + 2νδ1.5 (C.22)

ν < η̄ <
1
2

δ + λδ−1 − ν2

ν
(C.23)

Note that (C.21)-(C.23) are mutually consistent (i.e., the proposed interval for η̄ is non-empty).
Consider the first-passage time

τ :=
{

t ≥ 0 : q∗t ≤
¯
q∗t :=

δ + λδ−1 − ν2

2(λ− δν2/x̃∗t )

}
. (C.24)

Let ψ∗τ = 0, so that self-fulfilling volatility vanishes as valuations reach the lower bound specified in
(C.24). Then, we have the following lemma, which shows that the equilibrium is stable and therefore
permits self-fulfilling volatility.

Lemma C.1. Under parameter assumptions (C.21)-(C.23), we have dq∗τ > 0 almost-surely, and consequently
(q∗t )t≥0 > 0 given any process (ψ∗t )t≥0 that vanishes as q∗t approaches

¯
q∗t .

Proof. We will first conjecture and then verify that x̃∗t > δν2/λ. Given this conjecture, notice from
the definition of

¯
q∗t in (C.24) that

¯
q∗t >

δ + λδ−1 − ν2

2λ
. (C.25)

Under parameter assumption (C.21), the right-hand-side of the expression above is strictly positive.
Combine parameter assumption (C.23) with the entry barrier in (C.20), along with q∗t ≥

¯
q∗t and the

lower bound for
¯
q∗t in (C.25). The result is that we verify

x̃∗t >
δν2

λ
. (C.26)

Next, we need to show that dq∗τ > 0 if ψ∗τ = 0. Consider the function

f (q; x) := −1 +
(

δ + λδ−1 − ν2
)

q +
(δν2

x
− λ

)
q2
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Note that dq∗τ = f (q∗τ; x̃∗τ)dt. As a function of q, f (q; x) is a quadratic function with two roots q+ and
q−, which are

q+(x) =
δ + λδ−1 − ν2 +

√
(δ + λδ−1 − ν2)2 − 4(λ− δν2

x )

2(λ− δν2

x )

q−(x) =
δ + λδ−1 − ν2 −

√
(δ + λδ−1 − ν2)2 − 4(λ− δν2

x )

2(λ− δν2

x )

Under assumption (C.22), note that both roots are real. Furthermore, both roots are strictly positive
and distinct for any x > δν2/λ. In such case, we have f (q, x) > 0 for all q ∈ (q−(x), q+(x)). Thus,
the inequality (C.26), combined with the fact that

¯
q∗t ∈

(
q−(x̃∗τ), q+(x̃∗τ)

)
proves that f (q∗τ; x̃∗τ) > 0.

Finally, we may define a sequence of stopping times as follows. Let τ0 := τ and define recur-
sively

τk+1 :=
{

t > τk : q∗t ≤
¯
q∗t :=

δ + λδ−1 − ν2

2(λ− δν2/x̃∗t )

}
.

The same method above can used to prove that dq∗τk
> 0 for any k, which implies τk+1 > τk

almost-surely. Then, in each time interval (τk, τk+1), we have that q∗t ≥
¯
q∗t . Furthermore, we have

¯
q∗t > δ+λδ−1−ν2

2λ > 0, following the proof method above. By piecing together the sequences of stopped
processes, this completes the proof that (q∗t )t≥0 > 0 almost-surely, as long as ψ∗τk

= 0 for each k.

C.2 Debt overhang as a “stabilizing force”
In this section, we sketch an economy where firms face an investment problem, subject to neo-
classical adjustment costs and debt-overhang. The result is a version of Q-theory, but with under-
investment. Because the predictions of this theory are so well-established, at some points we make
reduced-form assumptions to simplify the analysis and illustrate our main points on stability.

Firms. There are a continuum of firms in each location n, each employing a linear technology with
productivity a and capital as the sole input. The evolution of firm-level capital is

dk(j)
n,t = k(j)

n,t[ι
(j)
n,t − κ]dt + k(j)

n,tσ̂dB̂(j)
n,t ,

where ι is the endogenous investment rate, κ is the exogenous depreciation rate, and B(j) is an
idiosyncratic Brownian shock. The cost of making investment ιk is given by Φ(ι)k, where Φ(·)
is a convex adjustment cost function. Thus, the investment-production block has the standard
homogeneity property in capital.

For this section only, we denote by q(j)
n,t the location-n average value of capital to equity, i.e.

“average Q” (this will not be the same as the price-dividend ratio that is called “q” in the main text,
because the dividend is output minus investment). Thus, the value of firm j is given by q(j)

n,tk
(j)
n,t.

We also assume that all firms have long-term debt outstanding, in fact a perpetuity with a
fixed and continuously-paid coupon as in Leland (1994) and its descendent papers, without micro-
founding the reasons for why (e.g., debt tax shield), as this is unimportant. Furthermore, to keep
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things simple, we assume existing firms can never issue new debt. Finally, firms default optimally,
subject to some default costs that are proportional to the firm’s capital (these can be redistributed
to households to create no deadweight loss). Under these conditions, a typical finding is (see for
example Hennessy, 2004, Proposition 2)

q̃(j)
n,t := marginal value of capital to equity < average value of capital to equity = q(j)

n,t.

Moreover, essentially by definition of q̃, the optimal investment satisfies q̃(j)
n,t = Φ′(ι(j)

n,t) (see for

example Hennessy, 2004, equation 11). Thus, we see that q(j)
n,t > Φ′(ι(j)

n,t). The lack of equality here
measures the deviation from neoclassical Q-theory.

Despite this deviation, we have the following property. Since q(j)
n,t increases with q̃(j)

n,t = Φ′(ι(j)
n,t),

and since Φ is a convex function, we have ι
(j)
n,t increasing in q(j)

n,t. We will furthermore make the

reduced-form assumption that ι
(j)
n,t = ι(q(j)

n,t) for some univariate increasing function ι(·). This as-

sumption is quite benign as it is typically satisfied in applications, because q̃(j)
n,t, hence q(j)

n,t, will
typically be monotonic functions of the underlying firm-level state (e.g., leverage ratio).

In summary, we have the following two firm-level properties under debt overhang:

q(j)
n,t > Φ′(ι(j)

n,t) (C.27)

ι′(q(j)
n,t) > 0. (C.28)

Condition (C.27) captures the specific debt-overhang mechanism, whereas condition (C.28) is much
more general and applies in almost any investment model. With a more general contractual struc-
ture, DeMarzo et al. (2012) also obtains these two results.

Aggregation. We will now make two assumptions that are mainly for tractability in aggregation.
First, when a firm defaults and exits, it is replaced by another firm with the same identity j that
inherits the defaulting capital stock. We assume this new entrant issues new debt is such that the
aggregate location-n value of debt outstanding is always a constant fraction of total location-n capi-
tal; i.e., total location-n value of debt is always βkn,t. Alternatively, this proportionality of aggregate
debt to capital could be ensured by augmenting the model with a time-varying exogenous exit rate,
but allowing new entrants to issue debt in an optimal way. Either way, this set of assumptions
implies it suffices to study equity.

Second, we make assumptions to avoid studying the full cross-sectional distribution of firms
within a location. We assume that properties (C.27)-(C.28) also hold in the aggregate at each location,
and we will presume a certain approximate aggregation on investment and investment costs. In
particular, let us define the appropriate aggregates, for capital, average Q, and investment:

kn,t :=
∫

k(j)
n,tdj

qn,t :=
1

kn,t

∫
q(j)

n,tk
(j)
n,tdj

ιn,t :=
1

kn,t

∫
ι(q(j)

n,t)k
(j)
n,tdj.

As an approximation, we assume the existence of functions (ῑ, Φ̄) such that the following hold:

ῑ(qn,t) ≈
∫

k(j)
n,tι(q

(j)
n,t)dj (C.29)

kn,tΦ̄(ῑ(qn,t)) ≈
∫

k(j)
n,tΦ̄(ῑ(q(j)

n,t))dj. (C.30)
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The nature of these approximations is to say that aggregate location-n investment is solely a function
of aggregate average Q, rather than the full cross-sectional distribution of average Q’s. Furthermore,
we assume the following aggregate versions of properties (C.27)-(C.28), i.e.,

qn,t > Φ̄′(ῑn,t) (C.31)
ῑ′(qn,t) > 0. (C.32)

We conjecture these properties would go through in a full analysis of equilibrium using the cross-
sectional distribution of firm size and Q, but this is beyond the scope of this paper. As we make
these aggregation approximations, note that we also assume the functions (ῑ, Φ̄) are independent of
location n.

Stability. Now, we can proceed to study stability. The aggregate portfolio of location-n firms’ lia-
bilities (debt plus equity) has value (β + qn,t)kn,t, which is a claim to the profits

∫
(a−Φ(ι

(j)
n,t))k

(j)
n,tdj.

Based on approximation (C.30), this aggregate profit can be approximately written (a− Φ̄(ῑ(qn,t)))kn,t.
Furthermore, the return on this portfolio is deterministic, given that all fundamental shocks are id-
iosyncratic (hence defaults will be idiosyncratic), and thus the return must equal the riskless bond
return rt in equilibrium. Thus, qn,t evolves deterministically, and the (approximate) valuation equa-
tion states

a− Φ̄(ῑ(qn,t))

qn,t
+ ῑ(qn,t)− κ +

q̇n,t

qn,t
= rt. (C.33)

Lemma C.2. Suppose the number of locations N is large enough, that approximations (C.29)-(C.30) hold,
and that properties (C.31)-(C.32) hold with sufficient gaps between the left- and right-hand-sides (i.e., under-
investment is large enough). Then, the equilibrium of the model with debt overhang is locally-stable.

Proof of Lemma C.2. We start with approximate valuation equation (C.33). Differentiate q̇n,t with
respect to qn,t and q−n,t to obtain

dq̇n,t

dqn,t
= rt + κ − ῑ(qn,t) + Φ̄′(ῑ(qn,t))ῑ

′(qn,t)− qn,t ῑ
′(qn,t) + qn,t

drt

dqn,t

dq̇n,t

dq−n,t
= qn,t

drt

dq−n,t
.

We will study these equations in the limit N → ∞, which suffices, because the lemma allows us to
later make N large enough.

As N → ∞, one can show that

rt → δ− κ + lim
N→∞

N

∑
n=1

kn,t

∑N
i=1 ki,t

ῑ(qn,t),

which has zero derivative with respect to qi,t for any i. Substituting this result for rt, we obtain
dq̇n,t/dq−n,t = 0 and

dq̇n,t

dqn,t
= δ + lim

N→∞

N

∑
m=1

km,t

∑N
i=1 ki,t

ῑ(qm,t)− ῑ(qn,t)︸ ︷︷ ︸
=0 in steady state

−
[
qn,t − Φ̄′(ῑ(qn,t))

]
ῑ′(qn,t).
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The fact that the middle terms net out to zero in steady state is a consequence of the fact that
dkn,t = kn,t[ῑ(qn,t)− κ]dt, and all locations must experience the same growth rate ῑ(qn,t)− κ in steady
state. Thus, we will have dq̇n,t/dqn,t < 0, hence local stability by dq̇n,t/dq−n,t = 0, if and only if[

qn,t − Φ̄′(ῑ(qn,t))
]
ῑ′(qn,t) > δ.

This will be true if properties (C.31)-(C.32) hold with sufficient gaps, as assumed.

C.3 Creative destruction as a “stabilizing force”
In this section, we consider another model that allows multiplicity. We show how an overlapping
generations (OLG) “perpetual youth” economy – built upon Blanchard (1985) – augmented with
a particular type of creative destruction – similar to Gârleanu and Panageas (2020) – creates a
stabilizing force upon which extrinsic shocks can be layered. In particular, if new firm creation
is more intense when asset valuations are low, the economy possesses a natural stabilizing force.
A possible rationale for this feature is that when capital asset valuations are low, they make labor
look relatively attractive, which offers a robust outside option for those new entrepreneurs willing to
enter. The contribution relative to Gârleanu and Panageas (2020) is to show how this is possible with
an arbitrary number of assets (corresponding to the N locations) whose markets are, in addition,
not integrated.

Cohorts, Endowments, Markets. In this model, all agents face a constant hazard rate of death
β > 0, with all dying agents replaced by newborns (in the same location), so that population size
is constant at 1. To keep matters simple, assume all locations have identical constant endowment
growth rates and no shocks. That said, the endowment growth of an individual agent differs from
the aggregate growth rate; this is the crucial ingredient in this model.

In particular, we assume some amount of creative destruction. The endowments of living agents
decay at rate κn,t (obsolescence rate), while newborn agents arrive to the economy with new trees of
total size κn,t + g (or, in per capita units, their individual trees are (κn,t + g)/β in size). Specifically,
the time-t endowment accruing to location-n agents born at time s ≤ t is

y(s)n,t = yn,t(κn,s + g) exp
[
−
∫ t

s
(κn,u + g)du

]
.

Note that the aggregate endowment follows

dyn,t = d
( ∫ t

−∞
y(s)n,t ds

)
= y(t)n,tdt +

∫ t

−∞
dy(s)n,t ds = yn,t(κn,t + g)dt︸ ︷︷ ︸

newborn entry

− yn,tκn,tdt︸ ︷︷ ︸
obsolescence

= yn,tgdt.

For now, we leave κn,t unspecified, but note that its formulation will be the determinant of whether
multiplicity is possible or not.

Agents can only trade in financial markets while alive. In addition to the tradability of claims
to local endowments, agents can access a market for annuities that insures their death hazard and
provides a stream of βw(s)

n,t of income per unit of time, where w(s)
n,t is the wealth of a location-n agent

born at time s ≤ t. This assumption is standard in perpetual youth models.

Solution. Under these assumptions, one can show that agents consume δ + β fraction of their
wealth, so that the aggregate wealth condition (A.19) is replaced by

N

∑
n=1

αnqn,t = (δ + β)−1,
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where qn,t is the (aggregated across cohorts) location-n valuation ratio. Let ξn,t denote the location-n
state-price density, which follows

dξn,t = −ξn,t

[
rtdt + πn,tdZn,t

]
.

We will continue to examine a bubble-free equilibrium, so that

qn,t = Et

[ ∫ ∞

t

ξn,τ

ξn,t

y(s)n,τ

y(s)n,t

dτ
]

(for any birth-date s ≤ t, this yields the same answer).

Critically, this valuation does not incorporate wealth gains due to entry of future newborns (i.e.,
this is the value of alive firms). The dynamic counterpart of this valuation equation is, for some
diffusion coefficient σ

q
n,t,

dqn,t

qn,t
=
[
rt + κn,t −

1
qn,t

+ σ
q
n,tπn,t

]
dt + σ

q
n,tdZn,t. (C.34)

The equilibrium riskless rate is obtained as follows. The goods market is integrated across
locations, so the market clearing condition is given by

Yt =
N

∑
n=1

yn,t =
N

∑
n=1

∫ t

−∞
βe−β(t−s)c(s)n,t ds.

Optimal consumption dynamics for alive agents are

dc(s)n,t

c(s)n,t

=
[
rt − δ + π2

n,t

]
dt + πn,tdZn,t,

whereas newborn agents consume

βc(t)n,t = (δ + β)︸ ︷︷ ︸
cons-wealth

ratio

× (κn,t + g)yn,tqn,t︸ ︷︷ ︸
newborn wealth

.

Applying Itô’s formula to goods market clearing, and using these results, we obtain

rt = δ + β−
N

∑
n=1

xn,tπ
2
n,t − (δ + β)

N

∑
n=1

αnqn,tκn,t. (C.35)

Stability. To see how the stabilizing force works, it is instructive to once again study the determin-
istic equilibrium in which extrinsic shocks have no volatility. Substituting (C.35) into (C.34) with
σ

q
n,t = 0, we obtain

q̇n,t = −1 + (δ + β)qn,t︸ ︷︷ ︸
unstable component

−
[
(δ + β)

N

∑
i=1

αiqi,tκi,t − κn,t

]
qn,t︸ ︷︷ ︸

stabilizing force

when σ
q
i,t = 0 ∀i. (C.36)

The first piece is the unstable component, propelling valuations further and further away from
the “steady state” value (δ + β)−1. The second piece—capturing the relative amount of creative
destruction in location n—is the stabilizing force.
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Based on equation (C.36), we claim that if κn,t decreases sufficiently rapidly as qn,t increases,
then valuation dynamics are stable. Let κn,t = κ(qn,t) for a decreasing function κ(·). Denote the
steady-state mean and sensitivity of this function by κ̄ := κ((δ + β)−1) and λ := −κ′((δ + β)−1),
respectively. Then, compute

∂q̇n

∂qm

∣∣∣
qi=(δ+β)−1 ∀ i

=

{
δ + β− λ(δ + β)−1(1− αn)− αnκ̄, if m = n;
λ(δ + β)−1αm − αmκ̄, if m 6= n.

Construct the steady-state Jacobian matrix as

J :=
[ ∂q̇n

∂qm

∣∣∣
qi=(δ+β)−1 ∀ i

]
1≤n,m≤N

. (C.37)

Local stability of the steady-state can be determined by the eigenvalues of J. By the Gershgorin
circle theorem, all of these eigenvalues will have strictly negative real parts if J has negative diagonal
elements and is diagonally dominant. This is easily guaranteed by making κ̄ and λ large enough,
meaning the amount of creative destruction and its sensitivity to prices are both large enough. The
result is summarized in the following lemma, with the proof omitted.

Lemma C.3. Assume κ̄ > δ + β and λ > (δ + β)κ̄. Then, all eigenvalues of J have strictly negative real
parts. Consequently, the equilibrium of the creative destruction model is locally stable.

D Example: sunspot fluctuations in the aggregate valuation
Most of the paper focuses on redistributive fluctuations. Here, we also present an example in which
the aggregate valuation can be subject to self-fulfilling fluctuations. The results of Theorem 1 and
Lemmas 1-2 imply that an indeterminate aggregate valuation requires ρ < 1 and a sufficiently large
growth-valuation link parameter λ.

We will present this example in a one-location economy (N = 1), so without loss of generality we
may also shut down the idiosyncratic fundamental shock (ν̂ = 0). Eq. (A.24) contains the aggregate
valuation dynamics dQt in general. Substituting πt = 0 due to Eq. (A.17), as well as the expression
for rt in (A.14) and the expression for growth gt in (7), the aggregate valuation ratio Qt satisfies

dQt = Qt

[
δ + (ρ− 1)(g− λq∗) + (ρ− 1)λQt −

1
2

ρ(ρ− 1)ν2 − 1
Qt

+ (ρ− 1)νςQ
t

]
dt

+ Qt

[
ςQ

t dBt + σQ
t dZt

]
.

Following the constructions in Propositions 1-2, let us conjecture an equilibrium with ςQ
t = 0. In

that case, and recalling that q∗ = δ + (ρ− 1)g− 1
2 ρ(ρ− 1)ν2, we may rewrite the dynamics as

dQt = D(Qt)dt + Qtσ
Q
t dZt (D.1)

where D(Q) := −1 + Q
[ 1

q∗
+ (1− ρ)λq∗

]
− (1− ρ)λQ2

= −(Q− q∗)
(

λ(1− ρ)Q− 1
q∗
)

.

The only question for whether or not we have equilibrium is whether or not the dynamics in (D.1)
keep Qt positive and bounded. Basically, this boils down to the properties of the function D(·), as
well as how σQ

t is specified.
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We require ρ < 1 and λ > 1
(1−ρ)(q∗)2 . In that case, the shape of the function D(·) is an inverse-

U with two steady states, q∗ and q∗∗ := 1
λ(1−ρ)q∗ < q∗. The larger steady state is locally stable,

since D′(q∗) < 0—exactly as in Theorem 1. The smaller steady state q∗∗ is unstable. Therefore, the
function D(·) is positive for Q ∈ (q∗∗, q∗) and negative for Q > q∗. The idea is then to specify σQ

t to
keep Qt in the region (q∗∗, ∞). The following formal result explains how this can be done. We omit
the proof as it is based on standard boundary classification results for one-dimensional SDEs.

Proposition D.1. Suppose N = 1. Pick an interval [
¯
q, q̄], where q∗∗ ≤

¯
q < q∗ < q̄. Pick a bounded function

V such that V(q) > 0 on (
¯
q, q̄) and such that

lim
q→q̄

V(q)2

q̄− q
< −2D(q̄) and lim

q→
¯
q

V(q)2

q−
¯
q

< 2D(
¯
q). (D.2)

Then, there exists an equilibrium where Qt follows

dQt = D(Qt)dt + V(Qt)dZt

and remains forever inside [
¯
q, q̄].

Figure D.1 presents an example of such a construction, where we have used the volatility func-
tion V(q) = 0.1(q−

¯
q)(q̄− q), which satisfies condition (D.2). You can see that volatility vanishes at

the points
¯
q and q̄, which allows the drift D(Q) to take over at those points, inducing the valuation

to mean-revert to steady state.

Figure D.1: Aggregate valuation dynamics.

Notes. Parameters are δ = 0.05, g = 0, ν = 0, ρ = 0.5, λ = 2
(1−ρ)(q∗)2 , and q̄ = 1.5q∗.
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E International model of Section 5.2
Derivation of equilibrium. As before, let Yt := ∑N

n=1 yn,t be aggregate tradable consumption, and
define (tradable) consumption shares xn,t := cn,t/Yt and (tradable) endowment shares αn,t := yn,t/Yt.
Country n state price density ξn,t still evolves according to Eq. (A.1), repeated here for convenience

dξn,t

ξn,t
= −rtdt− ηtdBt − η̂t · dB̂t − πn,t · dZt.

The representative agent of country n maximizes (26) subject to the lifetime budget constraint

wn,0 = E0

[ ∫ ∞

0

ξn,t

ξn,0
(cn,t + pn,t ĉn,t)dt

]
. (E.1)

Solving this maximization problem delivers FOCs e−δtφc−1
n,t = ξn,t and e−δt(1 − φ)ĉ−1

n,t = ξn,t pn,t,
which together imply the expenditure shares in (28). To obtain the dynamic consumption rule,
substitute these FOCs back into the budget constraint (E.1) to get cn,0 + pn,0ĉn,0 = δwn,0. This is
equivalent to Eq. (27) after using the definition of the price and quantity index Pn,tCn,t = cn,t +
pn,t ĉn,t. Then, the optimal dynamics of non-tradable consumption cn,t, expenditure Pn,tCn,t, and
wealth wn,t all take the same form, namely

dcn,t

cn,t
=

dwn,t

wn,t
=
[
rt − δ + η2

t + ‖η̂t‖2 + ‖πn,t‖2
]
dt + ηtdBt + η̂t · dB̂t + πn,t · dZt. (E.2)

As in the baseline model, using ∑N
n=1 dcn,t = dYt and matching drifts and diffusions, we obtain the

interest rate in Eq. (A.14) and risk prices in Eqs. (A.15)-(A.17), all repeated here for convenience

rt = δ + gt − ν2 −
N

∑
n=1

xn,t‖πn,t‖2, and ηt = ν, and η̂t = 0, and
N

∑
n=1

xn,tπn,t = 0.

Therefore, the dynamics of xn,t are identical to the baseline model Eq. (A.18). Finally, use the
tradable expenditure share rule to write aggregate wealth as

N

∑
n=1

wn,t =
N

∑
n=1

cn,t

φδ
=

Yt

φδ
. (E.3)

So far, this is nearly identical to the baseline model. The step that diverges from the baseline model,
which we tackle next, regards the local equity pricing equation.

The return on local equity dRn,t is defined by

dRn,t :=
1

qn,t
dt +

d(qn,t(yn,t + pn,tŷn,t))

qn,t(yn,t + pn,tŷn,t)
,

where the valuation ratio qn,t has dynamics of the form

dqn,t

qn,t
= µ

q
n,tdt + ς

q
n,tdBt + ς̂

q
n,t · dB̂t + σ

q
n,t · dZt.
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Apply Itô’s formula to d(qn,t(yn,t + pn,tŷn,t)), using the fact from Eqs. (27)-(28) that pn,tŷn,t =
1−φ

φ cn,t

and also using the equilibrium risk prices and interest rate, to obtain

dRn,t =
1

qn,t
dt + µ

q
n,tdt + ς

q
n,tdBt + ς̂

q
n,t · dB̂t + σ

q
n,t · dZt (E.4)

+
φyn,t

φyn,t + (1− φ)cn,t

(
[gn,t + νς

q
n,t + ν̂n,t · ς̂q

n,t]dt + νdBt + ν̂n,t · dB̂t

)
+

(1− φ)cn,t

φyn,t + (1− φ)cn,t

(
[rt − δ + ν2 + π2

n,t + νς
q
n,t + πn,tσ

q
n,t]dt + νdBt + πn,t · dZt

)
Consequently, the no-arbitrage pricing equation is (after substituting the equilibrium risk prices and
doing extensive algebra)

µ
q
n,t = δ− 1

qn,t
+

φyn,t

φyn,t + (1− φ)cn,t

(
rt − δ + ν2 + πn,t · σq

n,t − gn,t − ν̂n,t · ς̂q
n,t

)
. (E.5)

Eq. (E.5) characterizes the critical dynamical system of the model.
To connect the risk prices to the valuation dynamics, recall the dynamic budget constraint

dwn,t = (wn,trt − Pn,tCn,t)dt + ϑn,t(ηtdt + dBt) + ϑ̂n,t · (η̂tdt + dB̂t) + θn,t(dRn,t − rtdt). (E.6)

First, using local equity market clearing θn,t = qn,t(yn,t + pn,tŷn,t) and matching the dZt loadings in
Eq. (E.6) to those in Eq. (E.2), we have

πn,t =
qn,t(yn,t + pn,tŷn,t)

wn,t

(
σ

q
n,t +

pn,tŷn,t

yn,t + pn,tŷn,t
πn,t

)
Using pn,tŷn,t = (1− φ)δwn,t and cn,t = φδwn,t, and then solving this equation for πn,t, we obtain

πn,t = δ
φαn,t + (1− φ)xn,t

xn,t(1− (1− φ)δqn,t)
qn,tσ

q
n,t. (E.7)

Using Eq. (E.7) inside ∑N
n=1 xn,tπn,t = 0, we have the following restriction on sunspot volatilities:

0 =
N

∑
n=1

φαn,t + (1− φ)xn,t

1− (1− φ)δqn,t
qn,tσ

q
n,t. (E.8)

Second, summing both Eqs. (E.6) and (E.2) over n, using ηt = ν and η̂t = 0, using futures market
clearing conditions ∑N

n=1 ϑn,t = 0 and ∑N
n=1 ϑ̂n,t = 0, and using the aggregate wealth constraint (E.3),

we obtain

ν = δ
N

∑
n=1

qn,t(φαn,t + (1− φ)xn,t)(ν + ς
q
n,t)

0 =
N

∑
n=1

qn,t(φαn,t + (1− φ)xn,t)(ν̂n,t + ς̂
q
n,t)

This completes the set of equilibrium equations, analogously to Appendix A.

Construction and stability of sunspot equilibria. Let M be an N×N matrix with rank(M) = N− 1
and unit-length columns, let v∗ := (v∗1 , . . . , v∗N)

′ ≥ 0 be in the null-space of M, and let ψt be a positive
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scalar process (exactly as in Lemma 3). Since 0 = ∑N
n=1 xn,tπn,t holds, as in the baseline model, we

thus construct a candidate equilibrium with

πn,t =
δψt

xn,t
v∗n Men. (E.9)

By Eq. (E.7), we then have

φαn,t + (1− φ)xn,t

1− (1− φ)δqn,t
qn,tσ

q
n,t = ψtv∗n Men, (E.10)

From this point, and assuming the growth-valuation link gn,t = g + λ(qn,t − δ−1) with λ > δ2, the
arguments in Proposition 2 go through without modification. We thus only sketch the intuition.

In particular, to see that the valuation dynamics are stable, substitute ς̂
q
n,t = 0, rt = δ + g− ν2 −

∑N
n=1 xn,t‖πn,t‖2, gn,t = g + λ(qn,t − δ−1), and Eqs. (E.9)-(E.10) into Eq. (E.5) to get

qn,tµ
q
n,t = −1 +

(
δ + λδ−1 φαn,t

φαn,t + (1− φ)xn,t

)
qn,t −

φαn,t

φαn,t + (1− φ)xn,t
λq2

n,t (E.11)

+
( φαn,t

φαn,t + (1− φ)xn,t

)2 δ(ψtv∗n)2

φαn,txn,t
[1− (1− φ)δqn,t]−

φαn,t

φαn,t + (1− φ)xn,t

(
δ2ψ2

t

N

∑
i=1

(v∗i )
2

xi,t

)
qn,t.

When ψt = 0, the entire second line of Eq. (E.11) vanishes. In that case, we can see that qn,tµ
q
n,t is

decreasing with respect to qn,t if and only if

2
φαn,t

φαn,t + (1− φ)xn,t
λqn,t > δ + λδ−1 φαn,t

φαn,t + (1− φ)xn,t

For qn,t = δ−1 (steady state), this condition becomes

λ > δ2 φαn,t + (1− φ)xn,t

φαn,t

Therefore, if λ is large enough (e.g., larger than Kδ2), then we can construct a sunspot equilibrium
in which volatility ψt vanishes whenever either (i) qn,t deviates too far from “steady state”; or (ii)
φαn,t+(1−φ)xn,t

φαn,t
becomes too large (e.g., it reaches K in the example where λ > Kδ2).
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