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Abstract
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This paper revisits the uncertainty trap equilibria unveiled by Khorrami and Mendo
(2025) and Lee and Dordal i Carreras (2024). These uncertainty traps emerge when solv-
ing the New Keynesian (NK) model without linearization, and remain equilibria even
when monetary policy adheres to the Taylor principle. Of course, the uncertainty trap
problem is especially acute when monetary policy is constrained, say by a zero lower
bound. In this sense, the uncertainty trap phenomenon is pervasive to NK models. At
the same time, Khorrami and Mendo (2025) show that uncertainty traps are reasonable.
First of all, they rely on a very natural economic intuition whereby higher uncertainty
induces precautionary savings hence a demand recession. Second, they induce counter-
cyclical volatility, as is observed in the data, of empirically reasonable magnitude. And
third, uncertainty traps do not rely on self-fulfilling (hyper-)inflations or deflations, and
so are distinct from some existing multiplicity concerns in NK models (e.g., Cochrane,
2011; Benhabib et al., 2001).

As demonstrated in Khorrami and Mendo (2025), some types of fiscal policies can
completely eliminate uncertainty traps, regardless of the monetary policy stance, thereby
solving the equilibrium selection conundrum. In particular, a class of “active fiscal poli-
cies” (in the language of Leeper, 1991) with exogenous surplus-to-GDP ratios can elimi-
nate all self-fulfilling uncertainty. This paper extends the equilibrium selection result by
generalizing to much richer set of fiscal policies.

To understand the result, note that active fiscal policy, in contrast to passive pol-
icy, does not pledge to ensure debt sustainability under any and every possible shock.
Instead, some shocks can be “unbacked” and must be absorbed via inflation, debt valua-
tions, or economic growth.

If absorption cannot happen, then the uncertainty trap equilibrium is ruled out.
Sticky prices say that prices cannot jump arbitrarily, and so the price level cannot ab-
sorb such a shock. What about the nominal debt value? In the baseline with short-term
debt, the debt price is 1, while the quantity of debt is simply determined by the flow gov-
ernment budget constraint; thus, the nominal value of debt is pinned down and cannot
absorb the shock either. In the extension with long-term debt, the bond price is an ad-
ditional forward-looking variable that could potentially respond to shocks. But with the
additional variable comes an additional constraint, the bond-pricing equation, which is
inconsistent with the originally conjectured output shock. Given absorption fails, active
tiscal policy effectively steers aggregate demand, disciplining its response to aggregate
shocks and closing the door to the volatility required to sustain uncertainty traps. The
novelty and difficulty of this analysis stems from the nonlinearity of the environment.

In the last part of the paper, we allow fiscal policy to switch over time between “pas-



sive” and “active” regimes. We start by providing a general characterization of when
such a policy can select equilibria and when it cannot. We then consider a fiscal back-
stop, in which an aggressive fiscal regime emerges endogenously in extreme recessions.
Think of this as a fiscal policy that abandons its debt sustainability focus in recessions.
And agents understand ex-ante this recessionary switch. We demonstrate that such a
policy profile can indeed eliminate uncertainty traps, so long as fiscal policy is active
often enough and acts aggressive-enough when it is active. Our results on equilibrium
selection with this type of regime-switching policy are also novel.

A literature on the fiscal theory of the price level (FIPL) also explores determinacy in
NK models under various policy profiles.! Unlike most of this literature, we analyze the
fully nonlinear, stochastic, global dynamics of the model. Some papers have extended
FTPL to stochastic nonlinear stochastic environments, but almost exclusively with flexible
prices (Bassetto and Cui, 2018; Brunnermeier et al., 2023, 2024).2 Two exceptions that do
allow sticky prices, but sidestep our determinacy questions, are Mehrotra and Sergeyev
(2021) and Li and Merkel (2025). Mehrotra and Sergeyev (2021) study fiscal sustainability
with real debt, but in a setting with exogenous output. Li and Merkel (2025) study FTPL
in a NK model with idiosyncratic risk, which can induce a government debt bubble;
however, they avoid determinacy questions by assuming that endogenous objects like
inflation and the output gap are Markovian in exogenous states and government bonds
outstanding (i.e., they assume an MSV solution). Overall, in conjunction with Khorrami
and Mendo (2025), we provide the first formal nonlinear FTPL-style analysis in textbook
sticky-price models. In the present paper, we do so across many environments including

surplus shocks, long-term debt, surplus rules, and active/passive regimes.

1 Equilibrium Conditions in a Nonlinear NK Model

We briefly summarize the equilibrium with uncertainty traps in Khorrami and Mendo
(2025). The model is a canonical New Keynesian (NK) economy with complete markets
and nominal rigidities. We study the model in continuous time for tractability. There
is no fundamental uncertainty in preferences or technologies. To permit coordination
equilibria, we introduce a sunspot shock: a one-dimensional Brownian motion Z. In

addition, we allow a set of fiscal shocks that are adapted to the independent vector

ISeminal contributions to the FTPL include Leeper (1991), Sims (1994), Woodford (1994), Woodford
(1995), Kocherlakota and Phelan (1999), and Cochrane (2001). Cochrane (2023) synthesizes many results.

2QOthers studying the FTPL in nonlinear, but deterministic, environments with liquidity premia include
Berentsen and Waller (2018), Williamson (2018), Andolfatto and Martin (2018), and Miao and Su (2024).



Brownian motion Z. All random processes will be adapted to Z and Z.
The representative agent has rational expectations and time-separable utility with

discount rate p, risk aversion 7y, and labor disutility parameter ¢:
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Consumption C; has the nominal price P; and labor L; earns the nominal wage W;.

The consumption good is produced by a linear technology Y; = L. Behind the ag-
gregate production function is a structure common to most of the NK literature. In
particular, there are a continuum of firms who produce intermediate goods using la-
bor in a linear technology. These intermediate goods are aggregated by a competitive
tinal goods sector. The elasticity of substitution across intermediate goods is a constant
e. The intermediate-goods firms behave monopolistically competitively and set prices
strategically, subject to quadratic price adjustment costs a la Rotemberg (1982).

Finally, we assume monetary policy follows a standard Taylor rule with feedback
from output and inflation into interest rates.

In this environment, the following three equations characterize equilibrium:

1 1
dx; = [Lt — T —p+ Eaf,t + §|€x,t|2} dt + oxpdZt + Gxpd Z4 (2)
d7Tt = [‘07‘(,; — Kf(xt):| dt + Un,tdZt + Qr[,tdzt‘ (3)
Ly = I+ (ID(xt, 7'L't) (4)

Equation (2) is the nonlinear IS curve. The key novelty is 02 and |¢y|?, which encode pre-
cautionary savings. Equation (3) is the nonlinear Phillips curve characterizing inflation
i = P;/ Py, with parameter x denoting a composite price-stickiness parameter (as x — 0,

(1+)x _ .. .
e ""—1 Because it is less crucial to our

prices become infinitely rigid), and with f(x) := “
analysis, we sometimes linearize this Phillips curve, i.e., we replace f(x) with its linear
approximation x. Equation (4) is the Taylor rule of monetary policy, with a potentially
nonlinear reaction function ®. The conventional linear case is ®(x, 71) = ¢xx + P 7T.

An equilibrium is a stochastic process for (x,r,:) that satisfies (2)-(4) subject to a

non-explosiveness condition that ensures all transversality conditions hold:

Condition 1. A non-explosive allocation has P{|x;| < oo, |71;| < o0; Vt >0} =1,

limsup E|x7| < oo, limsupE|rp| < oo, and limsupE[e(F®)¥r=T] =0, (5)
T—c0 T—c0 T—c0



This non-explosiveness condition is a bit stronger than necessary to ensure transver-
sality, but it still permits multiplicity of equilibria. Indeed, Khorrami and Mendo (2025)
show that a large class of uncertainty traps satisfy (2)-(4) and Condition 1. Furthermore,

given any Taylor rule, one can find an uncertainty trap equilibrium.

2 Fiscal Policy

We introduce fiscal policy, formulated via lump-sum taxation and government transfers
to the representative household. The real primary surplus of the government is the
difference between these taxes and transfers, which we denote by S;. Fiscal policy is
characterized by a specification for S;, to be described shortly.

Surpluses may be non-zero, so the government borrows by issuing nominally riskless
bonds in quantity B;. To keep things tractable, let us assume that debt is coupon-free and
has a constant exponential maturity structure. Per unit of time dt, a constant fraction Bdt
of outstanding debts mature, and their principal must be repaid. Denote the per-unit

price of this debt by Q;. The flow budget constraint of the government is thus
QiB; = BB — BBiQ; — PiSy. (6)

This says that new net debt sales B; + BB;, which garner price Q;, plus primary surpluses
P;S; must be sufficient to pay back maturing debts fB;. Taking B — oo results in the
standard benchmark with instantaneously-maturing debt, in which case Q; — 1 and the
flow budget constraint would become B; = 4B; — P;S;. The nominal interest rate 1 is
still controlled by monetary policy.

With non-zero debt, equilibria must obey the household transversality condition for

government debt holdings,
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(7)

where M is the real stochastic discount factor process. In this section, the transversality
condition will be used extensively as a condition to trim equilibria. As is well known,

the transversality condition implies the present-value formula for government debt:
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The real value of debt must equal the real present value of surpluses. In some arguments,



it will be easier to use (8) rather than (7). We may rewrite the transversality and debt
valuation equation in terms of the surplus-to-GDP ratio and the real debt-to-GDP ratio

©)

Using these definitions, and using the consumption FOC M; = e #!Y; !, equations (7)
and (8) can be written

0= 711330 Eo e *Tbr], (10)

by = IEt[/too e_P(”_t)sudu} (11)

Since we plan to specify surpluses in terms of their ratio to GDP, these scaled versions
of the conditions will be easier to use.

In addition to the conditions above, standard no-arbitrage asset-pricing implies that
the per-unit bond price is given by

oo
Q; = [ t ]]\\/I/I—f%ﬁe_ﬁ(T_t)dT]. (12)
In the above, debt is nominal, so it is priced using the nominal SDF M/P (intuitively,
dividing by P converts a nominal cash flow into a real cash flow). This per-unit pricing
equation is a restriction on the dynamics that Q; can take.

Finally, we specify the dynamics of surpluses. We assume that surpluses feature a
component that is exogenous, a component involving economic feedbacks from output
and inflation, and a component including a feedback from outstanding government debt.
We specify the surplus-to-GDP ratio s; := S;/Y; as

st = 8(Q) + v(xp, 71¢) + by, (13)

where $(-) is a bounded continuous function of exogenous states ();, where y(-) is a
bounded continuous function of the output gap and inflation, and where «; is a poten-
tially time- and state-dependent policy parameter, to be specified in examples below.
The exogenous state variables (); are driven by a multivariate Brownian motion Z that
is independent of the shock Z:

dQy = ua(Qp)dt +¢a () - d2;.



Together with a nominal interest rate rule for 1; and a surplus rule for s;, equilib-
rium is fully characterized by the dynamical system (2)-(3), combined with government
transversality (7), or equivalently the valuation equation (8), as well as the debt pricing
equation (12). We continue to require the non-explosion Condition 1.

Khorrami and Mendo (2025) analyzed fiscal policies with § = co (short-term debt),
with v = 0 (no feedback from x and ), and with a; time-invariant. In that case, if
a > 0, fiscal policy is “passive” and the uncertainty trap equilibria remain. If « = 0,
fiscal policy is “active” and eliminates uncertainty trap equilibria. We also use this
active /passive language here (following Leeper, 1991). For concreteness, we restate two

results of Khorrami and Mendo (2025) about whether fiscal policy selects an equilibrium.

Theorem 1 (Uncertainty trap with always-passive fiscal). Suppose B = oo, ¥(-) = 0, and
ay = & > 0. Suppose monetary policy is active in the sense that ®(x, 7v) responds sufficiently to
x and 7t. Then, there exist a class of stationary sunspot equilibria with oy # 0.

Theorem 2 (Unique equilibrium with always-active fiscal). Suppose p = oo, y(-) =0, and
ay = 0. Then, any equilibrium must have o, = 0, hence uncertainty traps cannot exist.

We aim to generalize these arguments. The plan is as follows. First, given our «; can
be time-varying, we will generalize the logic of how a non-trivial debt valuation equation
depends on the sign of a;. The results are given as general tools in Section 2.1. Second,
we use the debt valuation equation to generalize our equilibrium selection arguments.
To this end, we will analyze state-dependent fiscal activism (i.e., time-varying a), long-
term debt (B < o0), and feedback rules (y # 0). For analytical tractability, however, we
analyze these extensions one at a time: Theorem 3 covers state-dependent fiscal activism
with short-term debt and without fiscal rules; Theorem 4 covers long-term debt with
constant fiscal activism and without fiscal rules; and Theorem 5 covers fiscal rules with
constant fiscal activism and short-term debt.

One technical restriction is required to prove these next results. In particular, we
restrict attention to a class of “Markovian equilibria” in which everything is a function
of (x,Q)). This restriction still permits a somewhat general analysis that nests all the
self-fulfilling equilibria developed in Khorrami and Mendo (2025).

Definition 1. An (x, Q))-Markov equilibrium is a non-explosive equilibrium such that the
debt feedback «;, inflation 71;, and volatilities 0y t, x ¢ are functions of (x¢, ().



2.1 General classification results: what is passive and what is active?

We start by providing two novel general tools to diagnose whether a complex policy
profile is ultimately passive or active. Our first such tool characterizes passive fiscal
policies, in the sense that the government remains solvent irrespective of the economic

dynamics.

Lemma 1 (Passive fiscal). Suppose a; > 0 and
113{/ wad = +oo, >0} =1, (14)
t

Then, transversality condition (7) holds, irrespective of the path of (xy, 7t¢).

Lemma 1 is used to “rule in” equilibria. If a; > 0 and condition (14) holds within a
conjectured equilibrium, then the fiscal policy profile does nothing to rule out the conjec-
ture, precisely because the debt valuation equation is redundant to the other equations.
Clearly, Lemma 1 covers the conventional example policy with a; = & > 0. But it can
also cover more complex policies with time-varying «;. Some examples follow at the end
of this section.

Whereas Lemma 1 is a tool to “rule in” equilibria, we also provide a converse result
that will be sufficient to “rule out” equilibria. This is a characterization of what active
tiscal policy looks like, in the sense that an additional substantive condition arises—a

debt valuation-like equation—that ultimately constrains the economic dynamics.

Lemma 2 (Active fiscal). Suppose sup, a; < p and
P{ /too wadu < oo, ¥E>0} =1, (15)
Then, transversality condition (7) implies debt-to-GDP is given by
b= Ee[ [ el 023, )], (16)

where §; = §(Q) and v = y(x¢, 111).

The critical valuation-like equation (16) looks much like the generic debt valuation
equation (8), but it is not exactly the same for two reasons. First, it is not always true
that the generic valuation equation (8), which holds in every equilibrium, coincides with
the valuation-like equation (16). These two conditions are only equivalent under the
assumptions of Lemma 2. Second, the valuation-like equation has purged the surpluses

of their endogenous response to debt, making it easier to analyze.
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We now consider several examples to illustrate the power of Lemmas 1-2. The first

example is very simple and involves time-dependent regime-switching.

Example 1. Let & € (0,p). Consider the two fiscal policies af* and «P, defined by

Dates of* of
t<T 0 &
t>T a O

Policy A is the type of policy discussed in Angeletos et al. (2024). It is clear that, regardless of
the value of T, fooo afldt = +oo, and so Lemma 1 applies. Therefore, this is passive fiscal, even
though government here refuses to accommodate its debt increases for an arbitrarily long time.
Angeletos et al. (2024) use this to argue that FTPL equilibrium selection is not robust to very far
in the future revisions in the policy regime.

But one can easily make the exact opposite argument about policy B. Regardless of how large
T is, f0°° aPdt < +oo, and so Lemma 2 applies. This policy is active. In that sense, the FTPL is
indeed robust to arbitrarily long deviations from active fiscal policy.

The problem here is the strangeness of the limit T — oo for when a permanent regime-switch
occurs. No matter how large T is, there is infinite time afterward. That is why the two examples
A and B are not helpful to determine whether or not FTPL'’s conclusions are fragile or not.

As the next example illustrates, our lemmas can easily address even more complex
policy profiles that involve state-dependent regime-switching. This example fiscal policy
will be unsuccessful in providing equilibrium selection, despite appearing to have a

substantial degree of “fiscal activism.”

Example 2 (Recessionary switching). The self-fulfilling equilibria in Khorrami and Mendo
(2025) are always recessionary and depend on beliefs about what happens in extreme states when
x is very low. Motivated by this, it is natural to consider a fiscal rule that incorporates a state-

dependent switch in extreme recessions. Consider, for some threshold x < 0,

x>0, ifxy>x;
= fauzx a7

0, if x¢ < X.

This government does “active fiscal” whenever x; falls low enough (i.e., in extreme recessions).
This somewhat resembles real-world policies: in normal times, governments responsibly pay back
debts by raising taxes and/or reducing spending; but in emergencies, governments abandon their

fiscal responsibilities in favor of “stimulus” to lift the economy out of crisis.



Can uncertainty traps survive this policy? Consider a sunspot equilibrium with a stationary
distribution for xy € (—09, Xmax]. Khorrami and Mendo (2025) show how to construct such
equilibria. Assume without loss of generality that policy (17) has picked the threshold x such that
that fiscal policy is not always active, i.e., they pick X < Xyax. In that case, we necessarily have
P{x; > x} > 0. Using the ergodic theorem, we then have that

1 T
lim — [ adt 2% Elay]) = alP{x; > x} > 0.

T—o00 0
This implies fooo ardt = 400, so government transversality holds by Lemma 1. Consequently,
the conjectured sunspot equilibrium survives such a fiscal policy.

Despite being ultimately a passive policy, the recessionary interventions described by
Example 2 are appealing. In the next section, we strengthen Example 2 in two ways: (i)
fiscal policy is more “aggressive” in deep recessions; and (ii) the intervention threshold
is “adaptive” to ensure regimes switch often enough. This will render the fiscal policy
active and thus enable equilibrium selection.

2.2 Fiscal Backstops

Here, we discuss a class of fiscal policies that successfully eliminates uncertainty traps.
We refer to these policies as fiscal backstops because they are less invasive than an always-
active fiscal policy, in the sense that an active fiscal regime only emerges sometimes. The
details are as follows.

First, when in the active regime, fiscal policy is sufficiently aggressive. We model
a; as a two-state process, with states ¥ > 0 and a4 < 0. The regime with & > 0 is the
standard passive one. By contrast, « < O captures a fiscal policy regime that is very
aggressively active: as debt-to-GDP rises, surpluses decline (e.g., spending rises and/or
taxes fall). In some sense, this is beyond irresponsible because it allows debt to spiral out
of control. But it reflects some aspects of real-world policies: debt-to-GDP increases are
often due to negative GDP shocks to which the government responds by spending even
more, as in stimulus packages, which further raises the debt-to-GDP ratio. An important
consideration is the size of «.

Second, we design the intervention threshold in such a way that the aggressively-
active regime occurs with positive probability over the long run. To achieve this, we
assume that regimes switch at a threshold that is endogenous to the equilibrium being
played—we refer to this as an adaptive backstop and explain this name shortly. What

we specifically assume is that policy can condition its switching point on the stationary



distribution in equilibrium. Let p(x) denote the (marginal) stationary density of x; in

equilibrium, and let

Xq := inf {X : /X p(x)dx > q} (18)

—00

denote the g percentile of p. For some g > 0, an adaptive backstop is characterized by

&, ifxy > xg;
a = F= A (19)
a, if xp < xg.

The feature of this policy is that x, is chosen such that the probability of the active regime
is, in every equilibrium, at least g. Notice that a; is purely a function of x; at equilibrium.
(Technically, the intervention threshold Xq depends on the endogenous distribution, so
it is also a “function of the equilibrium” and solves a fixed point problem. But, as
mentioned, at equilibrium x4 is merely a constant, so a; depends only on x;.)

Is it realistic for policy to condition on the equilibrium stationary distribution? We
think so. Imagine policy promises to intervene in the worst 10% of recessions. To achieve
this, policy can start by setting an initial threshold (1. Over time, perhaps policymakers
see that sunspot equilibria are persisting and they are intervening less than promised,
maybe only 5% of the time. They can promise more intervention in the future by tight-
ening their threshold, ¥?) > §1). As they observe equilibrium dynamics, policymakers
continue to adjust the thresholds ¥, ¥"*1),... until they converge to something ap-
proximating their desired 10th percentile threshold x10. Dynamic adjustment is one
way to think about achieving our so-called adaptive backstops.

With the combination of a very aggressive active regime and an adaptive backstop,
fiscal policy imposes a non-redundant debt valuation equation on every equilibrium. To
see this, recall that an adaptive threshold x, means that P{x; < Xq} > g, regardless of
the equilibrium being played. Consequently, we have by the ergodic theorem that

1 (T
71im T wdt =2 Elay] = alP{x; > Xq} +alP{x; < x5} < (1 —q)a +qua.
— 00 0
So long as
o< at, (20)

we have E[a;] < 0 and hence condition (15) of Lemma 2 is satisfied. If policy is either

10



active sufficiently often (i.e., g is high enough) or sufficiently aggressive when active (i.e.,
& is negative enough), we thus obtain a non-redundant debt valuation equation.?

In all designs, we require that the active-fiscal regime is paired with a passive-money
regime, which is the standard coordination in the literature (Leeper, 1991). Write the

interest rate rule as the linear rule with regime-specific coefficients,
D(x, m;0) = Pr(a)x + Ppr(a), (21)
allowing the monetary regime to shift in tandem with the fiscal regime. We assume that

(Active fiscal / passive money): ¢y(a) <0 and ¢r(a) <1 @)
(Passive fiscal / arbitrary money): ¢ (&) free and ¢ (&) free
Appropriate fiscal-monetary coordination guarantees that our equilibrium selection re-
sults do not stem from “inconsistent or overdetermined policies” as critiqued by Cochrane
(2011). For the purpose of eliminating sunspot volatility, perhaps surprisingly, we do not
need any assumption about monetary policy when fiscal policy is active (¢ = &).
We now state a formal result. Under adaptive backstops, there cannot exist any
uncertainty trap within the class discovered in Khorrami and Mendo (2025). The result
extends to uncertainty traps that can even include a dependence on fiscal shocks Q).

Theorem 3. Consider fiscal policy with short-term debt (B = o), with no output-inflation
feedbacks (y(-) = 0), and with debt feedback w; satisfying (18)-(19)-(20) and & < p, paired with
monetary policy (21)-(22). Within the class of equilibria in which inflation and volatilities take
the form 1ty = 10(xt, O), Oxp = 0x(xt, ), and G p = Gx(xt, Q), any equilibrium must have
zero sunspot volatility, i.e., oxs = 0.

The equilibrium with fiscal backstops bears many similarities to the conventional
“fiscal equilibrium” that emerges under always-active fiscal policy. In particular, the rea-
son 0y = 0 must hold is that demand is anchored by the valuation-like equation, which
recall says that real debt-to-GDP is related to the following present-value of surpluses

3A natural question is why the backstop needs to be adaptive. Imagine the adaptive threshold x,
were replaced by a fixed threshold ). The problem: there are stationary sunspot equilibria in which the
tail probability P{x; < x} is vanishingly small (this is shown in Khorrami and Mendo, 2025). In these
equilibria, fiscal policy would be almost-always passive and provide no discipline to the dynamics. To
rule out all sunspot equilibria with a fixed threshold, policy would either need to increase the threshold
(i.e., put x = 0 as in Theorem 2) or explode the level of aggression (i.e., take &« — —o0), neither of which is
particularly appealing.

11



(in the case where y(-) = 0):
by = IE; |:/t €_p(u_t)€ftu “Zdz§udu] .

This not only eliminates sunspot volatility but pins down overall demand volatility as
follows. Since $; is an exogenous function of ();, while «; in our example policies is a
function of (Q, x;), the valuation-like equation implies that by is a function of (), x;).
From its definition, debt-to-GDP has a sensitivity to fiscal shocks dZ; of —b;Gy . On the
other hand, given we just showed that debt-to-GDP is a function of (), x;), its sensitivity
to fiscal shocks must also be Gy (9xb; 4+ ¢ 19 bs, by Itd’s formula. Equating the two and

rearranging for ¢, implies demand inherits fiscal shocks according to

c0(Q)onb(x, Q)
b(x,Q)) + 9xb(x, Q)

cx(x, Q) = — (23)
Fiscal-based volatility emerges even during regimes in which fiscal policies appears to
behave passively. Thus, a general conclusion about fiscal backstops is that they substitute
self-fulfilling demand volatility (cy) for fiscal volatility (¢y).

On the other hand, fiscal backstops permit some flexibility which is absent under
the always-active fiscal policy. This flexibility is that, as (22) makes clear, monetary pol-
icy may take any reaction function during times when a passive fiscal regime emerges.
From the perspective of quantitative and empirical researchers, this is an important de-
gree of freedom, since it allows them to pick the monetary rule that best fits the data.
From the perspective of theorists, the flexibility allows us to pick an optimal monetary
rule unfettered by any equilibrium selection constraints—by contrast, typical linearized
analyses often require active money be paired with passive fiscal (e.g., they often require
¢x(a) > 0and ¢ (a) > 1). If, for example, the best policy involves passive fiscal regimes
to be paired with an interest rate peg, that is totally permissible here.

2.3 Long-term debt

One important generalization replaces short-term debt with long-term debt. This is
naturally of interest because short-term debt prices can never respond to shocks. This
may lead one to think that short-term debt mechanically, in a knife-edge sense, rules out
self-fulfilling demand volatility.

Assume the simplest version of active fiscal policy without any debt feedback, a« = 0,
and without fiscal rules, y(-) = 0. Then, equation (16) implies that debt-to-GDP is

12



purely a function of exogenous states by = b({);) and therefore cannot have any sunspot
volatility. Equate this expression to its definition Q;B;/P;Y; and apply It6’s formula to
both sides, recalling equation (6) for B; and that P,/P; = ;. By matching the “dZ”

terms, we obtain
Q¢ = Oxt, (24)

where o denotes the sunspot loading of log(Q;) on dZ;. In other words, the self-
tulfilling demand shocks must be absorbed by long-term debt prices. The key question
is whether the pricing of long-term debt in (12) is consistent with this absorption.

Now, to price each bond, note that the nominal SDF in this setting is

M, t 1 rt t
B = exp [—/0 L”du_i/o Uf{udu—/o ax,udZu}.

Using the notation [E for the risk-neutral expectation (which absorbs the martingale
% Ot Ufludu — fg oxudZy), the debt price from (12) is then

Qi = Ei[ [~ pe I prinar].

This equation determines the volatility ¢y, which then determines the sunspot demand
volatility oy via (24).

To develop an intuition about why demand volatility is eliminated, we first consider
the special example where the interest rate is pegged ; = I. If so, then the per-unit bond
pricing equation implies Q; = % Debt prices are constant, so g = 0, and therefore
equation (24) implies o, = 0. In fact, the risk-neutral bond pricing formula just above
reveals that the only way self-fulfilling demand can enter Q; is via the interest rate rule.
But this suggests that the result is much more general than the peg example: monetary
policy would need to follow a very particular rule in order to create fluctuations in the
bond price that are consistent with self-fulfilling demand, which generically would not
happen.

With unpegged interest rates, the debt price is no longer constant and can have
volatility. However, the volatility implied by the bond pricing equation (12) is incon-
sistent with the bond price volatility required to support self-fulfilling demand, unless
all these volatilities are zero. To summarize the reasoning, the introduction of long-term
debt allows for one extra degree of freedom, namely o, to absorb self-fulfilling de-

mand shocks, but it also introduces an extra constraint, namely the no-arbitrage pricing

13



equation for a single unit of debt. If 0y were some arbitrary process absorbing demand
shocks, that would violate the pricing equation for debt. For analytical tractability, we
prove this result in the special case without fiscal states (), although one expects the

reasoning to apply much more generally.

Theorem 4. Consider fiscal policy with long-term debt (B < o), with no output-inflation feed-
backs (y(-) = 0), and with no debt feedback (x = 0). Suppose there are no exogenous fiscal
states, so that the surplus-to-GDP ratio is s; = § constant. Within the class of equilibria in which
inflation and volatilities take the form 1ty = 7t(x¢) and 0y = 0x(x¢), any equilibrium must have
zero sunspot volatility, i.e., oxs = 0.

2.4 Fiscal rules

Our next generalization allows surpluses to respond to endogenous variables, similarly
to the interest rate rule. We introduce a fiscal rule y(x, 7r), which is a bounded contin-
uous function that satisfies ¢(0,0) = 0. For analytical tractability, we assume an active
fiscal policy without any debt feedback, « = 0, and also assume the absence of fiscal
states (), so that the exogenous piece of surpluses is given by § = 5 > 0. We also revert
back to the setting with short-term debt.

Recall the debt valuation computation from (11). Recall also that we consider a class
of equilibria where 71; and oy are purely functions of x;. In that case, we have the major
simplification that by = b(x;) for some function b that only depends on x;.* In that case,
even without computing the function b, by applying It6’s formula to (11) and examining
the loading on the sunspot shock dZ, we can say that

0= Ox t [b(xt) + b'(xt)} (25)

One possibility is oy = 0, which is the natural case we hope to prove. On the other hand,
if oy # 0, then the present-value of future surpluses needs to inherit any output gap
volatility, implying a particular functional form for b, namely b(x) o< e~*. What we show
is that this functional form is generically inconsistent with equation (11), which provides
a different equation for b, unless inflation 7(x) and volatility oy(x) take a particular
form. Then, we show that this particular sunspot form, under some conditions on the

policy rules, implies unstable dynamics, meaning that o, = 0 must hold.

“The basic reasoning is as follows. First, there are no exogenous states, so future surplus-to-GDP st
only depends on (x, 7t7) through the rule 7. Second, while (x7, 7t7) is determined by the entire path of
(X, T, O, Un,u)ue[t,T), an equilibrium which is Markovian in x has the simplifying property that time-¢
expectations of functions of (xr,7r) are purely functions of x;. This property implies that b; is solely
determined by x;.

14



Theorem 5. Consider fiscal policy with fiscal rules (v # 0), with short-term debt (B = o0),
and with no debt feedback (x = 0). Suppose there are no exogenous fiscal states, so that the
exogenous part of surplus-to-GDP ratio is 3; = § constant. Suppose monetary policy follows a
linear rule ®(x, T) = Pxx + P71, With passive coefficients ¢ < 0 and ¢ < 1. Within the
class of equilibria in which inflation and volatilities take the form 11, = 7t(x¢) and oy = 0x(X¢),
any equilibrium must have zero sunspot volatility, i.e., oy = 0.

3 Conclusion

In this note, we generalize the equilibrium selection results of Khorrami and Mendo
(2025) to permit time- and state-dependent fiscal activism, long-term debt, and fiscal
rules depending on output and inflation. We continue to find that self-fulfilling uncer-

tainty in NK models is ruled out by active fiscal policy, broadly defined.
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Online Appendix:
Fiscal Policies as Equilibrium Selection in

Uncertain Environments
Paymon Khorrami and Fernando Mendo
December 21, 2025

A General characterization of fiscal policy

Before proving the main results, we need a preliminary characterization of the equi-
librium with fiscal policy. We start by deriving the dynamics of output Y;, the debt
price Q, the debt-to-GDP ratio b; := %5:, and the scaled present-value of surpluses

Ey| ftoo e~P(1=t)5, du]. These are the right objects to examine because (11) equates b; to the

u—t)

present-value E;| [, t°° e P, du.

A.1 Forward-looking objects

Output. In this model, output is Y; = Y*e*, where Y* is the natural level of output.

Using (2), and applying It6’s formula, we have that

aYr =Y; [lt —m—p+ (T,%,t + |€x,t\2] dt + ox dZt + Gy p - A 2. (A1)

Debt price. The bond price Q; has dynamics of the form

AQt = Qi | poudt +0gudZi + 6o - dZi] (A2)

for some o, 0g, and gg to be determined. Starting from the per-unit bond pricing

equation (12), we have that the object

tM
7ﬁtQtMt u —Bu
e = + —Be P*du
Pt 0 PM’B

is a local martingale and has zero drift. Note that, from the consumption FOC e#!C; ! =
M;, the nominal SDF M,/ P; has dynamics

A(My/P) = —(Mi/P) udt + 0 dZs + G- 421 (A.3)
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Then, by applying Itd’s formula to the previous expression, and setting the resulting

drift to zero, we have

por=pB— % + 1+ 03100 + Gxt - GO (A4)

This characterizes the drift of Q.

Debt-to-GDP. Next, we derive the dynamics of the real debt-to-GDP ratio b; := %. By

It0’s formula,

dY;

avy d[Y]: —H%th _btd[Q,Y]t
Y}

b
o Y? Qt QtY:

. Bt Pt
dbt—sttdt btptdt by

We then substitute the flow government budget constraint (6) for By, the price level
dynamics P,/ P; = 714, the dynamics of Y; from (A.1), and the dynamics of Q; from (A.2)
and (A.4). After doing so, we obtain

1
db; = —(’BBt — ‘BBtQt — PtSt)dt — byrtidt — by (Lt — T —p+ 09%,t + ‘Qx,t|2>dt
PY;
+ by (Uﬁ,t + |§x,t|2>dt + by (ﬁ _F + i+ 0100 + Gt - QQ,t)dt
Qr

— by ((Tx,tdzt + Gyt - dZt) + by (UQ,tdZt +6ot- dZt) — by ((TQ,t(Tx,t +G6Qot- Qx,t)df
Simplifying, this becomes

dbt = (pbt — St)dt — bt ((Ux,t — (TQ’t)dZt + (Qx,t — ngt) . dZt) (AS)

Scaled PV of surpluses. On the other hand, equation (11) also implies that b; =
IEy| ftoo e’P(”’t)sudu]. From this definition, we have that

t oo
e Pty + / e Pis,du = E; [/ e_””sudu] ,
0 0
which is a local martingale. By the martingale representation theorem, we have that

d(e*ptbt + /Ot e*p”sudu> = Pt (Ub,tdzt + Gyt dZt>
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for some 03,; and some ¢; ;. We also have by applying Itd’s formula to the left-hand-side,
t
d(e_f’tbt +/ e_P”sudu) = [— pe_Ptbf + e Pl |dt + e Pldb,
0
Equating these last two results, and rearranging for db;, we have
dbt = (pbt — St)dt —+ U'b/tdzt + Cot dZt (A6)
Comparing results (A.5) with (A.6), we immediately have the following;:
Lemma A.1. In the setting above,

bioyt = btUQ,t — Opt (A7)
biGxr = thQ,t —GCbt (A.8)

A.2 Characterization of passive versus active policy (Lemmas 1-2)

Proof of Lemma 1. As a preliminary, we purge surpluses of their debt-feedback com-
t
ponent. So let us examine the dynamics of e~ Jolo—ou)dup, Using It6’s formula and the

surplus rule (13), we have
d(ei fot(P*lXu)dubt> — eif()t(pfﬂéu)du |: — (§t + ’)/t)dt — bt ((Ux/t - O'Q,t)dZt + (Qx,t — gQ,t) . dZt)],

where §; = §(Q)) and v; = y(x¢, 7). Then,

T
]Eo[e_prT] =1 [6_ fOT apdt (bo — /

ePtelo dudu (g, 4 %)dtﬂ (A.9)
0

From here, we can prove the lemma.
T
By a; > 0, we have e~ Jo et < 1. Also, recall that §; and <; are bounded. These
assumptions imply we can use the dominated convergence theorem to take T — oo

inside the expectation on the right-hand-side of (A.9). Then, using condition (14), we get

T—o0

=TEp [e_ Jo~ et <b0 - /Ooo e =Pty tud (8 + 'yt)dt)} =0.

T
lim Eg [e* Jo st (bo — / e =Pty tud (8¢ + ')ﬂdt)]
0

Therefore, the left-hand-side of (A.9) must also vanish as T — co. As shown in equation

(10), this is equivalent to the transversality condition (7). O
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Proof of Lemma 2. We will prove equation (16) at ¢ = 0 since the same argument will
hold at any t > 0. Similar to the derivation leading to equation (A.9), we can obtain

]Eo[e_prTAT] = ]E()[IT], (AlO)

T
where At := elo aedt

T t
and Iy :=by— /0 e Plelotudi (5 4 ) )dt
In this compact notation, our aim is to prove that 0 = Ey[Is|, where I := limr_,« IT is
the pointwise limit of It (it will be shown that this limit exists).

To proceed with our proof, we will guess and then verify ex-post that (e *Tbr A1) 10
is uniformly integrable (UI).

To begin, we prove Eo[e ?TbrAr] converges to zero along a subsequence. Given
the transversality condition limt_, Eo[e *Tbr] = 0, there exists a subsequence of times
(T]);":1 with T; — oo such that e_PbeTj — 0. Given condition (15), we also have
Ar = Aw < 00 and so A1, =& Ae < 0. Combining these conditions, we have that
lim; o e*prbT],ATj = 0. Given that (e *Tb7A1)r>0 is Ul we can conclude by Vitali’s
convergence theorem that lim;_,, Eo [AT].e_PbeTj] = Eo[limj,co Arie™" T br,] =0.

Next, we have that (ITj) j>0 are UL Indeed, we have proven lim;_,, IEO[AT].e_P beT],] =
0, so by (A.10), we have that lim; ]EO[IT],] = 0. This convergence-in-mean implies Ul

Next, we establish that lim; IT], = limr_,o IT =: Iw (i.e., convergence of It is the
same along any subsequence). To do this, start by noting that 3; and 7; are uniformly

"‘”d“(ét + ¢)dt converges

bounded processes. Hence, sup, a; < p implies that [~ ertel
to zero as T — oo, implying that L, := by — [ ePtel “udt (8, 4 ;)dt is well-defined as
the limit.

These facts allow us to conclude. The pointwise convergence It — I (hence con-
vergence in probability), plus the fact that (I:rj) j>0 are UL, implies that lim; ., ]Eo[ITj] =
Eo[lim;,o I1;] = Eo[leo] by Vitali’s convergence theorem, as desired. As mentioned at
the beginning, this implies that the valuation-like equation (16) holds for all ¢ > 0.

Finally, we verify that (e *TbrAT)7~¢ is indeed UI as conjectured. Using equation
(16), combined with the assumptions that sup, #; < p, and that $; and <; are uniformly
bounded, we immediately have that b; is also uniformly bounded. Using again that

sup, a; < p, we thus have that e PT Arbr is bounded, hence UL. l
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A.3 Characterization of active fiscal in a large class of equilibria

We may now prove a general result that applies to all relevant sub-cases. To do so,
restrict attention to a class of equilibria in which 7, 0y, and ¢y are purely functions of
(x,Q)), as defined in Definition 1

Lemma A.2. Suppose the conditions of Lemma 2 hold. The generalized model above has no
(x, Q2)-Markov sunspot equilibria “generically,” in the sense that, without imposing Condition
1, the 2 + dim(Z) endogenous variables 7t(x,Q), ox(x,Q), and ¢x(x,Q)) have only dim(Z2)
degrees of freedom whenever oy # 0. In particular, if dim(Z) = 0 (no fiscal shocks), then 7t(x)
and ox(x) are pinned down uniquely. Furthermore, regardless of dim(Z) = 0, it must hold that

Q(x,Q) = Gb(x,0)e*, on {(x,Q):02(x,Q) #0}, (A.11)

for some constant G.

Lemma A.2 shows that there essentially cannot be sunspot equilibria. The reason is
that the objects are severely restricted in their degrees of freedom, which then implies
that the resulting dynamics could generically not satisfy the additional non-explosion
requirements that are needed. This is seen most transparently in the case without fiscal
shocks, because then 77 and o, are pinned down uniquely in a way that, we will show,
can definitively not be consistent with non-explosion. As a corollary, the result below
displays the uniquely determined functional forms of all the key objects, in the case

without fiscal shocks.

Corollary A.1. Without fiscal state variables (no (1), the model above requires the following to
hold whenever o # 0, where G is some constant:

Q(x) = Gb(x)e" (A.12)
Ge — 5 — y(x, n(x))
) = T R T a0

_ L prt(x) —kf(x) = (4 P(x, 1(x)) — 1(x) — p)7' (x)
o2(x) =2 00+ ) (A.14)

(A.13)

and

)+ — KX
)+ 7" (x) (pn(x) f( ) (A.15)
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Thus, the objects (Q, b, 02, 1t) are all pinned down in an equilibrium with oy # 0.

Proof of Lemma A.2 and Corollary A.1. We start by using the (x, (})-Markov assump-
tion, which implies all dynamics are fully Markovian in (x;, ¢). Hence, the bond price
Q: and the debt-to-GDP b; are solely functions of x; and (), i.e.,, Qr = Q(x;, () and
by = b(x¢, Q) for some functions Q(-) and b(-) to be determined. Indeed, in an (x, })-
Markov equilibrium, we have that (x;, ()) is a bivariate Markov diffusion. Now, recall
the bond pricing equation (12), which after plugging in the nominal SDF from (A.3) says

Q= B[ [ e U behetons Ptz 2 Pl
t

Since 1} = T+ ®(x¢, 71¢) = T+ D(xg, w(x4,(Y)) is purely a function of (x¢,()), as are 0yt
and ¢y ¢, the bond pricing equation above implies that Q; is purely a function of (x;, Q).
Similarly, we have that §; + v+ = §(Q¢) + y(xt, 71:(x¢, Q) is solely a function of (x¢, ).
Using Lemma 2, we have that

bf — IEt[/t\ g_P(M—t)eft” [deZ(é\u + ’)/u)du],

and so b; is a function of (x;, ();) alone.
Let us define the differential operator .# that acts on C? functions g of (x, }) by

1 1
Zg = <P‘xax + Hada + 5(‘79% + [gx[*)0xx + Etr(GIQQQaQQ’) + €;€050x>8 (A.16)

This operator produces drifts of any process which is a function of (x, ). Apply It6’s
formula to Q and b to obtain (after dropping t subscripts)

Qog = 0x9xQ (A.17)
Q6o = 6x9xQ +6ndnQ (A.18)
Qug = £Q (A.19)
Op = 0x0xb (A.20)
Gp = Gx0xb +6n0dnb (A.21)
uy = b (A.22)
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Combining these results with equations (A.4), (A.6), (A.7), and (A.8), we obtain

Oy = 0x0yQ/Q — 0,0:b/b (A.23)
Gx = 6x0xQ/Q — ¢x0xb/b+¢ndnQ/Q — gndab/b (A.24)
and
(B+1+P(x,7))Q — B+ 020:Q + |6x[*0xQ + 6x - 6090 Q = £Q (A.25)
pb —3(Q) —y(x, ) —a(x, Q)b = Lb (A.26)

(Note that in the short-term debt case, which can be derived by taking B — oo, equa-
tion (A.25) implies Q — 1 uniformly. In addition, after taking this limit we have
limg 100 0xQ = 0 and limg_,,,dnQ = 0, and so limﬁ_m(g —B) = 1+ ®(x, 7). This
limiting result is also consistent with taking the B — oo in the flow budget constraint (6)
in order to recover the conventional budget constraint with short-term debt.)

Now, suppose 0y # 0. In that case, equation (A.23) says that 1 = 0,Q/Q —9dyb/b, and
equation (A.24) says that d0Q/Q = dqb/b. The first equation implies that Q(x,Q)) =
b(x,Q)G(Q)e* for some function G(-). The second equation implies that G(Q)) = G
constant. Thus, equation (A.11) holds. Note that then G is pinned down by equation
(11) at time ¢ = 0, since combining that equation with (A.11) says g—gG = Y*. Thus, (A.11)
pins down Q given b. Substitute (A.11) into equation (A.25) and then subtract equation
(A.26) to get

3(Q) , , Q)b _ - 1
8(Q) +(x, ) +a(x, Q) —p+ﬁ—l—l+®(x,7'()—£ex:]/tx——((f,%+|gx|2)
b Gb 2
Now, plug in uy from the IS curve (2) to get
0= 4 a(x,0) + D) +b7(x’ ™) 4o %ex (A.27)

Equation (A.27) thus pins down b given 7r. Since we only used so far the difference

between equations (A.25) and (A.26), we still need to ensure that each one of them holds
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in isolation. Thus, equation (A.26) also must hold after plugging in u, from (2):

pb —35(Q) —y(x, ) —a(x, Q)b (A.28)

1 1
= [+ @00, m) =7 = p+ 5 (02 + |6x ) |9:b + Hpdnb + 5 (03 + |exl?) s

1
+ Etr(glﬂgﬁaQQ’b) + ¢ 6000xb

Given (71,0, Gx), equation (A.28) is a PDE for b. Finally, recall the Phillips curve (3),
apply Itd’s formula to a generic inflation function 77(x, ()) to replace ji,, and then plug
in py from (2):

Pt —Kf(x) (A.29)

1 1
= [+ @) = m—p+ 502+ [6x ) |9x7 + Hpdor + 5 (0 + a2

1
+ E’“(G’QGQ%QW) + ¢ 60y

where f(x) := e<1;i>;—1 if we are using a nonlinear Phillips curve and f(x) = x if we
are using a linearized Phillips curve. Given (0, gx), equation (A.29) is a PDE for 7. At
this point, consider the following experiment. Suppose 7(x,Q2) is any function. Then,
equation (A.27) pins down b(x,()) uniquely, and equation (A.11) pins down Q(x, Q)
uniquely. Given 7 and b, we can compute all their derivatives, and so equations (A.28)
and (A.29) pin down 2 dimensions of the 1+ dim(Z) dimensional vector (oy,Gx). In
other words, we must pick oy and/or gy in order to ensure equations (A.28) and (A.29)
hold.

Thus, if dim(Z) = 0, then either o, = 0, or 71(x) and ¢2(x) must take a particular
form. Note also that these functions are independent of () since there are no surplus
shocks (hence Q) is not a state variable for any object in the case dim(Z) = 0). The
equations for Corollary A.1 are obtained by removing () from all the equations above
and rearranging. O

B Proofs of Theorems in Text

Proof of Theorem 3. We proceed in steps. First, we verify the sufficient conditions for
“active fiscal” to obtain a valuation equation for b;. Second, assuming a non-explosive
sunspot equilibrium, we obtain the unique solution for b; in the Markovian environment

assumed. Third, we use this solution to pin down inflation and volatility uniquely.
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Fourth, we demonstrate that this unique solution cannot be consistent with “stability,”
namely the non-explosive Condition 1 is violated, a contradiction to the assumption that
sunspot volatility is present.

Step 1: valuation equation. First, by the definition of x, in (18), every equilibrium satisfies
P{x; < x4} > g. Given that condition (20) holds and that & < p, we have that the
assumptions of Lemma 2 hold, so we obtain valuation equation (16) for b;.

Step 2: solution for b. We assume a non-explosive sunspot equilibrium. Let the ergodic
set of the sunspot equilibrium be X := {(x, Q) : x € (Xi, (), Xmax (Q)) }, where

Xpin(Q) := inf{x : 02(x, Q) > 0}
Xmax(Q) := sup{x : 02(x,Q) > 0}.

Define X° := {(x,Q) : ¢2(x,Q) > 0} to be the sub-domain with sunspot volatility.
Notice that all (x, Q) close enough to the boundary of X’ lie inside X™°.

Now, since 714, 0y t, and ¢y ; are functions of (x¢, ();), we have that (x;, ();) is a Markov
process, and so the equilibrium satisfies Definition 1. Since a; is also a function of
(xt, ), equation (16) implies that by = b(x¢, () for some function b. Now, we apply
equation (A.11), noting that with short-term debt we have Q = 1. In that case, we then

know that for some constant b,

b(x,Q) =be ™, on X°. (B.1)

Step 3a: pinning down 7t,02. Substituting (B.1) into the differential equation (A.28) and
rearranging, we have that
5(9)

Pr()x + (pr(a) — 1) = Tex +a—p, onX°. (B.2)

This equation cannot hold for all x € X’°, except if inflation takes a particular knife-edge

functional form—Ilet this solution for inflation be denoted by

3(0)e*/b+a—p— dyr(a)x

o(x, Q) := or(a) 1

(B.3)

On the other hand, the function 71p must also be consistent with the Phillips curve
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(3). Applying It6’s formula to 71, the result is

38 1 1 1
7Ty — KX = [Eex +a—p+ EU,% + §|gx|z} 0y 7o + E(U,% + |gx|2)8xx7to (B.4)

1 0
+ 160070 + Etrace[ggg’Q(E)QQ/ 70)] + Gx6n0xqTo, on X°.
Given that 71 is determined, this equation pins down 3 (02 + |¢«|?) = £y on X°, where

P70 — KX — (%e" +a — )70 — (Hpda70 + 3trace[gnch (9aa o)) + 6x6ndx7T0)

20
0 Ox 7T + Oxx 770

(B.5)

Step 3b: useful properties of 11y, X9. We note, for later, some key properties. First, 77y and

its derivatives are finite for all x finite. Second, its limiting values are given by

. b0, ifpale) <O
lim 7y = ap _
X—=—0 W, if ¢x(Q() = 0.
. _ (PX(QC) <
XLHFOO 0xTTo = pr(a) —1 — 0
].im axxﬂo — O
——00

Here, we have used the key fact that a(x) — a as x — —oo, by definition of the inter-
vention threshold x,. Using these properties for 71y, the total diffusion % inherits the
following properties:
[Proof: Because of the fact that 71y and its derivatives are bounded for all finite x,
we have that ¥y = 0 if and only if the numerator in (B.5) vanishes. Plugging in the
expression for 71y from (B.3), and then taking the limit x — —oo in the numerator
of (B.5), we find that £y /4 0 unless ¢x(a) = —p and ppx(a) + x(pr(a) — 1) = 0.
But these conditions cannot hold under monetary policy (22), since ¢, () < 1.]

(P2) limy—s—o X < 400 for all Q if ¢y (a) # 0 and on {Q): 3(Q2) > 0} if Py (a) = 0.

[Proof: Indeed, by the fact that 77y and its derivatives are finite for all finite x, X
can only explode if x — —oco and if the following condition holds:

lim ¥y = oo « lim L0~ 1 (B.6)

X——00 x—=00 dy 7T + xx 7T
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If ¢x(a) # 0, (B.6) is equivalent to limy_,_oo[p + %]x = 400, which cannot

hold by the fact that monetary policy (22) uses ¢ (a) < 1. If ¢x(a) = 0, condition

br (P (@) —1)x
5(Q)ex

such that §(Q)) > 0, again by the fact that monetary policy (22) uses ¢ (a) < 1.]

(B.6) is equivalent to lim,_, = —oo, which cannot hold for any ()

Step 4: explosiveness of dynamics. Under the restriction (B.2), the drift of x is given by

1 1
Ux = <I)(x, 71'}0‘) — T+ 5‘79% + §|§x|2

=3%"/b+a—p+Xg onX°. (B.7)

For the domain to be valid as part of an equilibrium, we must have that the dynamics are
such that (x;, Q) € X forever—we refer to this as “stability.” Recall that all points near
the boundary of X are inside X°, and so the drift above is the relevant expression near
the boundaries. There are two possibilities which require different analyses: x,,;,(Q) >
—o0 and X, (Q)) = —oo.

If x,i,(Q2) > —oo, stability requires that the volatilities vanish there, because the
drift p, in (B.7) is also finite there. So we require Xo(x,i,(Q2), Q) = 0. (This restricts
the boundary x,,;,(}), meaning it cannot be arbitrary; however, this is not critical for
the argument below.) Furthermore, stability requires the drift to point “inwards” into
the domain X, i.e., py(Xpin(Q), Q) > 0 > px(Xmax (Q), Q) for all Q. However, given
a(x) defined in (19) is weakly increasing in x, we have the following for all Q) such that
3(Q) > 0:

tx(Xmin (Q)), Q) = ex’"i”(ﬂ)é(ﬂ)/b + a(xin(Q)) — p

which contradicts the stability requirement on the drifts.

On the other hand, if x,,;,(Q)) = —oo, then stability requires that volatilities explode
asymptotically. Indeed, property (P1) above shows that lim,_, _« 2 7# 0. If limy__ o X
were a finite value, then the drift y, in (B.7) would also be finite, and so the process x;
would hit —oco in finite time with positive probability. Thus, the only way to obtain a
non-explosive solution is limy_, o 2o = +0c0. Property (P2) above rules this out.

Thus, we have shown that, regardless of how x,,;, is constructed, the dynamics cannot

be non-explosive. This contradiction completes the proof. O
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Proof of Theorem 4. The assumptions listed imply a constant surplus-to-output ratio
sy = 5. Using equation (11), this implies that by = 5/p is constant for any 77(x) and any
ox(x) functions. We then specialize the results of Corollary A.1 as follows. Using the

result for b(x) = §/p, equation (A.13) then pins down inflation as

t(x) = g—‘i_e_x —B—p, when oy #0. (B.8)
Note that 77'(x) + 77"/ (x) = 0. Then, equation (A.14) implies that, after plugging in the
derivatives of 7t from (B.8),

exg—’[z_(t‘+ O(x,m) — ) —xf(x) =p(p+pB), when o, #0. (B.9)

But everything is pinned down in equation (B.9). The result cannot be consistent with
the solution for 77 in (B.8) unless the monetary policy rule @ takes a knife-edge form,

and so generically we reach a contradiction. Thus, o, = 0 must hold. O
Proof of Theorem 5. We specialize the results of Corollary A.1 as follows. Using short-
term debt (B — o0) in equation (A.13) implies that

b(x) =be™*, when oy #0,

for b = 1/G. Notice that b’(x) + b”(x) = 0 in this solution. Thus, equation (A.15), after

plugging in the solution for b and its derivatives, says that

S+ vy(x,m) = (1+®(x, 1) — m)be™™, when oy #0. (B.10)

Equation (B.10) pins down 7t uniquely when o, # 0, unless the rules y(-), ®(-) take a
knife-edge form. Finally, equation (A.14) specializes to

P Kf() ~ [+ () — 7 )

02 =52 T , when oy #0. (B.11)

Given the solution for 7, this pins down ¢2 uniquely when it is non-zero.

Given the functions b(x), 7t(x), and ¢2(x) are all pinned down assuming oy # 0, it
remains to verify that the candidate sunspot equilibrium explodes, which then implies
ox = 0. This part of the proof follows a very similar argument to Theorem 3 and therefore

we omit it. n
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