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Abstract

We study the global dynamics of the fully stochastic nonlinear version of the New
Keynesian model and unveil a new class of equilibria characterized by self-fulfilled
beliefs about volatility. Self-fulfilling volatility is a real not nominal phenomenon, so
these new equilibria survive even in the rigid-price limit. A monetary policy rule
that only responds to inflation and output is unable to trim these new equilibria,
regardless of its aggressiveness. An enriched monetary rule specifically targeting
risk premia can restore determinacy but becomes infeasible in the presence of a
lower bound to interest rates. In a variety of specifications, active fiscal policy kills
self-fulfilling volatility, showing that the FTPL approach contributes to equilibrium
selection beyond disciplining price level dynamics. Overall, this paper supports a
theory of macroeconomic dynamics based on equilibrium selection criteria linked to
fiscal rather than monetary policy.
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To address topics of inflation, aggregate demand stimulus, and monetary policy,
macroeconomists often look to the New Keynesian model for advice. Despite its role as
the dominant policy paradigm, this model is plagued by well-known equilibrium multi-
plicities that influence its answers to those standard macro questions. Currently, there is
no consensus on how equilibria are selected and which of the many survive. Among the
many alternatives, two popular selection mechanisms are an aggressive monetary policy
that responds sufficiently to output and inflation (e.g., the “Taylor principle”) versus an
active tax and spending policy (e.g., the “Fiscal Theory of the Price Level”).

This paper sheds new light on this old controversy by studying the textbook New
Keynesian model but with a simple twist: unlike standard practice, we refrain from
linearizing the equilibrium around its steady state. Instead, we study the model in its
true nonlinear, stochastic form. The model’s global dynamics reveal several insights
about the nature of the multiplicities and which policies can credibly eliminate them.

As a warm up, and to distinguish our main results, we begin by reviewing the stan-
dard deterministic multiplicities in New Keynesian models (Section 2). In that context,
we simply generalize the conventional wisdom: a very aggressive Taylor rule can elim-
inate all equilibria except the steady state. The generalizations involve allowing a non-
linear Phillips curve, which does not alter the conclusions at all, and contrasting linear
versus nonlinear Taylor rules.

Our main innovations appear when we study stochastic multiplicities (Section 3). We
prove the existence, by construction, of a new class of volatile equilibria that no Taylor
rule can completely eliminate. Due to this immunity, our volatile equilibria contrast
sharply with the conventional deterministic multiplicities. The key feature that arises
in a non-linearized stochastic equilibrium is the presence of a risk premium in agents’
Euler equation (“IS curve”). This risk premium, not volatility per se, is in fact the source
of stochastic equilibrium multiplicities.

Stemming from our volatile equilibria are two additional implications. First, volatility-
based indeterminacy is a recessionary phenomenon: it arises only if output is below po-
tential. In a boom, a higher risk premium induces savings that raises agents’ consump-
tion growth rate in a way that is unsustainable; in a recession, risk premia sustainably
push consumption back toward steady state. Second, because the risk premium is a
real object, this indeterminacy is a real rather than nominal phenomenon, in contrast to
several theories of self-fulfilling inflations or deflations. In particular, all of these results
hold in the rigid-price limit.

We turn next to the Fiscal Theory of the Price Level (Section 4). To be clear about how
fiscal policies work to select equilibria, we exclusively consider non-distortionary lump-
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sum taxes and transfers. In a variety of different settings—including arbitrary exogenous
surplus-to-output ratios, different forms of fiscal “rules” that respond to inflation or the
output gap, long-term or short-term debt, and different utility functions—FTPL generi-
cally kills the volatile equilibria we discovered. Why? The overarching intuition is that,
when surpluses are not designed in the knife-edge way to fully absorb output volatility,
such short-run volatility must be absorbed either by nominal debt valuation or the price
level; sticky prices say that the price level cannot, and the flow budget constraint says
nominal debt value cannot either. Consequently, sunspot demand volatility can never be
self-justified.

Interestingly, FTPL succeeds as a selection device with or without inflation (e.g.,
all these results hold as well in the rigid-price limit). The rigid-price limit case effec-
tively corresponds to inflation-indexed government debt, which the FTPL literature typ-
ically regards as ineffectual for equilibrium selection. Nevertheless, demand volatility is
pinned down by fiscal considerations, even if the price level isn’t. For these reasons, we
advance an interpretation of FTPL as broadly a theory of aggregate demand manage-
ment, rather than just a theory of the price level. We conclude that active fiscal policies,
in contrast to monetary policies, sharply trim the real indeterminacies endemic to New
Keynesian models.

Related literature. This paper relates to two vast literatures: (i) on New Keynesian
indeterminacies and (ii) on FTPL as equilibrium selection. We discuss these and various
other connections in sequence.

Going back to Sargent and Wallace (1975), it has been widely recognized that exoge-
nous interest rate paths, including pegs, do not pin down the equilibrium. In related
work, Benhabib, Schmitt-Grohé, and Uribe (2001) showed that the zero lower bound
(ZLB) can lead to “deflationary trap” equilibria, in which low inflation expectations
are self-fulfilled by recessionary deflation. More recently, Benigno and Fornaro (2018)
showed there can also be “stagnation trap” equilibria, in which low growth expectations
are self-fulfilled by low R&D investment at the ZLB. Set against this background, the
present paper describes “volatility trap” equilibria. The main distinctive property of
volatility trap equilibria is that risk premia are crucial to the self-fulfilment mechanism.
(While we primarily study our indeterminacies in the context of monetary policy rules,
the appendix shows how the same insights emerge with optimal discretionary monetary
policy that is constrained by the ZLB, closer to the papers cited above.)

According to our analysis, active fiscal policies are credible equilibrium pruning de-
vices in New Keynesian models. Seminal contributions to the FTPL literature include
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Leeper (1991), Sims (1994), Woodford (1994), and Woodford (1995).1 Our paper differs in
two respects. First, we more often emphasize real indeterminacies and consequently fre-
quently study the rigid-price limit of the model. Second, we analyze the fully nonlinear,
stochastic, global dynamics of the model—see also Bassetto and Cui (2018), Mehrotra
and Sergeyev (2021), Brunnermeier, Merkel, and Sannikov (2020), and Li and Merkel
(2020) for fiscal theory applied to a stochastic nonlinear world.2

Volatility trap equilibria are fundamentally nonlinear phenomena. In an important
contribution, Caballero and Simsek (2020) study a nonlinear version of the New Keyne-
sian model and illustrate how risk premia are critical to aggregate demand dynamics,
but restricting attention to the “fundamental equilibrium.” Even more closely related,
contemporaneous work by Lee and Dordal i Carreras (2023) also studies a nonlinear IS
curve with risk premia driving the multiplicity. Like us, they also argue that “active”
Taylor rules do not prune this type of volatility (although they only entertain equilibria
local to steady state). The most important difference is our exploration of active fiscal
policy in addition to monetary policies.

At times, our paper is critical of Taylor rules as equilibrium selection devices, fol-
lowing some insights from Cochrane (2011). Recently, Neumeyer and Nicolini (2022)
have shown, in a precise sense, that destabilizing Taylor rules are not credible. Overall,
one core message conveyed by our results is that fiscal policies are better suited than
monetary policies to trim indeterminacies in New Keynesian models. As a plausible
alternative, future research could investigate the common knowledge perturbation of
Angeletos and Lian (2023), which they applied to the linearized New Keynesian model,
in a nonlinear setting like ours.

1 Model

We present a canonical New Keynesian economy with complete markets and nominal
rigidities. The setup is a continuous-time version of the model exposited in Galí (2015),
which the reader can consult for additional details.

1See also Kocherlakota and Phelan (1999) highlighting FTPL as an equilibrium selection criterion;
Cochrane (2001) for the important extension to long-term debt; Bassetto (2002) for some microfounda-
tions of the off-equilibrium behavior; and Cochrane (2005) for a discussion of how FTPL is really about
the “debt valuation equation” and not the “government budget constraint.” Bassetto (2008) and Sims
(2013) write excellent reviews. The recent textbook Cochrane (2023) synthesizes all of these results and
presents new ones that we will refer to repeatedly throughout the text.

2Other recent papers studying the FTPL in nonlinear, but deterministic, environments with “liquidity
premia” include Berentsen and Waller (2018), Williamson (2018), and Andolfatto and Martin (2018).
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Sunspot shocks. Our baseline model features no fundamental uncertainty in preferences
or technologies. Nevertheless, we want to allow the possibility that economic objects
evolve stochastically due to coordinated behavior. To do this, we introduce a standard
Brownian motion Z that is extrinsic to all economic primitives. All random processes
will be adapted to Z.3

Preferences. The representative agent has rational expectations and time-separable util-
ity with discount rate ρ, unitary EIS, and labor disutility parameter ϕ:

E
[ ∫ ∞

0
e−ρt

(
log(Ct)−

L1+ϕ
t

1 + ϕ

)
dt
]
. (1)

Later, we will generalize some of our arguments to the CRRA utility c1−γ

1−γ −
l1+ϕ

1+ϕ . Con-
sumption Ct has the nominal price Pt and labor Lt earns the nominal wage Wt.

Technology. The consumption good is produced by a linear technology Yt = Lt. We
abstract from fundamental uncertainty (e.g., productivity shocks) for maximal clarity.

Behind the aggregate production function is a structure common to most of the New
Keynesian literature. In particular, there are a continuum of firms who produce interme-
diate goods using labor in a linear technology. These intermediate goods are aggregated
by a competitive final goods sector. The elasticity of substitution across intermediate
goods is a constant ε. The intermediate-goods firms behave monopolistically competi-
tively and set prices strategically, described next.

Price setting. Intermediate-goods firms set prices strategically, taking into consideration
the impact prices have on their demand. Price setting is not frictionless: firms changing
their prices are subject to quadratic adjustment costs, a la Rotemberg (1982). (For sim-
plicity, we assume these adjustment costs are non-pecuniary, so that resource constraints
are not directly affected by price adjustments.) In the interest of exposition, we relegate
the statement of and solution to this standard problem to Appendix B.

Definition: inflation and output gap. Let Pt denote the aggregate price level and πt :=
Ṗt/Pt its inflation rate. Note also that the flexible-price level of output is given by Y∗ =

( ε−1
ε )

1
1+ϕ . Following the literature, define the output gap xt := log(Yt/Y∗). Conjecture

3In the background, the Brownian motion Z exists on a filtered probability space (Ω,F , (Ft)t≥0, P),
assumed to be equipped with all the “usual conditions.” All equalities and inequalities involving random
variables are understood to hold almost-everywhere and/or almost-surely.
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that xt and πt have dynamics of the form

dxt = µx,tdt + σx,tdZt (2)

dπt = µπ,tdt + σπ,tdZt (3)

for some µx, σx, µπ, σπ to be determined in equilibrium.

Monetary policy. Let ιt denote the nominal short-term interest rate, which is controlled
by the central bank. Monetary policy follows a Taylor rule that targets the output gap
and inflation with

ιt = ῑ + Φ(xt, πt) (MP)

for some target rate ῑ and some response function that satisfies Φ(0, 0) = 0. A common
linear example that we will use sometimes is ιt = ῑ + φxxt + φππt. When prices are
fully rigid, the rule only will only respond to the output gap. In the main paper, we
abstract from the zero lower bound (ZLB), which induces well-known indeterminacy
issues, and analyze it in Appendix E. For now, think of negative interest rates as a proxy
for unconventional monetary policy that can work even when the short rate is zero.

Financial markets. Financial markets are complete. Let Mt be the real stochastic dis-
count factor induced by the real interest rate rt := ιt − πt and the equilibrium price
of risk ht associated to the sunspot shock Zt. The risk-free bond market is in zero net
supply—this will be generalized in Section 4 when we introduce fiscal policies. The eq-
uity market is a claim on the profits of the intermediate-goods producers. Alternatively,
we can think of these profits as being rebated to the consumers lump-sum.

Definition 1. An equilibrium is processes (Ct, Yt, Lt, Wt, Pt, Mt, Bt, ιt, rt, πt)t≥0, such that

(i) Taking (Mt, Wt, Pt) as given, consumers choose (Ct, Lt)t≥0 to maximize (1) subject
to their lifetime budget and No-Ponzi constraints4

Π0 + E
[ ∫ ∞

0
Mt

WtLt

Pt
dt
]
≥ E

[ ∫ ∞

0
MtCtdt

]
(4)

lim
T→∞

MT
BT

PT
≥ 0, (5)

4In addition, to prevent arbitrages like “doubling strategies” that can arise in continuous time, we must
impose a uniform lower bound on borrowing, e.g., Bt/Pt ≥ −b, although b can be arbitrarily large.
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where Π represents the real present-value of producer profits and B represents the
bond-holdings of the consumer.

(ii) Firms set prices optimally, subject to their quadratic adjustment costs.

(iii) Markets clear, namely Ct = Yt = Lt and Bt = 0.

(iv) The central bank follows the interest rate rule (MP) for some target rate ῑ and some
response function Φ(·).

In what follows, we refer to a deterministic equilibrium as an equilibrium with no real
volatility, σx ≡ 0. A sunspot equilibrium is an equilibrium with real volatility, σx 6= 0.

Equilibrium characterization. We first provide a summary characterization of all equi-
libria. Labor supply and consumption decisions satisfy the following optimality condi-
tions:

e−ρtLϕ
t = λMt

Wt

Pt
(6)

e−ρtC−1
t = λMt, (7)

where λ is the Lagrange multiplier on the lifetime budget constraint (4).
On the firm side, Appendix B shows that optimal firm price setting gives rise to

aggregate inflation dynamics that satisfy

µπ,t = ρπt − ηε
Wt

Pt
+ η(ε− 1), (8)

where η is each firm’s degree of price flexibility. Notice that as η → 0 (prices changes
become infinitely costly), one possible equilibrium is to have πt → 0 for all times. We
will assume this “rigid-price limit” is the equilibrium that obtains as η → 0.

We use these conditions to obtain an “IS curve” and a “Phillips curve.” Applying
Itô’s formula to (7), we obtain the consumption Euler equation, which may be rewritten
in terms of the output gap as

µx,t = ιt − πt − ρ +
1
2

σ2
x,t. (IS)

Equation (IS) is the IS curve. Next, divide the FOCs (6)-(7), and use goods and labor
market clearing Ct = Yt = Lt to get Y1+ϕ

t = Wt
Pt

. Substitute this expression into (8) to
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obtain

µπ,t = ρπt − κ
( e(1+ϕ)xt − 1

1 + ϕ

)
, (PC)

where κ := η(ε− 1)(1 + ϕ). Equation (PC) is the Phillips curve.
Together with the monetary policy rule (MP), equations (IS) and (PC) form the non-

linear “three equation model” in standard New Keynesian models. An equilibrium is
completely characterized by these three equations, along with some conditions that dis-
cipline explosions. We summarize this characterization in the following lemma.

Lemma 1. Suppose processes (xt, πt, ιt)t≥0 satisfy the IS equation (IS), the Phillips curve (PC),
and the policy rule (MP) Suppose |xt| < ∞ for almost all t, almost-surely. Then, (xt, πt, ιt)t≥0

corresponds to an equilibrium of Definition 1. Otherwise if |xt| = ∞ with positive probability,
the proposed allocation is not an equilibrium.

The only nuance to Lemma 1, which we are careful to include, is the condition that xt

not explode in finite time. Since Ct = extY∗ = Lt, the representative agent would obtain
minus infinite utility if xt = −∞ or xt = +∞ for any positive measure of times. Such
proposed allocations cannot be equilibria, because they involve coordination to make
decisions that are obviously not utility maximizing. Consumers would be individually
better off ignoring signals to coordinate, unravelling such a proposed allocation.

On the other hand, asymptotic explosions are not ruled out. Indeed, the transver-
sality condition of the representative consumer automatically holds based on the other
equations in Lemma 1.5 So it is perfectly consistent with equilibrium if xt or πt diverge
asymptotically, an issue that will arise repeatedly in the following sections. This point is
also made by Cochrane (2011) when discussing the validity of various equilibria in these
models.

Linearized Phillips curve approximation. To simplify the analysis, we will sometimes
use a linearized Phillips curve in place of (PC). In those cases, e(1+ϕ)xt − 1 ≈ (1 + ϕ)xt

to first order, and the Phillips curve becomes approximately

µπ,t = ρπt − κxt. (linear PC)

5 To see this, note that, since price adjustment costs are non-pecuniary, real present value of aggregate
profits are Πt = Et[

∫ ∞
t

Ms
Mt

(Ys − Ws Ls
Ps

)ds]. Put this together with the representative consumer labor income

to obtain Πt + Et[
∫ ∞

t
Ms
Mt

Ws Ls
Ps

ds] = Et[
∫ ∞

t
Ms
Mt

Ysds]. Using the resource constraint Ct = Yt, we therefore
have that the consumer lifetime budget constraint (4) holds with equality, meaning transversality holds.
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We will occasionally work with (linear PC) instead of (PC), because as will become clear
the nonlinearity in the IS curve (IS) is the critically novel element, and not so much
the nonlinearity in (PC). (We explore the additional insights gained from the nonlinear
Phillips curve in Appendix C.) In this approximation, we will sometimes refer to equi-
librium as (xt, πt, ιt)t≥0 that satisfy (IS), (linear PC), and (MP) such that |xt| < ∞ almost
surely.

2 Deterministic Equilibria

We start by describing equilibria without volatility, σx ≡ 0. First, we illustrate the basic
indeterminacy that arises in New Keynesian models. Second, we show how super-
aggressive monetary policy rules can eliminate this indeterminacy. In the process, we
generalize some existing results to nonlinear Phillips curves and use nonlinear Taylor
rules as “escape clauses.”

2.1 Review: conventional indeterminacy in NK models

There is always an equilibrium with x = π = 0 forever. Using (IS), this equilibrium is
supported by a monetary policy rule with ῑ = ρ.

Can there exist other equilibria? As is well known, the answer to this question hinges
on the stability/instability properties of the equilibrium dynamical system for (xt, πt).
We will review this analysis here. First, we specialize the policy rule (MP) to

ιt = ρ + φxxt + φππt. (linear MP)

Next, combining (linear MP) with (IS), the dynamics of xt are given by

ẋt = φxxt + (φπ − 1)πt. (IS’)

Thus, the IS curve is automatically linear in a deterministic equilibrium with a linear
Taylor rule. Together, equations (IS’) and (linear PC) characterize deterministic equilib-
ria.

The typical determinacy analysis picks an aggressive Taylor rule that renders the
above system unstable. The system can be written in matrix form as[

ẋt

π̇t

]
= A

[
xt

πt

]
, where A :=

[
φx φπ − 1
−κ ρ

]
. (9)
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The eigenvalues of A are both strictly positive, and the system unstable, if φx > 0 and
φπ > 1. This is the continuous-time version of the eigenvalue conditions in Blanchard
and Kahn (1980).

However, even when the Taylor rule is aggressive and destabilizing, the result is still
a valid equilibrium, as stressed by Cochrane (2011). Nothing about the model rules
out asymptotic explosions. No matter how large the central bank picks φx and φπ, the
explosion will always only be at the infinite horizon. For any policy (φx, φπ), we have a
continuum of valid equilibria, indexed by the initial condition (x0, π0).6

Proposition 1. Any initial pair (x0, π0) is consistent with a deterministic equilibrium with
linearized Phillips curve (linear PC). If φx > 0 and φπ > 1, then all deterministic equilibria
explode asymptotically, except for the one with (x0, π0) = (0, 0).

Remark 1 (Real indeterminacy). The indeterminacy in this model is conceptually about self-
fulfilling demand, rather than inflation per se. To see this, consider the rigid price limit (κ →
0) so that πt ≡ 0. The equilibrium is then summarized by (IS’), or ẋ = φxx, which has
the solution xt = eφxtx0. For any φx, there are a continuum of equilibria indexed by x0. In
what follows, we will often consider the rigid price limit to capture the core indeterminacy and
facilitate tractability. Mathematically, this reduces the two-dimensional system for (xt, πt) to a
one-dimensional dynamical system.

Remark 2 (Nonlinear Phillips curve). We have used the linearized Phillips curve here for
simplicity and exposition. We analyze the nonlinear Phillips curve in Appendix C, and the
conclusion is identical to Proposition 1 but the proof is more complicated.

2.2 Trimming equilibria with a very active Taylor rule

As we have seen, a typical linear Taylor rule does not ensure unique equilibrium. Instead,
as noted by Cochrane (2011), uniqueness often requires an additional policy that pledges
to “blow up the world” in case the proposed equilibrium is not followed. In our context,
this nuclear option is a very aggressive Taylor rule.

In particular, let us dispense with the linear rule (linear MP) and return to (MP).
Suppose the response function takes the nonlinear form

Φ(x, π) =
φx

2
(ex − e−x) + π (10)

6The solutions to (9) take the form
[ xt

πt

]
= exp(At)

[ x0
π0

]
.
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with φx > 0 and suppose the target rate is again the natural rate ῑ = ρ. Note that the
log-linearized version of (10) renders the linear Taylor rule (linear MP) with φπ = 1.

Combining (10) with (IS), the dynamics of xt are given by

ẋt =
φx

2
(ext − e−xt) (11)

This ODE has solution

xt = log
(

1− Keφxt

1 + Keφxt

)
where K = 1−ex0

1+ex0 . This process diverges in finite time for any x0 6= 0: it explodes at time
T = −φ−1

x log(|K|). Hence, we have proved by construction the following result.

Proposition 2. Taylor rules exist such that any deterministic equilibrium has xt = 0 forever.

The analysis above abstracts from any feedback effects from inflation to output gap
by setting a monetary policy rule with φπ = 1. This serves two purposes. First, it em-
phasizes the focus on self-fulfilling demand and not inflation per se. Equilibrium char-
acterization requires the output gap to remain bounded for any finite horizon. There
is no such requirement for inflation (e.g., hyperinflation might be an equilibrium out-
come). Second, it simplifies the analysis and illustrates the point with examples that
permit closed form solutions. As an additional benefit, Proposition 2 holds for either the
linearized or non-linear Phillips curves.

Determinacy extends beyond the particular response function (10) that has exactly a
one-for-one inflation response. In particular, consider inflation sensitivities of more than
one-for-one, such as

Φ(x, π) = φx(ex − e−x) + φππ, φπ > 1. (12)

While more challenging technically to analyze, this rule also selects the zero output gap
equilibrium xt = 0. We demonstrate this result formally in Appendix D.

3 A New Class of Sunspot Equilibria

Now, we demonstrate several new results pertaining to volatility in New Keynesian
models. In one sense, the deterministic multiplicity in Proposition 1 already suggests
the existence of stochastic sunspot equilibria. On the other hand, Proposition 2 shows
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that the central bank, by adopting a super-aggressive Taylor rule, should be able to
eliminate equilibrium multiplicity. In this section, we will show that this logic is wrong,
in particular because of the presence of risk premia. As we will then show, a different
type of policy rule, which targets the risk premium, is required to eliminate stochastic
multiplicities. Finally, we argue that risk premium targeting is fragile because it requires
arbitrarily negative interest rates.

3.1 Constructing volatile equilibria

For concreteness, assume that prices are permanently rigid, i.e., κ → 0. This clarifies
that we are focusing on real indeterminacy rather than inflation indeterminacy. An
additional advantage is that we only need to study the dynamics of the output gap,
rather than a two-dimensional stochastic system. Let the policy rule have target rate
ῑ = ρ and nonlinear response function (10).

Combining (MP) with (IS), the drift of xt is given by

µx = φx(ex − e−x) +
1
2

σ2
x .

Building off of the previous analysis, the question is whether the dynamical system
characterized by (µx, σx) keeps xt finite forever. But here, the volatility σx is determined
purely via coordination, and some choices will lead to stability. To see why this is
possible, examine instead the dynamics of yt := ext and verify that yt > 0 forever. The
drift of yt is

µy = φx(y2 − 1) + yσ2
x

and its diffusion σy = yσx.
Right away, we see that stability is possible, if agents coordinate on sufficiently high

volatility. For example, suppose for some ν > 0,

σ2
x =


(

ν
y
)2

+ φx
1−y2

y , if y < 1;

0, if y ≥ 1.
(13)

Putting these equations together, the dynamics for yt would be

dyt =

 ν2

yt
dt +

√
ν2 + φxyt(1− y2

t )dZt, if yt < 1;

φx(y2
t − 1)dt if yt ≥ 1.

(14)
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It is relatively straightforward to see that yt > 0 for all t in this example: the process
above behaves asymptotically (as y → 0) like a Bessel(3) process, which never hits 0.
And consequently, xt = log(yt) does not explode negatively in finite time. Provided
y0 ≤ 1, the process also does not explode positively in finite time. In fact, because there
is no volatility for yt ≥ 1, the process will eventually converge to and stay stuck at the
efficient level yt = 1 (i.e., the sunspot volatility is only temporary in this example). This
entire construction works for any ν > 0. In summary, we have just shown that, given the
response function (10), many equilibria exist with different σx.

As mentioned, the particular construction above only features transitory volatility.
That was only to develop an initial understanding and is easily generalized. For exam-
ple, suppose agents coordinate on the following volatility process for some δ ∈ (0, 1):

σ2
x =


(

ν
y
)2

+ φx
1−y2

y , if y < 1− δ;

0, if y ≥ 1− δ.
(15)

The induced dynamics of yt = ext are

dyt =

 ν2

yt
dt +

√
ν2 + φxyt(1− y2

t )dZt, if yt < 1− δ

φx(y2
t − 1)dt if yt ≥ 1− δ.

(16)

Provided y0 < 1, this process will eventually exit the deterministic region, enter the
volatile region, and remain inefficiently volatile for an infinite amount of time.7 Figure 1
presents a numerical example in which the economy is permanently inefficient (y < 1),
and volatility is not transitory.

The key reason for equilibrium multiplicity is the presence of a risk premium, not the
presence of volatility per se. To see this most obviously, contrast to the linearized version
of the Euler equation, which says

µx = ι− π − ρ.

There is no risk premium term σ2
x . Repeating the above analysis in this linearized world,

7To see all these points, note that the drift is negative when y ∈ (1 − δ, 1); without volatility, the
process exits the region (1− δ, 1) in finite time almost-surely. Upon entering the volatile region (0, 1− δ),
the process can move around but will never reach y = 0, by the same argument established in the text.
Finally, the stationary distribution will additionally have a point mass at y = 1− δ, because the dynamics
induce yt to visit the point 1− δ infinitely often.
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Figure 1: Equilibrium with rigid prices (κ → 0) and dynamics given by equations (15)-(16). The stationary
CDF is computed via a discretized Kolmogorov Forward equation. The resulting stationary CDF features
a mass point at y = 1− δ. Parameters: ρ = 0.02, ν = 0.02, δ = 0.05, φx = 0.1.

(14) would be replaced by

dyt =

φx(y2
t − 1)dt +

√
ν2 + φxyt(1− y2

t )dZt, if yt < 1;

φx(y2
t − 1)dt, if yt ≥ 1.

(17)

The process in (17) behaves like an arithmetic Brownian motion with negative drift for
yt ≈ 0. Consequently, one would conclude from the linearized model that yt → 0
in finite time with positive probability—a nuclear scenario. Thus, the only possible
linearized equilibrium can be yt = 1 at all times. A very aggressive Taylor rule trims
equilibria in this linearized stochastic world, exactly as in the deterministic equilibria. It
is not hard to verify that a similar analysis applies for any arbitrary choice of σx.

The presence of a risk premium provides additional stability to the model. Indeed,
the risk premium σ2

x augments the drift µx, pushing the economy back towards 0. We
just showed this in a particular example with a specific monetary policy. But perhaps
monetary policy could act even more aggressively to destabilize the economy further and
eliminate the risk premium effect. Is there some Taylor rule that can kill these equilibria?
No. Agents can always coordinate on a level of volatility (hence risk premium) that keeps
yt > 0 for any level of aggression in the Taylor rule. The following result is proved in
Appendix A.
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Proposition 3. Suppose prices are rigid (κ → 0). For any Taylor rule (MP) that is increasing in
x, there exist a continuum of sunspot equilibria indexed by x0 and the volatility function σx(x).

Intuitively, the idea behind Proposition 3 is contained in the example construction
above. For any Taylor rule, agents can coordinate on a level of volatility that “undoes”
the effect of interest rates on output gap dynamics. The central bank tries to destabilize
the economy, and agents coordinate on a risk premium that stabilizes it.

Comparing Propositions 2-3, our analysis sharply distinguishes stochastic sunspot
equilibria from their deterministic equilibria. Typically, they are tightly linked: one
often constructs the sunspot equilibria by “randomizing” over deterministic equilibria
as in classic studies (Azariadis, 1981). Here instead, the presence of risk premia means
that stochastic equilibria can have a markedly different character than their deterministic
counterparts.

This result that stability properties can flip in the nonlinear stochastic model is in
contrast to the conventional wisdom regarding such models. For example, Cochrane
(2023) writes

this book is really about the broad determinacy and stability properties of
monetary models. In one sense, the conclusions of these simple models are
likely to be robust, because stability and determinacy depend on which eigen-
values are greater or less than 1. As long as a model modification does not
move an eigenvalue across that boundary, the stability and determinacy con-
clusions are not changed. (Chapter 5.8)

While stability properties may be of some theoretical interest, a practical question to
which we now turn is which policies can help trim or eliminate such sunspot equilibria.

3.2 Risk premium targeting

There is one type of rule that can restore determinacy. Suppose we replace the plain-
vanilla Taylor rule (MP) with

ιt = ρ + Φ(xt, πt)− (α−1{xt<0} + α+1{xt>0})σ
2
x,t. (MP-vol)

The central bank is now targeting not only the output gap but also the risk premium. Al-
though conventional wisdom would suggest that targeting an asset price—which maps
one-to-one into the output gap—suffices to target the risk premium, that is not true here,

14



intuitively because coordination on a fearful equilibrium can raise uncertainty σx,t inde-
pendently, i.e., without affecting xt in the short run. Rule (MP-vol) directly targets the
uncertainty that generates risk premia.

To see how risk premium targeting restores determinacy, substitute rule (MP-vol)
into (IS) and rewrite the resulting dynamics in terms of yt = ext :

dyt = yt

[
Φ(xt, πt)− πt + (1− α(xt))σ

2
x,t

]
dt + ytσx,tdZt, (18)

and where α(x) := α−1{x<0} + α+1{x>0} is the state-dependent responsiveness to the
risk premium. If α− = α+ = 1, then the risk premium vanishes from the drift, and we
are back in a situation where an aggressive response function Φ can trim equilibria by
destabilizing the economy. If α+ > 1 > α−, then the risk premium itself becomes desta-
bilizing: higher levels of σ2

x,t make the drift push xt further away from zero. Therefore, a
modified Taylor rule like (MP-vol), with more aggressive risk premium targeting in bad
times, can always eliminate equilibrium multiplicity. Again, for analytical purposes, we
state this result in the rigid price limit, with the proof in Appendix A.

Proposition 4. Suppose prices are rigid (κ → 0). Suppose exσx(x) remains bounded as x →
−∞. With sufficiently strong risk premium targeting and sufficiently aggressive responsiveness
to the output gap, the modified Taylor rules (MP-vol) ensure that the unique equilibrium is
xt = 0.

The deep difference between the multiplicity of sunspot equilibria and the multiplic-
ity of deterministic equilibria was the presence of a stabilizing risk premium. And this
manifests in a qualitatively distinct policy response to restore determinacy: by targeting
the risk premium, with the interest rate moving more than one-for-one in bad times, the
central bank can use it as a destabilizing nuclear threat.

Remark 3 (Partially-flexible prices). For analytical convenience, Propositions 3-4 are proved
in the rigid price limit. A similar type of analysis could be done with partially-flexible prices,
but it is much more tedious and technical. Here is a sketch of the idea. Aggressive risk premium
targeting (α ≥ 1) reduces the drift of xt, so we have that xt ≤ x̃t, where x̃t follows a related
process with α = 1:

dx̃t =
[
Φ(x̃t, πt)− πt −

1
2

σx(x̃t)
2
]
dt + σx(x̃t)dZt, x̃0 = x0.

As long as x̃t → −∞ in finite time, so does xt. But the analysis of x̃t is already mostly covered by
our previous results. For example, imagine the central bank chooses Φ(x, π) = φx(ex− e−x)+π
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as in equation (10). Then, the dynamics of ỹt = ex̃t are

dỹt = φx(ỹ2
t − 1)dt + ỹtσx(log(ỹt))dZt.

Assuming the function ỹ 7→ ỹσx(log(ỹ)) is well-behaved, one can prove that ỹt hits zero in
finite time with positive probability (because it behaves like an arithmetic Brownian motion with
negative drift as ỹt ≈ 0). This shows that x̃t → −∞ hence xt → −∞ in finite time with positive
probability. Using the technique in Appendix D, this argument can then be extended to a response
function Φ featuring greater than one-to-one response to inflation.

3.3 Feasibility of aggressive Taylor rules

The policy rules suggested by our analysis, while theoretically interesting, are very ag-
gressive. Are such extreme rules credible?

An immediate thought, following Cochrane (2011), is that “blow up the world” nu-
clear threats are generically not credible. If the economy ever followed a path away from
x = 0, could policymakers really commit to sending x → −∞ in finite time?

Another peculiarity is that all the rules advocated above share the property that ιt →
−∞ as xt → −∞. This was necessary, in fact: any policy where ιt remains bounded from
below by ιt ≥ ι cannot trim equilibria. To see this, consider the rigid-price equilibria and
inspect output gap dynamics when ιt is at its lower bound:

dxt =
[
ι− ρ +

1
2

σ2
x,t

]
dt + σx,tdZt, when xt < 0. (19)

In the deterministic case (σx = 0), xt decays at most linearly, so although the non-zero
equilibria may lead to asymptotic explosion, they will not explode in finite time. In
the stochastic case, a sufficiently high level of uncertainty can raise the drift and create
stable stochastic dynamics. (For instance, a constant variance σ2

x > 2(ρ− ι) induces xt

to behave like an arithmetic Brownian motion with positive drift. More generally, any
constant variance is permitted because arithmetic Brownian motions will not diverge in
finite time.) We have just proved the following.

Proposition 5. Suppose prices are rigid (κ → 0). If interest rates are lower bounded, ιt ≥ ι,
then any x0 ≤ 0 corresponds to at least one valid equilibrium.

With a zero lower bound (ZLB), or any lower bound, certain monetary threats are not
credible. We analyze the ZLB case extensively in Appendix E. There, we even generalize
policy by allowing for optimal discretionary monetary policy, yet a tremendous amount
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of equilibrium multiplicity arises once again, precisely because policy is constrained at
the ZLB. In this ZLB case as above, the distinguishing feature of sunspot relative to
deterministic equilibria is the presence of risk premia.

In a world with rate constraints such as the ZLB, what restores determinacy? One
possibility we pursue is the Fiscal Theory of the Price Level (FTPL). In a world where
active monetary policy does not trim equilibria, fiscal policy can even without nuclear
threats. We turn to this issue next.

4 Fiscal Theory

Let us now explore a version of “Fiscal Theory of the Price Level” (FTPL). The idea
here is to propose some fiscal policies that can prune equilibria. Our contribution to
the literature is analysis of FTPL in a nonlinear stochastic model and characterizing its
efficacy in a rigid-price limit.

4.1 Equilibrium with lump-sum taxes and transfers

Let us start with a particularly transparent case: lump-sum taxation with government
transfers to the representative household. Denote the lump-sum taxes levied by τt and
the transfers by ξt, both in real terms. The real primary surplus of the government is
then

St := τt − ξt.

Since the government can pick both taxes and transfers, it can effectively choose St.
Taxes and transfers do not necessarily offset, so the government borrows by issuing

short-term nominally riskless bonds Bt. Later we will generalize to long-term debt. The
flow budget constraint of the government is

Ḃt = ιtBt − PtSt. (20)

The nominal interest rate ιt will be controlled by monetary policy.
Because of the lump-sum nature of the taxes and transfers, there is no impact on the

household optimality conditions. Essentially, Ricardian equivalence holds. Indeed, the
present-value formula for government debt is

Bt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
, (GD)
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where M denotes the real stochastic discount factor process (this is because the transver-
sality condition limT→∞ Et[MTBT/PT] = 0 holds in our representative agent setup).
While the representative household holds the government bonds Bt, it also owes the
government future taxes and is owed future transfers. Therefore, the lifetime budget
constraint of the representative household is

Et

[ ∫ ∞

t

Mu

Mt

WuLu

Pu
du
]
+

Bt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
+ Et

[ ∫ ∞

t

Mu

Mt
Cudu

]
.

By (GD), the lifetime budget constraint is equivalent to the budget constraint without
any debt at all. And so the household Euler equation is still (IS).

For reference, let us restate the IS curve (IS) and Phillips curve (PC) as the following
dynamical system in terms of (xt, πt):

dxt =
[
ιt − πt − ρ +

1
2

σ2
x,t

]
dt + σx,tdZt (21)

dπt =
[
ρπt − κ

( e(1+ϕ)xt − 1
1 + ϕ

)]
dt + σπ,tdZt. (22)

Together with some nominal interest rate rule for ιt and some surplus rule for St, equi-
librium is fully characterized by the government debt valuation (GD) and the dynamical
system (21)-(22). Analogously to Lemma 1, we also require xt to not explode in finite
time, because otherwise this would deliver minus infinite utility to the household.

Our previous results did not have government debt or taxes/transfers. However,
everything we have said until now still holds with fiscal policies, so long as those policies
are “passive” in the language of Leeper (1991). In particular, suppose fiscal policies are
chosen so that equation (GD) always holds. Then, government debt valuation can play
no role in the analysis, and by the Ricardian equivalence property shown above, the
equilibria must be identical to those in Sections 2-3. What happens when fiscal policies
are “active,” as opposed to passive, and thus do provide some equilibrium selection?

4.2 FTPL as equilibrium selection: a first example

Let us now address the question of how fiscal policies trim equilibria.
Consider a fiscal policy with real primary surpluses given by

St = s̄Yt, with s̄ > 0. (23)

This policy is “active” because its real levels are chosen in a way that does not auto-
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matically ensure the government budget constraint holds (e.g., St is independent of the
price level). Such proportional surpluses are also quite natural, in that they arise in the
real world the case of proportional taxes and transfers—although we abstract from the
distortionary effects of such policies.

With this policy, and using (GD) along with the FOC (7), we have

Bt

Pt
= s̄Et

∫ ∞

t
e−ρ(u−t) Yt

Yu
Yudu = ρ−1s̄extY∗.

Since Bt/Pt evolves locally deterministically, this proves that xt also evolves locally de-
terministically. In particular, σx = 0 is required in such an equilibrium with active fiscal
policy. While it is still possible to have inflation volatility σπ 6= 0, such fluctuations have
no real effects. Most strikingly, these results hold for any monetary policy rule and they
would hold even in the rigid-price limit κ → 0!

How come fiscal policies trim equilibria? The typical analysis suggests nominal debt
is the key aspect of FTPL. In a world with inflation-indexed government debt, FTPL
is inoperative and the price level remains indeterminate (see Chapter 8.1 of Cochrane,
2023). In our model with a permanently rigid price level, we effectively have inflation-
indexed debt, and so indeterminacies should remain. As mentioned above, the exact
same math goes through even if κ → 0. So how are indeterminacies trimmed?

The answer is that the government debt valuation equation (GD) is a “no-default”
condition in our rigid price world. Rather than determine the price level, or future
inflation, it says that surpluses must eventually be positive enough to justify the current
debt value. But given the government’s exogenous taxation and spending regime, and
without the flexibility that inflation provides, the only way a government can fulfill
its no-default commitment is if demand takes a particular path. The government debt
valuation equation (GD) thus pins down demand. FTPL is not really a theory of the
price level, but a theory of aggregate demand management.

In fact, “demand management” corresponds to the typical stories told about FTPL.
Cochrane (2023), Chapter 2.3, writes

What force pushes the price level to its equilibrium value? ...If the price
level is too low, money may be left overnight. Consumers try to spend this
money, raising aggregate demand. Alternatively, a too-low price level may
come because the government soaks up too much money from bond sales.
Consumers either consume too little today relative to the future or too little
overall, violating intertemporal optimization or the transversality condition.
Fixing these, consumers again raise aggregate demand, raising the price level.
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The key margin of adjustment in these stories is aggregate demand. The equilibrium
price that reflects this adjustment would be the price level in a frictionless model. But
in models with sticky prices, the price level cannot jump, so the equilibrium adjusts via
either future inflation or current and future output, or both. In our specification for
surpluses, taxes and spending are proportional to aggregate demand, a property which
is then inherited by the debt valuation. And so a necessary feature of a non-volatile debt
valuation is a non-volatile demand.

Before generalizing the results just shown, we note that these effects of fiscal policy
represent a non-trivial pruning of equilibria. The reader may already anticipate this from
our earlier indeterminacy results and from the New Keynesian literature, but to make
absolutely sure, we give an example here.

Example 1. Suppose volatilities are constant, i.e., σx,t = σx and σπ,t = σπ. Let us also use
the linearized Phillips curve, which replaces (1 + ϕ)−1[e(1+ϕ)x − 1] ≈ x in equation (22).
Finally, suppose also that the interest rate rule takes the linear Taylor form (linear MP),
but with an arbitrary target rate ῑ. In this case, the dynamical system (21)-(22) becomes
linear. Defining Ft := (xt, πt)′, we have

dFt = [µ0 +AFt]dt + σdZt,

where

µ0 :=

[
ῑ− ρ + 1

2 σ2
x

0

]
, A :=

[
φx φπ − 1
−κ ρ

]
, and σ :=

[
σx

σπ

]
.

The solution for these linear vector dynamics is

Ft = exp(At)
[

F0 +
∫ t

0
exp(−Au)µ0du +

∫ t

0
exp(−Au)σdZu

]
,

Given a monetary policy rule, the entire family of solutions is indexed by the initial
value F0 and the volatilities σ. Hence, there are a continuum of valid stochastic equilibria
without active fiscal policy. Among these, FTPL picks the ones that have σx = 0.

It is best to pair passive monetary policy with active fiscal policy (Leeper, 1991).
To see this in our linear example, recall that the eigenvalues of A are both positive
when φx > 0 and φπ > 1. In such case, the solution for Ft is necessarily explosive
asymptotically. An interest rate peg works better. For instance, putting ῑ = ρ and
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φx = φπ = 0 implies

dFt =

[
0 −1
−κ ρ

]
Ftdt +

[
0

σπ

]
dZt,

which has one stable eigenvalue. Even better is to use φx < −ρ and φπ < 1 so that A
has two stable eigenvalues. Under this monetary policy, the equilibria picked by FTPL
will be stable and non-explosive.

In what follows, we generalize these results. We will explore (i) other exogenous
surplus processes; (ii) non-proportionality to output; (iii) fiscal “rules”; (iv) long-term
debt; and (v) non-logarithmic utility. In every case, the same equilibrium selection results
obtain for FTPL.

4.3 FTPL with more general exogenous surpluses

Our first generalization uses St = stYt, where

dst = λ(s̄− st)dt + σs,tdZs
t , (24)

and where Zs is independent of the sunspot shock Z, and σs,t is an arbitrary potentially
stochastic volatility. Surpluses are thus still exogenous but no longer a constant fraction
of output.

The present-value equation (GD) still holds, in which case

Bt

Pt
= ρ−1extY∗Et

[ ∫ ∞

t
ρe−ρ(u−t)sudu

]
= ρ−1extY∗Et

[ ∫ ∞

t
ρe−ρ(u−t)

(
e−λ(u−t)st + (1− e−λ(u−t))s̄ +

∫ u

t
σs,t′e−λ(u−t′)dZs

t′

)]
= ρ−1extY∗

[ ρ

ρ + λ
st +

λ

ρ + λ
s̄
]
. (25)

Again, since Bt/Pt has no loading on the sunspot shock Zt, and neither does st, we
necessarily have that xt is independent of Zt. Again, this holds for any monetary policy
rule and it is unrelated to inflation dynamics.

In this world, the real economy is volatile, however. From equation (25), we have

Covt[dxt, dZs
t ] = −

ρσs,t

ρst + λs̄
.
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With its stochastic spending needs, the government introduces demand volatility. Absent
other considerations, it is optimal for the government to minimize this volatility and
set σs,t = 0. Of course, risk-management considerations must be balanced against the
political realities of taxation and spending, so the true advice is to minimize σs to the
extent possible.

4.4 FTPL without proportionality

Our second generalization examines a more general dependence of surpluses on out-
put to make sure that the strict proportionality of St = s̄Yt to output is not driving
equilibrium selection. Suppose surpluses are now given by

St = ζ(xt)Yt, with ζ(·) > 0. (26)

Repeating the analysis from before, the present-value equation (GD) now says

Bt

Pt
= ρ−1extY∗Et

[ ∫ ∞

t
ρe−ρ(u−t)ζ(xu)du

]
.

The key object is Et[
∫ ∞

t ρe−ρ(u−t)ζ(xu)du]. To analyze this object most transparently, let
us inspect the rigid price limit (κ → 0) so that the dynamics of x are autonomous, hence

f (xt) = Et

[ ∫ ∞

t
ρe−ρ(u−t)ζ(xu)du

]
for some f (·). From the pre-determined nature of Bt/Pt, we will have σx = 0 except
potentially in the case that f (xt) is proportional to e−xt . But such proportionality only
arises in the knife-edge case that the interest rate rule is ιt ∝ ext ζ(xt).8

For example, if the total surplus is independent of output, corresponding to ζ(x) =
s̄e−x, then anything other than an interest rate peg will require σx = 0 in equilibrium. If
total surplus is increasing in output but less than one-for-one, corresponding to ζ(x) =
s̄e−(1−ε)x, then every interest rate rule eliminates sunspot volatility except ι(x) ∝ eεx,
a knife-edge rule which has not only a particular functional form but also a particular
sensitivity to the output gap.

8To see this, note that f solves the differential equation

0 = ρζ − ρ f + [ι− ρ +
1
2

σ2
x ] f ′ +

1
2

σ2
x f ′′

Guess that f (x) = Ke−x, as required for indeterminacy of σx. Plugging this back into the ODE yields
ι(x) = K−1ρexζ(x).
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4.5 FTPL with fiscal rules

The previous section allowed some notion of a “fiscal rule” where surplus levels re-
sponded to the output gap. Our next generalization allows surpluses to respond to
endogenous variables in changes, similarly to the interest rate rule. Suppose again that
St = stYt, where

dst =
(

θxxt + θππt

)
dt + σs,tdZs

t , (27)

where again Zs is independent of the sunspot shock Z. Suppose the interest rate rule is
given by the linear Taylor rule (linear MP).

Repeating the debt valuation computation from (GD), we obtain

Bt

Pt
= ρ−1extY∗

[
st + f (xt, πt)

]
, (28)

where f (xt, πt) := Et

[ ∫ ∞

t
ρe−ρ(T−t)(sT − st)dT

]
.

The reason this expectation can be written as a function solely of xt and πt is that

Et[sT − st] =
∫ T

t
Et
(
θxxu + θππu

)
du,

and because the drifts of (xt, πt) are autonomous (this is because both the Taylor rule
and surplus rule solely depend on xt and πt).

Even without computing the function f , by applying Itô’s formula to (28) and exam-
ining the loading on the sunspot shock dZt, we can say that

σx,t = −
∂π f (xt, πt)

st + f (xt, πt) + ∂x f (xt, πt)
σπ,t. (29)

Therefore, output volatility inherits inflation volatility, multiplied by a factor capturing
the sensitivity of future surpluses, through their endogeneity, to current sunspot shocks.
For instance, in the case of fully-rigid prices (κ → 0), we necessarily have σπ = 0 and
hence σx = 0 generically.

To make further progress, let us return to our linear Example 1. To keep the algebra
simple, specify ῑ = ρ + 1

2 σ2
x so that µ0 = 0. Then, in that linear environment, we may

compute

f (x, π) =

[
θx

θπ

]
· Â
[

x
π

]
,
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where Â := (ρI −A)−1 is the resolvent matrix of A. Substituting into equation (29), we
see that no equilibrium of this linear form can generically exist unless σx = σπ = 0.9

4.6 FTPL with long-term debt

Our next generalization replaces short-term debt with long-term debt. Such an extension
is naturally of interest because short-term debt prices can never respond to shocks (i.e.,
their interest rate is pre-determined). This may lead one to think that short-term debt
mechanically, in a knife-edge sense, rules out self-fulfilling demand volatility.

To fix ideas and keep things tractable, let us assume that debt has a constant expo-
nential maturity structure. Per unit of time dt, a constant fraction ωdt of outstanding
debts mature. The per-unit price of this debt is thus

Qt = Et

[ ∫ ∞

t

MT

Mt

Pt

PT
ωe−ω(T−t)dT

]
. (30)

Note that this debt is nominal and thus priced using the nominal SDF M/P. The total
outstanding real value of debt is then QtBt/Pt.

For concreteness, we will combine this long-term debt setup with proportional pro-
cess for surpluses St = s̄Yt. (Although the following discussion will apply for any sur-
plus process that previously led to the result σx = 0.) Recall result (25) from that section
that the total real value of the government debt portfolio equals ρ−1extY∗[ ρ

ρ+λ st +
λ

ρ+λ s̄].
Consequently, we must have

σQ,t = σx,t, (31)

where σQ is the loading of log(Qt) on the sunspot shock dZt. In other words, the self-
fulfilling demand shocks must be absorbed by long-term debt prices. The key question
is whether the pricing of long-term debt is consistent with this absorption.

To see that debt pricing is generically inconsistent with (31), consider first an interest
rate peg, ιt = ῑ. In that case, the nominal SDF takes the form

Mt

Pt
= exp

[
− ῑt− 1

2

∫ t

0
σ2

x,udu−
∫ t

0
σx,udZu

]
.

9Indeed, define the row vector Θ̂ := (θx, θπ)Â. The term “generically” refers to the fact that Θ̂ has two
non-zero entries except in knife-edge cases of the parameters. Then, from equation (29), which says that
(s + Θ̂(x, π)′ + Θ̂1)σx + Θ̂2σπ = 0, we have that σx = σπ = 0.
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Using the notation Ẽ for the risk-neutral expectation, the debt price is then

Qt = Ẽt

[ ∫ ∞

t
ωe−(ῑ+ω)(T−t)dT

]
=

ω

ῑ + ω
.

Debt prices are constant, σQ = 0, and cannot absorb any demand volatility!
We can allow nominal interest rates to vary, potentially endogenously in response

to x and π. To see this, let us generalize this example to have the linear Taylor rule
(linear MP). In such case, equation (31) for the sunspot volatility requires the debt price
to take the form Q(x, π) = K(π)ex for some function K that is independent of x (and
furthermore, if K depends on π, then we must have σπ = 0). But this debt price function
is inconsistent with equation (30).10 More broadly, there is an inconsistency between
(31)—which arises due to the valuation of the overall government debt portfolio—and
equation (30) that prices each debt contract, unless sunspot volatility is nil.

4.7 FTPL with general CRRA utility

Our final generalization replaces log utility with general CRRA u(c, l) = c1−γ

1−γ −
l1+ϕ

1+ϕ . This
extension is of interest because the pricing formulas with log utility almost mechanically
imply a non-stochastic demand. In particular, the SDF with log utility is related to the
inverse of output, and so the present-value of future surpluses can have no contribution
from “discount rate fluctuations.”

In this CRRA world, the IS curve (IS) and hence dynamics (21) is replaced by

dxt =
[rt − ρ

γ
+

1
2

γσ2
x,t

]
dt + σx,tdZt, (32)

where rt = ιt − πt is the real rate. The real SDF is thus given by Mt = e−ρtY−γ
t . Besides

this CRRA extension, let us return to an environment with short-term debt and the origi-

10Pricing equation (30) in differential form reads:

−ω + ι + µQ +
ω

Q
− σQσx = 0,

where (µQ, σQ) are the geometric drift and diffusion of Q. If Q(x, π) = K(π)ex (and σπ = 0 whenever

K′(π) 6= 0), then we have µQ = µx +
1
2 σ2

x + K′(π)
K(π)

µπ and σQ = σx. Using the expressions in (21)-(22) for
(µx, µπ), the differential pricing equation then becomes

−ω− ρ− π +
K′(π)

K(π)

[
ρπ − κ(

e(1+ϕ)x − 1
1 + ϕ

)
]
+

ω

K(π)
e−x = 0

This latter equation cannot possibly hold for all x, which contradicts the proposed sunspot equilibrium.
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nal surplus specification St = s̄Yt, although the following argument is easily generalized
to the AR(1) example (24).

There are two formulas for the value of government debt. The first is (GD), which we
have been using extensively. The second discounts surpluses with the ex-post realized
returns on the debt, i.e., in the case of short-term debt,

Bt

Pt
=
∫ ∞

t
e−
∫ T

t ruduSTdT. (33)

If (33) holds path-by-path it also holds in expectation. Specializing these two formulas
to the proportional surplus process St = s̄Yt, we have, respectively

(from (GD))
Bt

Pt
= s̄YtEt

[ ∫ ∞

t
e−ρ(T−t)e(1−γ)(xT−xt)dT

]
(from (33))

Bt

Pt
= s̄YtEt

[ ∫ ∞

t
e−
∫ T

t ruduexT−xt dT
]

Using the equilibrium output gap dynamics from (32), these two formulas become

(from (GD))
Bt

Pt
= s̄YtEt

[ ∫ ∞

t
e−

ρ
γ (T−t)e−

γ−1
γ

∫ T
t rudue

γ
2
∫ T

t σ2
x,udu+

∫ T
t σx,udZu e−

γ2
2
∫ T

t σ2
x,udu−γ

∫ T
t σx,udZu dT

]
(from (33))

Bt

Pt
= s̄YtEt

[ ∫ ∞

t
e−

ρ
γ (T−t)e−

γ−1
γ

∫ T
t rudue

γ
2
∫ T

t σ2
x,udu+

∫ T
t σx,udZu dT

]
These two formulas are identical except for the martingale e−

γ2
2
∫ T

t σ2
x,udu−γ

∫ T
t σx,udZu that

is present in the first expression—this martingale is used to convert from the objective
probability to the risk-neutral probability. Generically, then, the two formulas can only
coincide if this change-of-measure is degenerate (in which case σx ≡ 0) or if the integrand
of the second formula is deterministic (in which case σx ≡ 0 is also required). Either way,
we cannot have sunspot demand volatility.

As before, this argument does not hinge on the monetary policy rule, nor does it
depend on the inflation process (and in particular holds in the rigid-price limit κ → 0).
The proof above, although different than the previous methods, was more transparent
and simple in this case. For completeness, we note that we can also arrive at the same
conclusion by analyzing (GD) alone and proving directly that its solution is generically
inconsistent with σx 6= 0.11

11For σx 6= 0 to prevail, it must be that the present value Et[
∫ ∞

t e−ρ(T−t)e(1−γ)(xT−xt)dT] = e−xt Kt, where
Kt does not have sunspot fluctuations. In the case of a Taylor rule that only depends on (x, π), the joint
dynamics of (xt, πt) are autonomous, and so Kt = K(πt) for some function K (in addition, we have σπ = 0
if K′ 6= 0). Then, rewriting the present value in differential form, and then using the dynamics (21)-(22),
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4.8 Summary of FTPL

Using various examples, we have just shown that FTPL generically kills real sunspot
volatility in New Keynesian models, corresponding to σx = 0. (The question of whether
the equilibrium is unique overall is a question we do not address here.) This type of
finding is consistent with conventional wisdom about the power of FTPL as a selection
mechanism, and so one can think of our results as generalizing this conventional wisdom
to a fully nonlinear, stochastic version of the New Keynesian model.

5 Conclusion

We have shown that macroeconomies with nominal rigidities—New Keynesian models—
may inherently permit a novel type of sunspot volatility that appears only in the non-
linear version of the model. The distinguishing features of our volatility are that it is
self-fulfilled by the presence of risk premia and can arise only in recessionary times.
While monetary policy has almost no power to trim these volatile equilibria, active fiscal
policies generically do so. Our results broadly support fiscal policies as effective tools
for aggregate demand and risk management, perhaps moreso than monetary policies.
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Appendix:
Fear, Indeterminacy, and Policy Responses

Paymon Khorrami and Fernando Mendo
March 11, 2024

A Proofs

Proof of Proposition 3. Since inflation is rigid, consider any Taylor rule with target
rate ῑ and response function Φ(x) that is increasing in x. The dynamics of xt are given
by

µx = ῑ− ρ + Φ(x) +
1
2

σ2
x .

The dynamics of yt = ext are given by

µy = y[ῑ− ρ] + yΦ(log(y)) + yσ2
x .

Specify volatility by, for any ν > 0 and δ ∈ (0, 1),

σ2
x =

max
[
0,
(

ν
y
)2 −Φ(log(y))

]
, if y < 1− δ;

0, if y ≥ 1− δ.
(A.1)

Since Φ(·) is increasing and continuous, we may re-write (A.2), for some δ̂ > 0 deter-
mined by the unique solution to ( ν

1−δ̂
)2 = Φ(log(1− δ̂)), as

σ2
x =


(

ν
y
)2 −Φ(log(y)), if y < 1−max(δ, δ̂);

0, if y ≥ 1−max(δ, δ̂).
(A.2)

Consequently, an identical argument applies as in the text. In particular, the only differ-
ence is the term y[ῑ− ρ] in the drift, but this term vanishes, hence yt still behaves like a
Bessel(3) process, asymptotically as y→ 0.

Proof of Proposition 4. It suffices to prove the proposition in the case α− = α+ = 1,
because when α− > 1 > α+, the drift of dxt is increased (decreased) when xt is positive
(negative). And hence the dynamics push xt further away from zero than they would in
the case α− = α+ = 1. (Formally, standard diffusion comparison theorems imply that |xt|
will be forever further from zero, almost surely, than it would in the case α− = α+ = 1.)

30



If α− = α+ = 1, then the dynamics of yt = ext in the rigid-price limit are given by

dyt = ytΦ(log(yt))dt + ytσx(log(yt))dZt

Recall the assumption that the volatility ytσx(log(yt)) remains bounded as yt → 0. Write
σ̄ := limy→0 yσx(log(y)). Choose Φ(x) = φx

2 (ex − e−x). Then, asymptotically as y → 0,
the drift of yt is equal to −1 and the volatility equal to σ̄. This asymptotic behavior is
exactly identical to an arithmetic Brownian motion. Hence, yt → 0 in finite time with
positive probability. This cannot be an equilibrium, and so we must have σx = 0 when
y < 1. By examining the dynamics of ỹt := 1/yt,

dỹt = −ỹt[Φ(− log(ỹt)) + σx(− log(ỹt))
2]dt− ỹtσx(− log(ỹt))dZt,

we can argue analogously that ỹt → 0 in finite time with positive probability. Together,
these arguments imply the unique equilibrium is yt = 1, hence xt = 0 forever.

B Inflation Dynamics under Rotemberg

Here, we generalize the sticky-price model of Rotemberg (1982) to our environment.
Since firms in our economy are ex-ante identical, they will have identical utilization
and price-setting incentives, allowing us to study a representative firm’s problem and a
symmetric equilibrium.

To set up the representative intermediate-goods-producer problem, let lt denote the
firm’s hired labor, at some equilibrium wage Wt. The firm produces yt = lt. The firm
makes its price choice pt, internalizing its demand yt = (pt/Pt)−εYt, where Pt and Yt

are the aggregate price and output. This demand curve comes from an underlying
Dixit-Stiglitz structure with CES preferences (with substitution elasticity ε > 1) and
monopolistic competition in the intermediate goods sector.

Letting Mt denote the real SDF process, the representative firm solves

sup
p,l

E
[ ∫ ∞

0
Mt

( pt

Pt
yt −

Wtlt
Pt
− 1

2η

(dpt

pt

)2Yt

)
dt
]

(B.1)

subject to yt = (pt/Pt)
−εYt (B.2)

yt = lt (B.3)

The quadratic price adjustment cost in (B.1) has a penalty parameter η. As η → 0 (η →
∞), prices become permanently rigid (flexible). We assume that this price adjustment
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cost is purely non-pecuniary for simplicity (this means that adjustment costs do not
affect the resource constraint). Alternatively, we could redistribute these adjustment
costs lump-sum to the representative household.

The firm’s optimal price sequence solves a dynamic optimization problem. Substitut-
ing the demand curve from (B.2) and the production function from (B.3), we may rewrite
problem (B.1) as

sup
ṗ

Et

[ ∫ ∞

t

MsYs

MtYt

(( ps

Ps

)1−ε − Ws

Ps

( ps

Ps

)−ε − 1
2η

( ṗs

ps

)2
)

ds
]
.

Furthermore, note that in the log utility model used in the text, we have MtYt = e−ρt.
Letting J denote this firm’s value function, the HJB equation is

0 = sup
ṗt

{( pt

Pt

)1−ε − Wt

Pt

( pt

Pt

)−ε − 1
2η

( ṗt

pt

)2 − ρJt +
1
dt

Et
[
dJt
]}

The firm value function follows a process of the form

dJt = [µJ,t + ṗt
∂

∂p
Jt]dt + σJ,tdZt,

where µJ,t and σJ,t are only functions of aggregate states (not the individual price). The
only part that the firm can affect is ṗt

∂
∂p Jt. Plugging these results back into the HJB

equation and taking the FOC, we have

0 = − 1
η

( ṗt

pt

) 1
pt

+
∂

∂p
Jt (B.4)

Differentiating the HJB equation with respect to the state variable pt, we have the enve-
lope condition

(ε− 1)
( pt

Pt

)−ε 1
Pt
− ε

Wt

Pt

( pt

Pt

)−ε−1 1
Pt

=
1
η

( ṗt

pt

)2 1
pt
− ρ

∂

∂p
Jt +

1
dt

Et
[
d
( ∂

∂p
Jt
)]

, (B.5)

where the last term uses the stochastic Fubini theorem. Combining equations (B.4) and
(B.5), we have

η(ε− 1)
( pt

Pt

)−ε 1
Pt
− ηε

Wt

Pt

( pt

Pt

)−ε−1 1
Pt

=
( ṗt

pt

)2 1
pt
− ρ
( ṗt

pt

) 1
pt

+
1
dt

Et
[
d
(( ṗt

pt

) 1
pt

)]
(B.6)

At this point, define the firm-level inflation rate πt := ṗt/pt, note that Et
[
d
(
πt

1
pt

)]
=
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1
pt

Et[dπt]− 1
pt

π2
t dt, and use the symmetry assumption pt = Pt in (B.6) to get

η(ε− 1)− ηε
Wt

Pt
= −ρπt +

1
dt

Et[dπt]. (B.7)

Equation (B.7) is the continuous-time stochastic Phillips curve, with πt interpreted also
as the aggregate inflation rate (given a symmetric equilibrium).

Finally, note that the firm’s optimization problem also requires the following transver-
sality condition (see Theorem 9.1 of Fleming and Soner (2006)):

lim
T→∞

Et[MTYT JT] = 0.

However, since the optimality condition (B.6) is independent of J, the transversality
condition becomes irrelevant (i.e., it is only a boundary condition on the HJB equation
to verify optimality, but does not discipline aggregate inflation).

C Nonlinear Phillips Curve

This section briefly explores the nonlinear Phillips curve, in contrast the linearized ver-
sion used throughout the paper. We will do this only in the context of deterministic
equilibria, for simplicity. For convenience, we repeat this nonlinear equation here:

π̇t = ρπt − κ
( e(1+ϕ)xt − 1

1 + ϕ

)
. (C.1)

We also repeat the IS curve after substituting the linear Taylor rule with target rate ῑ = ρ:

ẋt = φxxt + (φπ − 1)πt. (C.2)

A deterministic equilibrium in this environment is (xt, πt) that satisfy (C.1)-(C.2).
The following result shows that the nonlinearity of the Phillips curve does not trim

deterministic equilibria nor changes the steady state solution. In other words, the result
of Proposition 1 is unchanged.

Proposition C.1. Consider the system (C.1)-(C.2) with φx > 0 and φπ > 1. Then, any initial
pair (x0, π0) is consistent with a deterministic equilibrium. Nevertheless, (xt, πt) = (0, 0)
remains the unique steady state and it is locally unstable.
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Proof of Proposition C.1. Define f (x) := (1 + ϕ)−1[e(1+ϕ)x − 1]. From (C.1)-(C.2), we
have

e−ρtπt − π0 = −κ
∫ t

0
e−ρs f (xs)ds (C.3)

e−φxtxt − x0 = (φπ − 1)
∫ t

0
e−φxsπsds. (C.4)

Substituting (C.3) into (C.4) and integrating, we have

e−φxTxT − x0 = (φπ − 1)
∫ T

0
e−φxt

[
eρtπ0 − κeρt

∫ t

0
e−ρs f (xs)ds

]
dt

= (φπ − 1)
[( e(ρ−φx)T − 1

ρ− φx

)
π0 − κ

∫ T

0

∫ T

s
e(ρ−φx)te−ρs f (xs)dtds

]
= (φπ − 1)

[( e(ρ−φx)T − 1
ρ− φx

)
π0 − κ

∫ T

0

( e(ρ−φx)(T−s) − 1
ρ− φx

)
e−φxs f (xs)ds

]
.

(C.5)

This expression evidently holds for ρ 6= φx, but is also continuous in the ρ = φx limit,
since eat−1

a → t as a → 0. Using the fact that f (x) ≥ −(1 + ϕ)−1, and the fact that
eat−1

a > 0 for any a and all t > 0, we have the inequality

∫ T

0

( e(ρ−φx)(T−s) − 1
ρ− φx

)
eφx(T−s) f (xs)ds ≥ − 1

1 + ϕ

1
ρ− φx

[ eρT − 1
ρ

− eφxT − 1
φx

]
Using this in (C.5), we obtain

xT ≤ eφxT
[

x0 + (φπ − 1)
( e(ρ−φx)T − 1

ρ− φx

)
π0

]
+

(φπ − 1)κ
1 + ϕ

1
ρ− φx

[ eρT − 1
ρ

− eφxT − 1
φx

]
so that xT can only increase upward sub-exponentially in time. This proves that xt does
not diverge upward in finite time.

On the other hand, assume leading to contradiction that xt diverged to −∞ by some
finite time T. By path-continuity of x, we would then have supt∈[0,T] xt ≤ x̄ for some
finite x̄, and so f (xt) ≤ f̄ := (1+ ϕ)−1[e(1+ϕ)x̄ − 1]. Returning to equation (C.5), we then
have

xT ≥ eφxT
[

x0 + (φπ − 1)
( e(ρ−φx)T − 1

ρ− φx

)
π0

]
− (φπ − 1)κ f̄

1
ρ− φx

[ eρT − 1
ρ

− eφxT − 1
φx

]
The right-hand-side does not diverge in finite time, a contradiction.
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This proves that xt does not explode in finite time. From (C.3), we also have that πt

does not explode in finite time.
Finally, from (C.1)-(C.2), the steady state solves

−φxx = (φπ − 1)κρ−1
( e(1+ϕ)x − 1

1 + ϕ

)
The two sides of this equation have opposite slopes in x, so the unique solution is x = 0.
This then proves that the unique steady state is (x, π) = (0, 0).

D Nuclear Taylor Rule with Inflation

Here, we extend the analysis of the “nuclear Taylor rule” (10) to allow for a more general
responsiveness to inflation. Suppose the monetary rule is a target rate ῑ = ρ and a
response function

Φ(x, π) =
φx

2
(ex − e−x) + φππ, φx > 0, φπ > 1. (D.1)

We will show that this entire class of Taylor rules leads to the unique deterministic
equilibrium xt = 0, thus generalizing Proposition 2.

Under this rule, the dynamical system for (xt, πt) is

π̇t = ρπt − κ f (xt) (D.2)

ẋt =
φx

2
(ext − e−xt) + (φπ − 1)πt (D.3)

where f (x) := (1 + ϕ)−1[e(1+ϕ)x − 1].

Proposition D.1. Consider the system (D.2)-(D.3) with φx > 0 and φπ > 1. Then, (xt, πt) =

(0, 0) is the unique equilibrium.

Proof of Proposition D.1. Suppose the solution (xt(φπ), πt(φπ))t≥0 associated to some
φπ > 1 (which is unique prior to an explosion by the standard ODE uniqueness the-
orem) did not explode in finite time. In that case, because the solution is contin-
uous in φπ (again, standard ODE theorems ensure this), it follows that the solution
(xt(φ̃π), πt(φ̃π))t≥0 associated with φ̃π < φπ also does not explode in finite time. Con-
tinuity requires this: otherwise, the two solutions would be infinitely far apart at some
finite time T when one of the solutions does explode. But Proposition 2 has already
shown that (xt(1), πt(1))t≥0 is explosive in finite time, a contradiction.
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E Zero Lower Bound

Let us address the fact that a zero lower bound (ZLB) constrains monetary policy. To
simplify the exposition, we work exclusively in the rigid-price limit κ → 0, and so
inflation is zero (πt = 0) and the nominal rate is equal to the real rate (ιt = rt). To make
matters interesting, we will assume that monetary policy aims to achieve the flexible-
price allocation whenever possible, but they are subject to the ZLB rt ≥ 0.

In particular, monetary authorities set the nominal rate (hence the real rate) to im-
plement xt = 0 whenever possible, subject to the ZLB. This is the same idea behind the
policy in Caballero and Simsek (2020), who consider a version of the New Keynesian
model with risky capital. Under this policy rule, zero output gap prevails whenever the
real rate is positive, and a negative output gap must arise at the ZLB (because recall
raising the interest rate will lower output):

0 = min[−xt, rt]. (E.1)

In Lemma E.1 below, we show that within the class of equilibria we study, (E.1) is the
outcome of optimal discretionary monetary policy (i.e., monetary policy without com-
mitment to future policies). More deeply, the implementation of xt = 0 “whenever pos-
sible” itself requires some kind of commitment to off-equilibrium threats, for instance
to reduce interest rates if xt ever fell below 0—this is the standard notion of “active”
monetary policy that pervades the New Keynesian literature, but it becomes somewhat
hidden by the outcome (E.1). In that sense, the rule (E.1) actually embeds some amount
of commitment power.

Lemma E.1. Optimal discretionary monetary policy—which maximizes (1) subject to rt ≥ 0,
optimal household and firm decisions, and its own future decisions—implements (E.1).

Proof of Lemma E.1. Since there is no upper bound on interest rates, the central bank
can always threaten rt high enough to ensure that xt ≤ 0. Since positive output gaps
are undesirable, they will implement this. Then, we can restate the problem as: optimal
discretionary monetary policy seeks to pick a rt to maximize (1), subject to (IS), xt ≤ 0,
the ZLB rt ≥ 0, and subject to its own future decisions.

We will discretize the problem to time intervals of length ∆ and later take ∆ → 0.
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Noting that Ct = extY∗, the time-t household utility is proportional to

Et

[ ∫ ∞

0
ρe−ρsxt+sds

]
≈ ρxt∆ + Et

[ ∫ ∞

∆
ρe−ρsxt+sds

]
≈ −ρ∆Et[xt+∆ − xt] + Et

[ ∫ ∞

∆
ρe−ρsxt+sds

]
+ ρ∆Et[xt+∆]︸ ︷︷ ︸

taken as given by discretionary central bank

.

The term with brackets underneath is taken as given by the time-t discretionary central
bank, because it involves expectations of future variables that the future central bank can
influence.

Thus, taking ∆→ 0, the time-t central bank solves

min
rt≥0

Et[dxt]

subject to the constraints

rt = ρ + µx,t −
1
2

σ2
x,t

xt ≤ 0 and if xt = 0 then µx,t = σx,t = 0.

Note that σx,t is independent of policy when xt < 0. There are two cases. If xt = 0,
then the constraints imply that rt = ρ. If xt < 0, we may substitute the dynamics of xt

(replacing µx from the first constraint) to re-write the problem as

min
rt≥0

[rt − ρ +
1
2

σ2
x,t].

Since σx is taken as given, the optimal solution is rt = 0. Thus, the discretionary central
bank optimally sets

rt = ρ1{xt=0}.

In other words, the complementary slackness condition xtrt = 0 holds, which together
with rt ≥ 0 and xt ≤ 0 implies (E.1).

The entire model dynamics are characterized by the IS curve (IS) with volatility when
rt = 0 and xt < 0 and not otherwise, i.e.,

µx,t = (−ρ +
1
2

σ2
x,t)1{xt<0}. (E.2)

The entire previous analysis from Section 3 goes through with φx = 0 and ῑ = 0.
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However, just to see a different construction, let y = ex and suppose

σx =

ν(1− y), if y < 1;

0, if y ≥ 1.
(E.3)

(If we had set σx = ν/y when y < 1, then the argument would be identical to that in
Section 3.) In this case, the dynamics of yt are

dyt = yt

[
− ρ + ν2(1− yt)

]
1{yt<1}dt + yt(1− yt)ν1{yt<1}dZt. (E.4)

This process never reaches y = 0, since it behaves asymptotically as a geometric Brow-
nian motion as yt → 0. Thus, we have constructed a valid equilibrium with volatility at
the ZLB.

If agents expect volatility to be sufficiently countercyclical, then the volatility is for-
ever recurrent. To see this, suppose ν2 > 2ρ so that log(yt) has a positive drift as yt → 0.
By standard arguments, yt will not concentrate mass near y = 0 in the long run. On the
other hand, the drift of log(yt) is negative as yt → 1, and its volatility vanishes, so yt will
not ever reach y = 1 either. There will be a non-degenerate ergodic distribution of yt,
hence volatility σx,t. This economy is persistently demand-driven and stuck at the ZLB.

By adding coordinated jumps in σx, we believe we can make the equilibria even more
realistic. Initially, volatility can be non-existent and the economy sitting at xt = 0. All of
a sudden, fear can rise sufficiently that xt must jump to negative territory. Because of the
ZLB, it is not possible for monetary policy to correct this fear-driven recession. The rise
in volatility essentially forces r to the ZLB, similar to Caballero and Simsek (2020). Once
xt < 0, volatility can vary continuously, and sunspot shocks will be moving demand.
Imagine at some later time T, demand reverts back to the flexible-price outcome xT = 0.
At some still later date, volatility can re-emerge. In this way, we can construct equilibria
that alternate between efficiency and inefficient, self-fulfilling, volatile recessions.
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