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Abstract

We uncover new volatile sentiment-driven equilibria in a canonical dynamic econ-
omy with nominal rigidities. Self-fulfilling fluctuations emerge because, at the zero
lower bound, output is demand-determined, and demand is unanchored. If agents
conjecture higher asset price volatility, then wealth, aggregate demand, and hence
production all become more sensitive to shocks, justifying the higher price uncer-
tainty. Different from the existing literature, our multiplicity is unrelated to inflation
or investment. Certain unconventional policies (e.g., asset purchases) can help, but
they must be very aggressive and highly credible; otherwise, unconventional policies
may actually increase uncertainty rather than reduce it.
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1 Introduction

In the textbook New Keynesian model, output is determined by aggregate demand,
and current demand depends on future demand. This dependence opens the door to
multiple equilibria. Monetary policy can restore determinacy by following an active
rule that strongly reacts to output and inflation deviations (e.g., the Taylor principle).
However, multiplicity can re-emerge if policy constraints like the zero lower bound (ZLB)
can interfere with the active policy rule.

In influential work, Benhabib et al. (2001a) showed that the ZLB can lead to “defla-
tionary trap” equilibria. In their model, the interest rate falls to the ZLB because of low
inflation expectations, which become self-fulfilling because policy is stuck at the ZLB
and the recession lowers inflation. More recently, Benigno and Fornaro (2018) showed
there can also be “stagnation trap” equilibria. In their model, the interest rate falls to the
ZLB because of low growth expectations, which become self-fulfilling because policy is
stuck at the ZLB and the recession lowers R&D investment.

Set against this background, the present paper describes “volatility trap” equilibria.
In these equilibria, the interest rate falls to the ZLB because of a sudden rise in asset-price
volatility that raises the risk premium. This volatility becomes self-fulfilling because
the policy is stuck at the ZLB where aggregate demand is unanchored. In particular,
aggregate demand depends on asset prices, and asset prices can fluctuate subject to
mild valuation requirements about the relationship between current prices and future
prices.

We develop these insights in a standard New Keynesian model: markets are com-
plete, the representative agent is fully rational, but prices are sticky and monetary policy
is constrained by the ZLB. To distinguish ourselves from the earlier literature on indeter-
minacies in this class of models, we study a stylized setting where prices are fully rigid
and where aggregate capital growth is exogenous. Thus, nothing about our equilibrium
design relies on inflation dynamics (Benhabib et al., 2001a,b) or investment dynamics
(Benigno and Fornaro, 2018). Another key difference between our paper and the ear-
lier literature is our focus on risk and risk premia as a driving force, and as such, we
study the fully nonlinear version of our model. This becomes easier in continuous time,
which is why we adopt a continuous-time risk-centric articulation of the New Keynesian
setting, due to Caballero and Simsek (2020c).

Now, we describe the intuition behind our equilibria in more detail. Consider a sud-
den wave of fear, meaning agents perceive higher volatility going forward. Fearful agents
engage in precautionary savings, putting downward pressure on the interest rate. If the
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fear is sufficiently strong, the economy is pushed to the ZLB. The interest rate can no
longer clear the bond market, so instead aggregate wealth falls. The resulting drop in
aggregate demand also lowers output, through a reduction in capacity utilization, since
production is demand-determined at the ZLB. Given the drop in output, and the binding
ZLB constraint, the conjectured rise in volatility can be self-justified. In particular, de-
mand becomes unanchored: it can rise back to its efficient level or it can decline further,
and nothing besides coordination pins down which will occur.

Agents’ beliefs about this entire fear-driven sequence will be justified, so long as they
lead to stable long-run behavior. It turns out that volatility, which raises risk premia,
is precisely what generates stability. In a fear-driven recession, required returns must
be satisfied by an expected future appreciation in asset prices (since asset dividends are
low after the output drop), and this positive drift pushes the economy back towards
recovery in expectation. In other words, a fearful regime is partly self-fulfilled by an
expected future decline in volatility, i.e., an improvement in conditions. This highlights
an intuitive distinction between our fear-driven equilibria and the multiplicity of non-
stochastic equilibria of our model (and the literature), in which an inefficient recession
can be self-fulfilled by the expectation of greater inefficiencies in the future.

Our theory thus uncovers self-fulfilled uncertainty-driven recessions that monetary
policy has little power to prevent or tame. This process is inefficient and possesses a
different character from standard indeterminacies in New Keynesian models.

In the latter half of the paper, we go beyond conventional interest rate policy and
explore unconventional monetary policies. We first find that an asset-purchase program
that commits to buy assets and support prices can have a profound effect. In particu-
lar, all the indeterminacies we document vanish in the starkest version of such a policy.
However, we also find that this result hinges critically on both the aggressiveness and
credibility of the policy. Asset-purchase programs must act aggressively enough to pre-
vent price declines, and they must be trusted fully to deliver this outcome.

The importance of aggressiveness and credibility highlights the mechanism behind
asset-purchase policies: they provide a floor for prices that works to raise expected
capital returns. If the policy is both aggressive and credible, this price floor is rigid, so
that the change in return dynamics constitutes an arbitrage opportunity. Existence of
arbitrages are contrary to equilibrium, which effectively kills all indeterminacies in the
model. No asset purchases ever need to be made, as the policy works solely through its
effect on expectations.

But if the policy lacks either aggression or credibility, the price floor is no longer rigid.
Not only can indeterminacies remain, they can be worsened in some cases. For exam-
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ple, we show that some less-aggressive, less-credible policies can increase the amount
of uncertainty in equilibrium. The reasoning is that even sub-optimal asset purchases
still work to increase expected capital returns, and this can only happen in a rational,
frictionless financial market if risk premia rise as well. Thus, volatility must increase
in our sub-optimal policies. As a corollary, we find that some sub-optimal policies can
eliminate the deterministic multiplicities (the kind mostly studied by the literature) but
fail to kill our fear-driven equilibria.

In summary, our analysis embodies the view that constraints on monetary pol-
icy can exacerbate recessions and crises, through self-fulfilling volatility. Our analysis
also shows how unconventional policies can help, not necessarily through liquidity or
balance-sheet effects but through beliefs. At the same time, our paper stresses the im-
portance of policymakers using aggressive policies and maintaining their credibility to
achieve the desired outcome.

Relative to the literature, Benhabib et al. (2001a) and Benigno and Fornaro (2018) are
closest to our paper in studying indeterminacies in New Keynesian models. We differ by
focusing on uncertainty, rather than inflation or investment which are both exogenous
and constant in our setup. We discuss how our volatile equilibria contain slightly differ-
ent intuition than standard deterministic multiplicities and how self-fulfilling volatility
may be harder for policy to extinguish.

Our results are also distinct from the literature on monetary policy and asset price
bubbles (Galí, 2014; Allen et al., 2018; Miao et al., 2019; Dong et al., 2020; Asriyan et al.,
2021). The model we present does not admit bubbles, output is always weakly below
potential, and optimal monetary policy has a clear directive to maximize output. Nev-
ertheless, it would be interesting for future research to explore how rational bubbles
interact with sentiment-driven volatility at the ZLB.

All New Keynesian models feature a well-known aggregate demand externality at
the ZLB: privately lower demand reduces output and wealth, which induces others to
cut demand as well. Ultimately, the externality manifests as a connection between asset
prices and output efficiency. In a different framework, Khorrami and Mendo (2022)
analyze a setting in which multiple equilibria also arise due to a price-output link that
is the manifestation of an externality. There, an aggregate supply externality operates
through fire sales that reduce allocative efficiency. This comparison suggests that the
distinction between demand and supply externalities is immaterial to the existence of
sunspot equilibria; what really matters is a price-output link, which can be achieved via
financial frictions or via nominal rigidities.1

1A related interpretation, offered by Benhabib et al. (2020) in extending the model of Bacchetta et al.
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2 Model

We present a complete-markets economy with nominal rigidities that supports self-
fulfilling fluctuations. The setup is a simplified version of Caballero and Simsek (2020c),
which the reader can consult for additional details.

Sunspot shocks. Our baseline model features no fundamental uncertainty in preferences
or technologies. Nevertheless, we want to allow the possibility that economic objects
evolve stochastically due to coordinated behavior. To do this, we introduce a standard
Brownian motion Z that is extrinsic to all economic primitives. All random processes will
be adapted to Z.2 In Appendix B, we also allow for a fundamental shock to technology
to illustrate how our results on multiplicity carry through in such a setting.

Preferences. The representative agent has rational expectations and time-separable log-
arithmic utility with discount rate ρ:

sup
C≥0

E
[ ∫ ∞

0
e−ρt log(Ct)dt

]
. (1)

Technology. There are two goods, a non-durable good (the numéraire, “consumption”)
and a durable good (“capital”) that produces the consumption good. The aggregate
supply of capital grows deterministically as

K̇t = gKt, (2)

where g is an exogenous constant. For simplicity, there is no investment in the model.
As Caballero and Simsek (2020c) show, endogenous investment serves to amplify the
effects of uncertainty on asset prices.

The relative price of capital, denoted by qt, is determined in equilibrium. Since capital
is the only positive net supply asset in the economy, aggregate wealth is qtKt. Conjecture
the following form for capital price dynamics:

dqt = qt[µq,tdt + σq,tdZt]. (3)

(2012), is that asset prices should have a direct impact on the stochastic discount factor, which is exactly
what happens with a price-output link. Certain OLG specifications, financial frictions, and (as we show
here) nominal rigidities all connect asset prices to the SDF.

2In the background, the Brownian motion Z exists on a filtered probability space (Ω,F , (Ft)t≥0, P),
assumed to be equipped with all the “usual conditions.” All equalities and inequalities involving random
variables are understood to hold almost-everywhere and/or almost-surely.
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The term σq measures sunspot volatility that only exists because agents believe in it. Our
core question is whether any equilibrium exists in which σq 6= 0 and what policy can do
about it.

Producers employ capital in a linear production technology with productivity A.
The assumption of a single productivity level is without loss of generality because of
complete financial markets.3 Producers’ prices are fully rigid, which is a convenient
assumption that also allows us to distinguish our results from the self-fulfilling deflation
dynamics that can occur in New Keynesian models (Benhabib et al., 2001a,b). Here,
inflation will always be equal to zero. As a result, note that the real riskless interest rate
rt is equal to the nominal rate, which is set by monetary policy.

The appendix of Caballero and Simsek (2020c) discusses a few auxiliary assumptions
(lump sum profit taxes and linear capital subsidies, which we also implicitly adopt)
designed to simplify the analysis, namely to ensure the market portfolio dividend equals
aggregate output.

Monetary policy. Although the economy’s potential output is AKt, firms may not always
operate at capacity because of nominal rigidities. We assume that monetary policy aims
to achieve full utilization whenever possible, but they are subject to the ZLB rt ≥ 0.

In particular, let χt ≤ 1 denote firms’ capital utilization, which will be determined
in equilibrium. Aggregate output is χt AKt. Monetary authorities set the nominal rate
(hence the real rate) to implement χt = 1 whenever possible, subject to the ZLB. Un-
der this rule, full utilization prevails whenever the real rate is positive, and inefficient
utilization must arise at the ZLB:

0 = min[1− χt, rt]. (4)

In the rest of the paper, we simply assume the central bank acts using a policy rule that
implements (4). In Appendix A, we show that within the class of equilibria we study, (4)
is actually the outcome of optimal discretionary monetary policy (i.e., monetary policy
without commitment to future policies). More deeply, the implementation of χt = 1
“whenever possible” itself requires some kind of commitment to off-equilibrium threats,
for instance to reduce interest rates if χt ever fell below 1—this is the standard notion of
“active” monetary policy that pervades the New Keynesian literature. In that sense, the
rule (4) actually embeds some amount of commitment power.

3Indeed, in a heterogeneous-productivity world, all physical resources would be distributed among
the most productive agents, who would then issue financial claims, so the economy would look as if there
were a single productivity level.
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Equilibrium definition. To define equilibrium, let Nt denote the net worth of the rep-
resentative agent, and let Mt be the stochastic discount factor induced by asset prices
(qt, rt).

Definition 1. An equilibrium is a set of stochastic processes (Nt, Kt, Ct, qt, rt, χt)t≥0, with
K0 > 0 given, such that

(i) Taking (qt, rt) as given, consumers maximize (1) subject to their lifetime budget
and No-Ponzi constraints4

N0 ≥ E
[ ∫ ∞

0
MtCtdt

]
(5)

lim
T→∞

MT NT ≥ 0. (6)

(ii) Markets clear, namely Nt = qtKt (asset market clearing) and Ct = χt AKt (goods
market clearing), where capital Kt evolves according to (2).

(iii) The central bank follows the interest rate rule (4).

Note that individual optimality will ensure that both (5)-(6) hold with equality. In
what follows, we refer to a fundamental equilibrium as an equilibrium with no volatility,
σq ≡ 0. A sunspot equilibrium is an equilibrium with volatility, σq 6= 0.

Equilibrium characterization. The consumer’s problem is a relatively standard complete-
markets consumption problem, and we provide a summary characterization of its im-
plications that aids in solving the model and finding equilibria. First, log utility agents
consume a fraction ρ of their wealth Nt, and aggregate wealth is qtKt, so goods market
clearing can be written as

ρq = χA. (7)

We can think of (7) as a link between asset prices (q) and output efficiency (χ), which is
a way to understand our mechanism. We also define q∗ := A/ρ, which is the efficient
capital valuation.

Consumption and portfolio choices are unconstrained and imply the Euler equation:

r =
χA
q

+ g + µq − σ2
q . (8)

4In addition, to prevent certain arbitrages such as “doubling strategies” that can emerge in a stochastic
equilibrium, we must impose a lower bound on net worth, nt ≥ −n, although the value of n can be
arbitrarily large.
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Note that χA/q + g + µq is the expected return-on-capital, and σ2
q is the risk premium

in the economy. Using (7), we can substitute χA/q with ρ.
Finally, note that agents’ transversality condition is automatically satisfied in any

equilibrium of this model. Indeed, optimal consumption implies marginal utility coin-
cides with the stochastic discount factor, i.e., Mt = e−ρtC−1

t . Consequently, E[MT NT] =

E[e−ρTC−1
T NT], which trivially converges to zero as T → ∞, given consumption rule

CT = ρNT. We summarize the preceding characterization in a lemma that simplifies our
search for equilibria.

Lemma 1. Suppose processes (qt, χt, rt)t≥0 satisfy equations (4)-(8) for all t ≥ 0. Put Kt =

egtK0, Nt = qtKt, and Ct = ρNt. Then, (Nt, Kt, Ct, qt, rt, χt)t≥0 constitutes an equilibrium of
Definition 1.

Remark 1. We have chosen to write our equilibrium conditions in terms of the asset price q.
But our model is a complete-markets model, and so everything could equally well be described by
consumption C without reference to q. For example, since consumption dynamics are given by
dCt = Ct[µC,tdt + σC,tdZt] = Ct[(g + µq,t)dt + σq,tdZt] (this is understood by using C = ρqK
and using the dynamics of q and K), the Euler equation (8) takes the standard log-utility form
r− ρ = µC − σ2

C.
It is convenient to describe equilibria in terms of q, because (i) q is a bounded variable,

unlike C; (ii) in models with endogenous investment, the price of capital q measures endoge-
nous investment incentives; (iii) volatility of asset prices is perhaps the most natural metric for
forward-looking uncertainty, even in more complicated models with non-log preferences and fi-
nancial constraints (in which C may not inherit the dynamics of q); (iv) when introducing and
interpreting our unconventional monetary policy as asset purchases, it will be more natural to
work the space of asset prices.

3 Fundamental equilibria

We start by describing equilibria without volatility, σq ≡ 0. First, we illustrate the basic
indeterminacy. Second, for pedagogical purposes, we also demonstrate an analogy to
the indeterminacies in a textbook discrete-time log-linearized New Keynesian economy.

3.1 Indeterminacy with a ZLB

There is always an efficient equilibrium with full utilization, χ = 1. Using χ = 1 in the
goods market clearing condition (7), we obtain q = q∗, so µq = σq = 0 must hold in this
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equilibrium. By equation (8), the interest rate is given by r = ρ + g > 0, which satisfies
the monetary policy rule (4).

Can there exist an inefficient equilibrium with χ < 1? By (4), under-utilization im-
plies a binding ZLB. Using r = 0 and σq = 0 in the Euler equation (8) implies that
µq = −(ρ + g), so q must be converging to zero asymptotically, at the exponential rate
ρ+ g. In other words, given any initial value q0 < q∗, an equilibrium can be supported as
long as it remains inefficient forever and furthermore converges eventually to complete
shut-down.

Combining this with the existence of the efficient equilibrium, we see that any initial
price q0 ∈ [0, q∗] can kick-start a fundamental equilibrium. We summarize these results
in the following proposition.

Proposition 1. Any initial price q0 ∈ [0, q∗] is consistent with a fundamental equilibrium.
Except in the case q0 = q∗, all other fundamental equilibria are inefficient in the sense that
χt < 1 at all times, and they feature asymptotic shut-down limT→∞ qT = 0.

3.2 Connection to textbook New Keynesian model

Consider the textbook log-linearized New Keynesian model (Woodford, 2003), with uni-
tary EIS. Under an exogenous nominal interest rate, this model is characterized by the
following Euler equation (IS curve) and inflation dynamics (Phillips curve):

xt = Et[xt+1]− (it − rn
t −Et[πt+1]) (9)

πt = κxt + e−ρEt[πt+1] (10)

where x is the (logarithm of the) output gap, it is the nominal interest rate, rn is the
“natural rate of interest,” and πt is the inflation rate. If prices are permanently sticky, as
in our framework, then the parameter κ = 0, inflation is πt = 0 for all t, and the nominal
rate it can be replaced by the real rate rt. In that case, the only relevant equation is the
IS curve (9), which becomes

Et[xt+1] = xt + rt − rn
t . (11)

That this dynamical system has a unit root illustrates the core indeterminacy of this class
of models. Imagine there are no exogenous shocks and rt = rn

t happens to hold (i.e., the
exogenous interest rate happens to equal the natural rate). In that world, any constant
solution xt = x̄ is allowed. In such a world but with additional shocks, xt follows a
random walk.
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Introducing active monetary policy, suppose we add a Taylor-like rule

rt = rn
t + φxt.

Substituting this rule into IS curve (11), we obtain a new equilibrium dynamical system

Et[xt+1] = (1 + φ)xt,

which is unstable as long as φ > 0, in the sense that the unique non-explosive solution is
xt = 0 forever. In other words, with active monetary policy, equilibrium determinacy is
restored. To implement this, monetary policy must commit to lower interest rates if the
output gap turns negative.

With a ZLB, policy cannot lower rates, and indeterminacy re-emerges. Essentially, at
the ZLB constraint, interest rates are back to following an exogenous process (namely,
zero), which puts the economy back into the first case without active policy. Mathe-
matically, suppose for simplicity the natural rate is constant at rn

t = 0, and assume the
following policy rule

rt = max[0, φxt].

Substituting this rule into IS curve (11), the equilibrium dynamical system is

Et[xt+1] = max[xt, (1 + φ)xt] =

xt, if xt ≤ 0

(1 + φ)xt, if xt > 0

which again supports any constant solution xt = x̄ ≤ 0 in a world without additional
shocks. These results are all well-known, and so far essentially cover what we have
shown in Proposition 1.5

5To be slightly more precise, suppose rn
t = ρ, as in our model with g = 0 (which is the relevant

benchmark as the textbook New Keynesian model has no growth). Let the policy rule be again constrained
by the ZLB as

rt = max[0, ρ + φxt].

Substituting this rule into IS curve (11), the equilibrium dynamical system is

Et[xt+1] = xt − ρ + max[0, ρ + φxt] =

{
xt − ρ, if xt ≤ −ρ/φ

(1 + φ)xt, if xt > −ρ/φ.

This dynamical system supports any solution for xt that declines by constant increments ρ, with those
solutions indexed by the (endogenous and indeterminate) initial condition x0 < −ρ/φ. Since x is the log
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4 Sunspot equilibria

In one sense, the multiplicity in Proposition 1 already suggests the existence of stochas-
tic sunspot equilibria; one could imagine constructing them by “randomizing” over de-
terministic equilibria as in classic studies (Azariadis, 1981). On the other hand, the
economics of stochastic equilibria, due to the presence of risk premia, differs some-
what from the economics behind multiple deterministic equilibria. As we will see later,
this additional nuance distinguishes stochastic and deterministic equilibria again when
thinking about which policies can restore determinacy.

4.1 Constructing volatile equilibria

Consider an inefficient, volatile economy: suppose χ < 1, so that r = 0, but do not
impose σq = 0. Using r = 0 in the Euler equation (8), we obtain µq = −(ρ + g) + σ2

q .
As the ZLB is satisfied, an inefficient equilibrium places no further restrictions, except
that (σq, µq) must keep qt ∈ (0, q∗]. (Consumption cannot be zero in finite time, because
the representative household would attain utility of −∞.) This is a relatively modest
requirement, because for any σq bounded and bounded away from zero, the dynamics
of qt will be approximately like a geometric Brownian motion, at least near the relevant
boundary q = 0. As σq is indeterminate, there are many ways to do this. Essentially
arbitrary levels of volatility are feasible at any price q.

The only other equilibrium consideration is what happens when qt hits q∗, i.e., effi-
ciency is restored. Here, again, there are many possibilities, as nothing pins down the
speed at which the economy re-enters the inefficient region. The economy could remain
efficient permanently (which is sensible given the non-volatile efficient equilibrium al-
ways exists), it could transition immediately back to inefficiency, or the economy could
remain efficient for some period of time before stochastically re-entering the inefficient
region. For this reason, the stationary probability of inefficiency π can be anything.6 The
next theorem accounts for the relevant technical details and proves the existence of an
entire class of equilibria following the discussion above.

Theorem 1. Let v : R 7→ R+ be any non-negative Lipschitz continuous function with v(x) > 0
for x ∈ [0, q∗). A sunspot equilibrium exists, in which σ2

q,t = v(qt) and µq,t = −ρ− g + v(qt)

output gap, this solution implies output levels decline geometrically by a factor e−ρ, which exactly mirrors
our Proposition 1, i.e., if g = 0 we had q̇ = −ρq when q0 < q∗.

6Of course, the possibility of permanent inefficiency may be unrealistic and tied to the fact that goods
prices are completely rigid in this stylized model. Given that prices eventually adjust, one may think
of our result as saying short-run volatility and inefficiency can be highly transitory or somewhat more
persistent, with the maximal degree of persistence likely related to the degree of price stickiness.
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whenever qt < q∗. Furthermore, the inefficiency in this equilibrium can be permanent, transitory,
or anything in between, i.e., the stationary probability of inefficiency can be any π ∈ [0, 1].

(i) If v(q∗) = 0, then inefficiency is permanent: π = 1.

(ii) If v(q∗) > 0, inefficiency eventually subsides but can re-emerge: π < 1.

Proof of Theorem 1. Consider an auxiliary variable xt ∈ (0, q∗ + b) for some b > 0.
Write the evolution of x as dxt = xt[µx,tdt+ σx,tdZt]. We are letting xt be the state variable
in this equilibrium. Set qt = min[xt, q∗], and put σ2

x,t = v(xt) and µx,t = −ρ− g + v(xt)

when xt < q∗. Nothing pins down (σx, µx) when xt > q∗, and we may simply set them
so that xt never reaches the boundary q∗ + b. Many such choices exist (e.g., σx vanishes
as x → q∗ + b while µx remains strictly negative).

To prove such an equilibrium exists, it remains to show that (xt)t≥0, hence (qt)t≥0,
almost-surely never attains the boundary {0}. Given v(0) is positive and bounded, xt

behaves like a geometric Brownian motion near x = 0, and log(xt) has positive drift at
x = 0 if and only if v(0) > 2(ρ + g). No geometric Brownian motion ever attains the
boundary {0} in finite time, and furthermore if v(0) > 2(ρ + g), such a process does not
concentrate probability near {0} asymptotically. A rigorous proof of this claim, using
Feller’s boundary classification for diffusions, is provided by Lemma 3 in Appendix A.

It remains to show any π ∈ [0, 1] is possible. If v(q∗) = 0, then µx(q∗−) < 0, so
that xt never attains the point x = q∗ if started below it. Thus, π = 1 if v(q∗) = 0.
One similarly shows that x = q∗ is attainable if v(q∗) > 0, since then σx(x) > 0 for all
x ∈ (0, q∗], whereas µx(x) is bounded. Thus, π < 1 if v(q∗) > 0. Furthermore, since
(σx, µx) are not pinned down when xt > q∗, appropriate choices of these dynamics can
deliver any value of P[xt ≥ q∗] = 1− π.

Finally, to show that one can construct an equilibrium where inefficiency is com-
pletely transitory (π = 0), consider putting v(q∗) > 0, so that xt eventually exceeds q∗

with probability 1, and putting σx(x) = 0 and µx(x) > 0 on {x ≥ q∗} so that xt never
leaves this region.

Figure 1 below displays a numerical example of an equilibrium from Theorem 1. We
have chosen a functional form for σq to ensure the existence of a well-behaved stationary
distribution for the economy; we discuss the role of σq in inducing stationarity below. In
this example, the economy features inefficiency 16% of the time; inefficiency need not be
permanent. While inefficient, the amount of non-fundamental volatility can be large, on
the order of 15-30%. Asset prices can drop a significant amount, as seen in the long left
tail of the stationary CDF.
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Figure 1: Equilibrium with nominal rigidities. We set volatility σq(q) = (1− q/q∗)
√

ρ + g + 0.15 when
q < q∗, which meets conditions of Theorem 1. To compute the stationary CDF, we specify the dynamics
of an auxiliary diffusion x on domain (0, 1.1q∗), and put q = min[x, q∗]. When x < q∗, dynamics of x and
q match, by definition. When x > q∗ (i.e., q = q∗), dynamics of x can be set arbitrarily, and they control
how long q stays at q∗. The resulting stationary CDF features a mass point of size 1− π = 0.84 at q = q∗

(i.e., inefficiency occurs 16% of the time). Parameters: A = 0.11, ρ = 0.02, g = 0.02.

4.2 Contrast to deterministic multiplicity

What are the economics of these sunspot equilibria? Given the presence of asset-price
volatility, and its induced risk premium, there are some differences from standard sunspot
constructions that are simple randomizations over deterministic equilibria.

First, to understand the logistics of how sunspot equilibria arise, suppose agents are
suddenly fearful, and they conjecture σq > 0. Is this justified? Fear leads to a precaution-
ary savings motive, putting downward pressure on the “natural interest rate.” Without
a ZLB, the central bank has the power to lower r enough to match the natural rate and
clear bond markets, with agents consuming and saving as before. Goods markets would
be unaffected, utilization χ and price q would remain fixed, and agents’ fear would be
unsubstantiated. Forward-looking agents can think through this entire hypothetical se-
quence of events, and they will reject the feeling of fear as irrational. And as a result, the
central bank would not actually have to do anything.

By contrast, suppose a ZLB exists. If fear and its associated precautionary savings
pushes the natural rate below zero, the central bank cannot lower r enough to clear
bond markets. Markets only clear if a counteracting force reduces savings, which is
why wealth must fall. Due to wealth effects, current consumption also falls, and firms
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meet their lower demand by operating at less than full capacity in production (χ < 1).
Although this process is inefficient, nothing makes this sequence of hypothetical events
irrational. Agents’ fear will be justified, so long as it does not lead to unstable long-run
behavior, which is guaranteed by bounded volatility σq.

The level of volatility helps distinguish the economics of sunspot equilibria from
fundamental equilibria. Recall that inefficient fundamental equilibria necessitated long-
run economic shut-down, via limT→∞ qT = 0. Economically, inefficiency obtains because
agents expect greater and greater inefficiency in the future, and this belief is self-fulfilled.

But in sunspot equilibria, it is not necessarily the case that limT→∞ qT = 0. Volatility
adds the risk premium σ2

q , which now augments the capital price drift µq = −(ρ + g) +
σ2

q , providing a force to buoy the equilibrium efficiency. In fact, one can show that the
condition σ2

q (0+) > 2(ρ + g) suffices to guarantee that limT→∞ qT > 0 almost-surely.
Agents’ belief in an inefficient and volatile equilibrium, in these cases, is justified by the
fact that volatility is expected to vanish at some point in the future.7 In a sense, volatility
flips the intuition for multiplicity: an inefficient equilibrium can obtain partly because
agents expect conditions to improve, rather than deteriorate, in the future.

While this economy above is stylized, the insights are general to the extent that the
link between asset prices and output efficiency, captured in equation (7), is not severed.
We can add other state variables, heterogeneous agents (e.g., some hand-to-mouth), or
partial price flexibility, and the results will remain qualitatively unchanged.8 In Ap-
pendix B, we also add fundamental risk in the form of shocks to capital; we show that
sunspot equilibria still emerge and add additional fluctuations to the economy.

This entire discussion is conditional on a monetary policy rule that implements (4),
which recall corresponds to optimal discretionary policy (see Lemma 2 of the Appendix
A). The next section explores other policy options, namely unconventional monetary
policies, that may be available to the central bank and relax policy constraints (the ZLB).
Moreover, we will model such policies in a way that incorporates some commitment
power, which is well-known to help in the New Keynesian literature.

7Going back to Theorem 1, one can see that volatility must decline eventually. Indeed, in case (i) of
the theorem, inefficiency is permanent but volatility near q∗ vanishes (and the dynamics ensure that the
economy is recurrent, so it returns arbitrarily close to q∗). In case (ii) of the theorem, inefficiency eventually
subsides, which clearly implies that volatility vanishes (i.e., when efficiency resumes). Therefore, in either
case, future volatility is lower than current volatility.

8See Caballero and Simsek (2020a,b,c) for some of these extensions.
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5 Unconventional monetary policy

Because of the ZLB constraint on interest rate policy, we also find it interesting to ana-
lyze a simple form of unconventional monetary policy. As we will see, unconventional
policy will eliminate some undesirable equilibria that conventional policy cannot, de-
pending on assumptions about policy credibility. Furthermore, this section will help
clarify how our equilibria with volatility are somewhat more difficult to eliminate than
the deterministic inefficiencies. In all the policy proposals that follow, some amount of
commitment power is assumed, for instance to conduct unconventional monetary policy
at a particular price or in a particular quantity.

5.1 Policy with full credibility

We suppose that, at some price q̄ < q∗, the central bank enters asset markets and pur-
chases capital. To distinguish ourselves from the prevailing focus in the literature on
fiscal policy, e.g., Benhabib et al. (2002a), we assume these asset purchases are budget-
balanced: to make purchases, the central bank raises funds using lump-sum taxes, and
it returns any profits from these open market operations to households lump-sum at
some later date. A convenient consequence of this budget-balanced approach is that the
representative household continues to have wealth qtKt at all times, irrespective of any
central bank purchases.

Enough capital is purchased to support asset prices at q̄, and this pledge is viewed
by agents as fully credible. In other words, the policy ensures that

qt ≥ q̄. (12)

Taking our model literally, such a stark price support will be feasible for the central
bank, because beliefs and coordination will be central determinants of asset prices in
our equilibria. Given enough credibility, the central bank could theoretically manipulate
beliefs by taking very little action.

However, in the back of our minds, we think of these unconventional policies as costly
in some unmodeled way. First, distortionary taxation or costly government borrowing
may be required to finance such open market operations, rather than lump-sum taxation.
Second, the assumption of full central bank commitment and credibility are obviously
stretched. Third, while asset purchases undoubtably impact prices, the transmission may
not operate through belief manipulation; various unmodeled liquidity frictions could
also justify a link between “buying pressure” and asset prices, and if those issues are
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of first-order importance, one should account for the costs associated to central bank
participation in illiquid markets. We abstract from these concerns, but the reader should
think of q̄ as being relatively low, such that these interventions are infrequent, as a simple
way to account for the costs of unconventional policy.

In the analysis that follows, our equilibrium Definition 1, hence our characterization
Lemma 1, is augmented by the condition that (12) holds at all times.

5.2 Restoring determinacy through policy credibility

We now show that (12) eliminates all equilibria except the efficient one. The crux of
the analysis here is that unconventional monetary policy is regarded as credible, so all
agents understand that qt can never fall below q̄. Intuitively, this should complicate
the inefficient equilibria of Proposition 1, because those equilibria all required asymp-
totic shut-down, i.e., qT → 0. The intuition for killing the volatile sunspot equilibria of
Theorem 1 is related but more subtle.

Killing deterministic inefficiency. The mechanics of unconventional policy are as fol-
lows. First, because of the policy’s budget-balance assumptions (i.e., lump-sum taxation
and rebates), the representative household maintains wealth of qtKt at all times, irre-
spective of any potential asset purchases by the central bank. Thus, the Euler equation
(8) must continue to hold at all times. Suppose q hits q̄ at time τ, and purchases are
made by the central bank. By (12), we must have µq,τ ≥ 0. On the other hand, us-
ing rτ = 0 and στ = 0 in (8), we obtain µq,τ = −(ρ + g) < 0. The economics of this
contradiction is that central bank asset purchases increase the rate of return on capital
above the required rate, i.e., an arbitrage arises. This arbitrage implies non-equilibrium
of the entire path leading to the asset purchases at q̄. Since all of the inefficient equilibria
(those featuring q0 < q∗) will eventually hit a positive q̄ in finite time, this shows how
no inefficient equilibrium can arise! Intuitively, rational forward-looking agents expect
asset prices to continuously fall in an inefficient equilibrium, but if the central bank can
credibly commit to prevent that in the future, rational agents will rule out all such paths
from consideration. This proves the following.

Proposition 2. With any amount of unconventional monetary policy (q̄ > 0), the unique funda-
mental equilibrium coincides with the efficient equilibrium featuring full utilization at all times,
χt = 1.

Killing stochastic inefficiency. The argument is similar to the deterministic case, but
with some additional technical details. Most importantly, dynamics in stochastic equi-
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librium are always such that qt reaches any q̄ > 0 in finite time. Indeed, in a stochastic
equilibrium constructed as in Theorem 1, volatility σq(q) > 0 is positive for all q ∈ (0, q∗),
which guarantees qt will eventually hit q̄, due to the effect of recurring shocks. But even
if σq were not strictly positive, a similar argument would still apply.9 Given the policy
guarantee qt ≥ q̄ in equation (12), it must be that q̄ is a reflecting boundary for the price
process. (Note that q̄ cannot be an absorbing boundary because shocks continue to hit
the process through σq,tdZt 6= 0.)

Thus, the dynamics of asset prices are given by

dqt

qt
= [−(ρ + g) + σ2

q,t]dt + σq,tdZt + dRt, (13)

where R is the barrier process at q̄, i.e., it increases if qt ≤ q̄ and remains constant
otherwise. Because the riskless rate is given by rt = 0 by (4), the excess return on capital
(ρ + g)dt + dqt

qt
− rtdt = σ2

q,tdt + σq,tdZt + dRt contains the barrier term. Appendix B of
Karatzas and Shreve (1998) shows that such an excess return process admits arbitrage
opportunities. Intuitively, the barrier process is a non-negative component to returns, so
capital becomes effectively riskless at the policy barrier q̄, and yet it earns a higher rate
of return than riskless bonds. The fact that such an arbitrage arises again contradicts
equilibrium. This proves the following.

Proposition 3. With any amount of unconventional monetary policy (q̄ > 0), no sunspot equi-
librium can exist.

Putting together Propositions 2-3, we have the result that only the efficient equilib-
rium survives, with qt = q∗ and χt = 1 at all times. There are two interesting notes
about Proposition 2. First of all, the central bank never needs to make any asset pur-
chases, so unconventional monetary policy is simply an off-equilibrium threat here. Of
course, the central bank must commit to making those purchases in the event they are
needed. Secondly, the threat is powerful, in the sense that q̄ can be arbitrarily close to
zero: central banks need only commit to provide support in extreme future situations to
have effects today. This latter characteristic is reminiscent of Obstfeld and Rogoff (1986),

9Indeed, if there existed any q† ∈ (0, q∗) with σq(q†) = 0, the drift µq(q†) = −(ρ + g) < 0 ensures that
the economy never visits [q†, q∗] in the stationary distribution. Consequently, it would suffice to consider
the region (0, q†) for a stochastic equilibrium featuring σq > 0. The arguments below would just be applied
to this lower region. If policy happened to set q̄ = q†, then we would only need apply the arguments from
the deterministic case above. And if policy happened to set q̄ > q†, then (by path-continuity of qt) the
economy would have already hit q̄ before transitioning to this lower region, confirming that q̄ is hit in
finite time as required by the argument below.
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who show how to rule out speculative hyperinflations by committing to a peg in extreme
circumstances.

What critically matters for these results is that central bank policies are aggressive
and credible. In particular, everyone understands that central banks will “do whatever
it takes” to support asset prices (aggressive), agents believe central banks can actually
maintain such price support (credible). Perhaps this is too stark. In the next two sec-
tions, we relax policy aggression and credibility and explore which aspects of equilibria
survive.

5.3 Less aggressive policy

Now, we assume policy is less aggressive. Instead of supporting asset prices with
a guarantee at some barrier q̄, we suppose there is a smoother set of purchases and
promises. Again, we do not model the exact transmission mechanism, but we suppose
this smoother policy translates into a force that tends to raise asset prices slowly and only on
average.

In terms of modeling, it is simplest to begin with the deterministic equilibria. Assume
that policymakers seek to make purchases for q ≤ q̄ in such a way that µq is given by

µq,t = −(ρ + g) + f (q̄− qt), (14)

for some positive, increasing function f : R 7→ R+ that satisfies f (x) = 0 for x < 0.
Policymakers start providing support at q̄ and increase their level of support as q falls
further below q̄.

No inefficient deterministic equilibrium can survive. Indeed, if χ < 1 so that r = 0,
then the Euler equation (8) reads µq = −(ρ + g), which contradicts (14) for all q < q̄.
This is true even for f arbitrarily close to zero, implying a mild requirement to eliminate
deterministic inefficiencies.

By contrast, a stochastic sunspot equilibrium can survive. Combining policy (14) and
r = 0 with Euler equation (8), we see that

σ2
q,t = f (q̄− qt).

In other words, the less aggressive policy selects a particular volatility profile. On the
bright side, volatility is eliminated for q > q̄, since f = 0 in that region. Unfortunately,
volatility still persists for q ≤ q̄, and nothing stops equilibrium from visiting this volatile
region: if ever qt ∈ (q̄, q∗) occurred, the drift µq = −(ρ+ g) < 0 would push the economy
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toward q̄ until volatility arises, and the economy would reside in that inefficient region
permanently.

Generalizing the policy (14) to become “more aggressive” does not necessarily help.
In this step, we suppose policymakers understand that a stochastic equilibrium with
variance σ2

q,t = f (q̄− qt) will arise under their less aggressive regime. They attempt to
correct this by increasing aggression to

µq,t = −(ρ + g) + α f (q̄− qt), α > 1. (15)

The drift with α = 1 is what arises in the stochastic equilibrium just analyzed in the
previous paragraph, so policy is providing additional support relative to that baseline.
If we take α → ∞, we recover the maximally aggressive policy (12). Unfortunately, for
intermediate α, equilibrium volatility must be given by

σ2
q,t = α f (q̄− qt),

so policymakers only succeed in coordinating agents on a more volatile equilibrium!
What’s going on here? Attempts to engineer a higher drift µq must come from a risk

premium in rational, frictionless financial markets. Mechanically, since σq comes from
agents beliefs and coordination behavior, it is essentially a free variable to provide this
risk premium.

From a different perspective, one could think that, holding volatility more fixed, a
drop in prices provides such a risk premium. This is difficult to see from the present
exercise, but imagine as policymakers increase their aggression α they also reduce their
entry point q̄α. Policymakers may think of this as substituting aggression for frequency
of intervention. In this case, policy aggression has an ambiguous effect on volatility, but
an unambiguous negative effect on asset prices. To see why the effect on volatility is
ambiguous, recall that f is an increasing function, i.e., interventions are more aggressive
for lower asset prices, which implies that variance σ2

q = α f (q̄α − q) is decreasing in q.
If the policy entry point q̄α is decreasing in α, as a way to substitute aggression for
intervention frequency, then there are two effects: higher α raises volatility through a
direct effect, while lower q̄α reduces volatility by delaying intervention through the term
f (q̄α − q). Nevertheless, the reduction in q̄α necessarily lowers average asset prices that
prevail in the stochastic equilibrium. If we think this way, policy generates a rise in drift
µq through a drop in asset price levels, which emphasizes again a sense in which this
policy may be counterproductive.
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5.4 Policy with partial credibility

Finally, we relax the assumption that unconventional monetary policy is fully credible.
To do this, we suppose agents do not believe that policymakers will be successful, at
least not with probability 1, in providing the price support qt ≥ q̄. Instead, everyone
understands that asset purchases may not have the intended buoying effect. What can
happen in this world?

To answer this question in an interesting way, we require more specific assumptions
about what happens at q̄. (For example, we cannot simply model a coin flip, once qt

reaches q̄, that determines whether or not policy can support qt ≥ q̄; such an assumption
would be equivalent to the full-credibility setup and eliminate all inefficient equilibria,
essentially because full-credibility emerges as an outcome of the coin-flip with some
probability.) In particular, we need a set of assumptions that guarantees credibility is
never fully recovered by the central bank.

We assume that, asset purchases succeed with probability ξ ∈ (0, 1), but if asset
purchases fail, asset prices drop. Let q− < q̄ denote the post-failure asset price, given
attempted intervention at q̄ < q∗. Let q+ denote the post-success asset price. For sim-
plicity, we assume (q−, q+) are known and non-random. At the intervention point q = q̄,
the Euler equation is now dominated by the terms involving (q−, q+) and reads10

1 = ξ
q̄

q+
+ (1− ξ)

q̄
q−

.

The discussion above implies that we can never have q+ = q− = q̄. Consequently, given
a post-failure asset price q− < q̄, we must have the post-success price

q+ =
ξ q̄

1− (1− ξ)q̄/q−
. (16)

10To derive this, allow the jumps from q to either q− or q+ to take an amount of time τ ∼ exp(λ),
and then take λ → ∞. The limit is taken because the success/failure of the asset purchase is determined
immediately. For fixed λ, the first-order condition for capital portfolio choice is

µq + ρ + g− r + λ[ξ
n

n+

q+ − q
q

+ (1− ξ)
n

n−
q− − q

q
] =

qk
n

σ2
q ,

where n+ := n + (q+ − q)k and n− := n + (q− − q)k are post-success and post-failure net worths of the
agent. The representative agent always holds n = qk, so this equation becomes

µq + ρ + g− r + λ[ξ
q+ − q

q+
+ (1− ξ)

q− − q
q−

] = σ2
q .

Taking λ → ∞, this equation can only hold if the terms in square brackets are identically zero. Thus, we
obtain equation (16).

19



This can only be an equilibrium if q̄ < q+ ≤ q∗, or equivalently,

(1− ξ)q̄q∗

q∗ − ξ q̄
≤ q− < q̄. (17)

The interval in (17) is non-trivial for any ξ and any q̄ < q∗. Thus, if agents understand
and coordinate on post-failure asset prices jumping to such a q− satisfying (17), they
necessarily expect post-success asset prices to jump up to some q+ ∈ (q̄, q∗], given in
(16).

This result demonstrates several points. First, partially-credible policy cannot elimi-
nate equilibria that, absent the policy, were deterministically converging to shut-down,
qT → 0. In partially-credible world with otherwise-deterministic asset prices, policy may
succeed, but then the game will inevitably begin again in the near future. Eventually,
any policy which is not fully credible will fail, and the path towards shut-down will be
unabated.

Similarly, partially-credible policy will not eliminate the stochastic sunspot equilibria.
In fact, we have shown that such policies necessarily add uncertainty into the economy.
If we begin in an inefficient deterministic equilibrium, and policymakers attempt to
eliminate it with a non-credible asset-purchase program, the result will be a stochastic
equilibrium.

Lack of credibility thus mirrors lack of aggression, in the sense that such policies do
actually eliminate pure deterministic inefficiencies, but they do so by adding uncertainty
to the economy. One could argue, therefore, that stochastic sunspot equilibria of the type
we document are more difficult to kill than multiple deterministic equilibria, as doing
so requires a strong form of both aggression and credibility.

6 Conclusion

We have shown that macroeconomies with nominal rigidities—New Keynesian models—
may inherently permit sunspot volatility if monetary policy is constrained. The volatility
we document is distinct from inflation volatility and self-fulfilling beliefs about inflation;
in particular, inflation is always zero in our model. Broadly speaking, our volatility is
related to the crux of indeterminacy in New Keynesian models—that current demand
depends on future demand—but with the additional subtlety that volatility adds a risk
premium that can affect demand. As such, the reasoning behind self-fulfilling equilibria
is modified: an inefficient, high-volatility equilibrium can emerge because agents expect
volatility to decline and efficiency to rise in the future.
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We show formally that unconventional monetary policy (e.g., asset purchases) can al-
leviate some of the indeterminacies we document. Most obviously, allowing additional
policy instruments relaxes constraints imposed by the ZLB. However, we also show that
the policy must be both aggressive and credible; without these features, policy becomes
ineffective and possibly even counterproductive. In our analysis, we also learn that our
volatile sunspot equilibria are somewhat more difficult to eliminate than more conven-
tional types of multiplicity, in the sense that aggressive, credible policies are paramount
in fighting volatile equilibria, but less critical for fighting deterministic inefficiencies.
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Appendix:
Fear and Volatility at the Zero Lower Bound

Paymon Khorrami and Fernando Mendo
July 19, 2022

A Additional lemmas

Lemma 2. Optimal discretionary monetary policy—which maximizes (1) subject to rt ≥ 0,
χt ≤ 1, optimal household and firm decisions, and its own future decisions—implements (4).

Proof of Lemma 2. Optimal discretionary monetary policy seeks to pick a rt to maxi-
mize (1), subject to (2), (3), (7), (8), χt ≤ 1, the ZLB rt ≥ 0, and subject to its own future
decisions.

We will discretize the problem to time intervals of length ∆ and later take ∆ → 0.
Noting that Ct = ρqtKt, and using the fact that ρ and the time-path of Kt are exogenous,
the time-t household utility is proportional to

Et

[ ∫ ∞

0
ρe−ρs log(qt+s)ds

]
≈ ρ log(qt)∆ + Et

[ ∫ ∞

∆
ρe−ρs log(qt+s)ds

]
≈ −ρ∆Et[log(qt+∆)− log(qt)] + Et

[ ∫ ∞

∆
ρe−ρs log(qt+s)ds

]
+ ρ∆Et[log(qt+∆)]︸ ︷︷ ︸

terms taken as given by discretionary central bank

.

The term with brackets underneath is taken as given by the time-t discretionary central
bank, because it involves expectations of future variables that the future central bank can
influence.

Thus, taking ∆→ 0, the time-t central bank solves

min
rt≥0

Et[d log(qt)]

subject to the constraints

rt = ρ + g + µq,t − σ2
q,t

µq,t = 0 if qt = q∗

σq,t = 0 if qt = q∗.
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Note that σq,t is independent of policy when qt 6= q∗. There are two cases. If qt = q∗,
then the constraints imply that rt = ρ + g. If qt 6= q∗, we may substitute the dynamics
of log(qt) (using Itô’s lemma and replacing µq from the first constraint) to re-write the
problem as

min
rt≥0

[rt − ρ− g +
1
2

σ2
q,t].

Since σq is taken as given, the optimal solution is rt = 0. Thus, the discretionary central
bank optimally sets

rt = (ρ + g)1{qt=q∗} = (ρ + g)1{χt=1}.

In other words, the complementary slackness condition (1 − χt)rt = 0 holds, which
together with rt ≥ 0 implies (4).

Lemma 3 (Boundary classification). Let (xt)t≥0 be a one-dimensional diffusion satisfying
dxt/xt = [−(ρ + g) + v(xt)]dt +

√
v(xt)dZt with v(·) strictly positive on (0, q∗). If v is

Lipschitz, bounded, and bounded away from zero, then xt > 0 for all t. Furthermore, if v(0) >
2(ρ + g), then a stationary distribution exists for xt and limt→∞ xt > 0 almost-surely.

B Adding fundamental uncertainty

In this section, we add fundamental risk to verify the robustness of our results. Some ad-
ditional insights emerge. First, the efficient equilibrium is eliminated with high enough
fundamental risk, suggesting that even more sophisticated monetary policy (e.g., with
some commitment power) cannot necessarily eliminate self-fulfilling volatility in truly
adverse states. Second, the source of volatility becomes indeterminate: fundamental
shocks could be amplified or volatility could be attached to sunspot shocks.

Suppose aggregate capital has some fundamental risk s. Assume additionally that at
a random time τ ∼ exp(λ), this fundamental risk reverts to zero permanently. At that
time, we will suppose the economy transitions into the efficient equilibrium forever after
(i.e., χt = 1, qt = q∗, and rt = ρ + g for all t ≥ τ). Prior to time τ, the capital evolution
equation (2) is modified to

dKt = Kt[gdt + sdBt], for t < τ, (2’)
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where B is a standard Brownian motion independent of Z. We will assume that s2 is
sufficiently high, so that the efficient equilibrium ceases to exist, but not so high as to
prevent any equilibrium.11

Assumption 1. Assume ρ + g < s2 < ρ + g + λ.

In this extension, volatility can either be connected to fundamentals, with possible
amplification so that endogenous fluctuations are greater than the fundamental shock, or
related to sentiments. Mathematically, prior to the transition to efficiency, the dynamics
of q in (3) are now modified to read

dqt = qt

[
µq,tdt + σq,t ·

(
dBt
dZt

)]
, for t < τ. (3’)

We continue to assume monetary policy attempts to implement (4). The price-output
link (7) also still holds in this setting, but the asset-pricing equation (8) is modified to
read

r = ρ + g + µq + s
(

1
0
)
· σq −

∣∣s( 1
0
)
+ σq

∣∣2 + λ
q∗ − q

q∗
. (6’)

Similar to the baseline model, an equilibrium satisfies (4), (7), (6’), and qt > 0 for all t.
The fundamental equilibria, described below, include the one studied in Caballero and
Simsek (2020c), as well as others that diverge asymptotically to an asymptotic shut-down
(as in Proposition 1).

Proposition 4 (Fundamental equilibria). Under Assumption 1, there exists an equilibrium
with µq = 0 and σq = 0 at all times. When exogenous volatility is high (i.e., when t < τ), this
equilibrium features χ < 1, r = 0, and q = qss := q∗(ρ + g + λ− s2)/λ. Among equilibria
having µq = 0 and σq = 0, this equilibrium is unique. There cannot be any equilibrium featuring
qt > qss when t < τ. Finally, there exist a continuum of equilibria featuring q0 < qss, in which
limT→∞ qT = 0.

11 If s2 > ρ + g + λ, no equilibrium could exist. A proof sketch of this argument is as follows. Without
endogenous volatility (σq = 0), the drift of q would be µq = −(ρ + g) + s2 − λ(q∗ − q)/q∗ > −(ρ + g +

λ) + s2 > 0 in this situation, so that qt would eventually attain q∗, if unabated. With endogenous volatility
(σq 6= 0), qt would eventually attain q∗ simply due to shocks. Either way, equilibrium requires efficiency
at some point in time. But the efficient equilibrium cannot be supported for any amount of time, because
s2 > ρ + g, so another force must arise to prevent qt from ever attaining q∗. In particular, there must be a
predictable negative movement in qt, which cannot be absolutely continuous with respect to time, either
at or before hitting q∗ (for example, a reflecting boundary at q∗ − ε). In such case, no-arbitrage requires
that the riskless bond have a singular return equal to rtdt− dLt, where L is the singular process keeping
qt ≤ q∗ (see Karatzas and Shreve (1998), Appendix B). The ZLB disallows this riskless bond return, and
thus no equilibrium can exist.
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Proof of Proposition 4. Plug in r = 0, µq = 0, and σq = 0 into (6’) to solve uniquely for
q = qss under volatility s. Note that qss < q∗, so χ < 1 and thus (4) holds. Uniqueness
within the class of equilibria having µq = 0 and σq = 0 can be established by using
s2 > ρ + g and equation (6’) to show that χ = 1 is impossible. The fact that q > qss is
not possible is due to the same logic as in footnote 11: in such a candidate equilibrium,
q → q∗ in finite time. But τ is exponentially distributed, so the efficient equilibrium is
ruled out (by the parameter restriction s2 > ρ+ g in Assumption 1) for an arbitrarily long
amount of time. Finally, the fact that q < qss is possible follows the same construction
as in Proposition 1: µq < 0 for all q < qss, so that qT → 0 asymptotically is required, but
nothing rules this out as it takes infinitely long.

As in the baseline model, there are also sunspot equilibria in this setting, with the
following properties. First, at the ZLB, these equilibria can feature excess volatility, and
this level of price volatility is essentially arbitrary (i.e., σq is essentially arbitrary). Second,
when efficiency fails, an arbitrary fraction of total return variance |s( 1

0 ) + σq|2 can be
connected to fundamental shocks versus sentiment shocks. The reasoning for this latter
indeterminacy is that agents only care about total capital return variance when trading
capital; the source of the shocks is irrelevant. Finally, the inefficiency in the sunspot
equilibrium is worse than the fundamental equilibrium of Proposition 4, in the sense
that q and χ are always lower. One can think of this situation as a volatility trap: beliefs
about endogenous volatility will produce stability in the equilibrium dynamics, which is
enough to keep the endogenous volatility around until exogenous risk disappears. We
formalize this discussion in the following theorem, a generalization of Theorem 1. In
this theorem, the function v corresponds to total return variance and f to the variance
share associated to the fundamental shock.

Theorem 2 (Sunspot equilibria). Let Assumption 1 hold. Let f , v : R 7→ R+ be any two
Lipschitz continuous functions satisfying v ≥ 0, 0 ≤ f ≤ 1, and boundary conditions

(i) v(0) > ρ + g + λ + s
√

f (0)v(0);

(ii) v( qss

M ) = s2 and f ( qss

M ) = 1, where qss := q∗(ρ + g + λ − s2)/λ and M > 1 is any
number.

An equilibrium exists with rt = 0, χt < 1, and volatility

σq,t =

[ √
f (qt)v(qt)− s√

(1− f (qt))v(qt)

]
, for t < τ.

In this equilibrium, qt is always strictly below the fundamental equilibrium price qss, for t < τ.
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Proof of Theorem 2. Substitute all the proposed equilibrium objects into (6’) to find
the price drift

µq,t = s2 −
(

ρ + g + s
√

f (qt)v(qt)
)
+ v(qt)− λ(1− qt/q∗), for t < τ.

These dynamics must prevent qt from ever reaching zero, which is guaranteed by condi-
tion (i). Indeed, this condition implies that limq→0 µq(q; s) > 0, so that qt behaves locally
near zero as a geometric Brownian motion with positive drift (the formal argument is
identical to that of Lemma 3, which was used in the proof of Theorem 1).

The dynamics also must prevent qt from ever reaching qss, which is guaranteed by
condition (ii). Indeed, this condition implies that limq→qss/M σq(q; s) = 0 as well as
limq→qss/M µq(q; s) = s2 − ρ − g − λ + λ

qss

Mq∗ . By plugging in qss, we see that the drift
expression is negative at this boundary for any M > 1. Together with the vanishing
volatility (and the Lipschitz continuity assumption on σq), this implies that qt cannot
reach qss/M (hence it cannot reach qss > qss/M).

As a result of these dynamics, any initial price q0 ∈ (0, qss

M ) is consistent with equilib-
rium. Thus, qt is always below qss for t < τ, as desired. Since qss < q∗, this also verifies
that χ < 1 and hence r = 0 by equation (4).
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