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Abstract

Contrary to conventional wisdom, this paper shows that Taylor rules fail to eliminate
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When macroeconomists address topics of inflation, aggregate demand stimulus, and
monetary policy, they often look to the New Keynesian model for advice. Despite its
role as the dominant policy paradigm, this model is plagued by well-known equilibrium
multiplicities that influence its answers to those standard questions. Currently, there is
no consensus on how equilibria are selected and which of the many survive. Among the
many alternatives, two popular selection mechanisms are an aggressive monetary policy
that responds sufficiently to output and inflation (e.g., the “Taylor principle”) versus an
active tax and spending policy (e.g., the “Fiscal Theory of the Price Level” or FTPL).
According to conventional wisdom, both the Taylor principle and FTPL select unique
equilibria, which are distinct but look “observationally equivalent” to an econometrician
who cannot distinguish monetary and fiscal shocks (Cochrane, 2023, Chapter 16.6).

This paper overturns these conventional wisdoms about equilibrium selection in New
Keynesian models. Our innovation is to study the textbook New Keynesian model in its
true nonlinear, stochastic form—i.e., without linearization. Our main result is that the
Taylor principle and FTPL are not alternatives to equilibrium selection: the Taylor prin-
ciple permits a rich class of self-fulfilling dynamics, specifically related to recessionary
risk premia, that are not permitted by FTPL. And hence, the equilibria under the Taylor
principle are generally not “observationally equivalent” to the FTPL equilibria.

To start, we construct a new class of equilibria that no Taylor rule, no matter how
aggressive, can completely eliminate. The key novelty that arises in a nonlinear, stochas-
tic equilibrium is the presence of a risk premium in agents’ Euler equation (“IS curve”).
The idea behind multiplicity is as follows. Suppose uncertainty about future demand,
hence output, rises in a recession. With higher uncertainty, agents do more precaution-
ary savings, which raises the growth rate of aggregate demand. Therefore, the presence
of countercyclical uncertainty can push demand back toward steady state after an ini-
tial decline into recession. Monetary policy tries to rule out such equilibria by lowering
interest rates during recessions, provoking intertemporal substitution in an attempt to
undo the desire for precautionary savings. By doing so, monetary policy tries to “desta-
bilize” the economy in order to select an equilibrium. However, this battle between
uncertainty and monetary policy makes clear that no policy rule can eliminate all mul-
tiplicity: given a certain level of monetary aggressiveness, agents can always coordinate
on a sufficiently countercyclical uncertainty such that precautionary savings dominates
intertemporal substitution.

Uncertainty being indeterminate is, in a deep sense, distinct from sunspot fluctua-
tions. For analytical simplicity, we do present our baseline results in a New Keynesian
model without any fundamental uncertainty, and so any volatility is necessarily tied to
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extrinsic uncertainty. However, as we go on to show, uncertainty can alternatively be
linked to a fundamental shock: specifically, we also examine a monetary policy shock
and the indeterminacy of responsiveness to that shock. The deep point is that uncer-
tainty, and its corresponding precautionary savings, is not pinned down—the shock
from which uncertainty stems is less important.

Indeterminacies of the type we study arise only in recessions. If uncertainty were
to rise in a boom, its induced precautionary savings would propel demand to ever-
higher levels in a way that is unsustainable and thus ruled out as an equilibrium. Our
indeterminacy is also deeply about the real economy and not just nominal. Indeed, the
uncertainty we refer to is about real demand, so any indeterminacy is real, in contrast to
several theories of self-fulfilling inflations or deflations. In particular, all of our results
hold even in (but not exclusively in) the rigid-price limit.

The new equilibria we unveil are not “strange” or special. First, all of them are ratio-
nal expectations equilibria, so there is no sense that one of them is easier to coordinate
on than any other one. Furthermore, the fact that our equilibria do not require sunspot
shocks means that no additional information is required by agents to coordinate on dif-
ferent levels of uncertainty. Second, our equilibria are non-explosive, meaning they do
not require any hyper-inflations or economic collapse. For this reason, our multiplicity
is very different from the hyper-inflationary indeterminacies raised by Cochrane (2011).
Finally, our equilibria form a large class, in the sense that the economic primitives place
very few restrictions on the uncertainty functions that can emerge. In this sense, a lot of
room is left for coordination to matter.

After examining conventional Taylor rules targeting the output gap and inflation, we
proceed to study unconventional monetary rules that directly target the risk premium.
We find that this can work: sufficiently-strong risk-premium targeting (i.e., an interest
rate that responds more than one-for-one to the risk premium) restores determinacy.
That being said, risk-premium targeting prescribes interest rates to become arbitrarily
negative. Why? Volatility induces self-fulfilling precautionary savings, which the cen-
tral bank wants to undo by reducing interest rates; but volatility can always rise ever
higher, requiring arbitrarily low rates to undo. Our indeterminacies thus survive these
unconventional rules if there is any lower bound on policy rates.

We turn next to the FTPL, which has been studied mostly in linearized models. We
prove that, in a variety of different settings—including arbitrary exogenous surplus-to-
output ratios, long-term or short-term debt, some fiscal “rules” that respond to inflation
or the output gap, and different utility functions—FTPL kills the volatile equilibria we
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discovered. Why? The basic intuition comes from the basic debt valuation equation:

Nominal debt value
Price level

= Current surplus× Present value of real surplus growth (1)

This equation must hold at every point in time. If there is hypothetically any output fluc-
tuation that moves current surpluses, this shock must be “absorbed” by either the price
level, the nominal debt valuation, or the present-value of surplus growth (via changes
to future surpluses or their discount rates). Sticky prices say that prices cannot jump
arbitrarily, and so the price level cannot absorb such a shock. Can the nominal debt
value absorb the shock? In the baseline case with short-term debt, the debt price is fixed
at 1, and so the quantity of debt is simply determined by the flow government budget
constraint; thus, the nominal value of short-term debt is pinned down and cannot ab-
sorb the shock either. In the extended case with long-term debt, the bond price is an
additional forward-looking variable that could potentially respond to shocks. But with
the additional variable comes an additional constraint: the bond-pricing equation. This
pricing equation puts severe restrictions on how the bond price can move; we show
that these restrictions are so severe that they can never be consistent with the originally
conjectured output shock. Consequently, any demand volatility that differs from the
“fundamental equilibrium” cannot be self-justified under the FTPL. A very similar logic
applies to the present-value of real surplus growth on the right-hand-side of equation
(1): this is a forward-looking variable that must obey a particular dynamic equation and
cannot move arbitrarily. We conclude that active fiscal policies, in contrast to monetary
policies, sharply trim the indeterminacies endemic to New Keynesian models.

A key takeaway from the discussion above is that FTPL works very differently than
the Taylor rule as a selection device. Equation (1) holds at every point in time, essentially
steering output volatility at a high frequency. By contrast, an active Taylor rule works by
infusing an economy with unstable dynamics, which selects among equilibria by causing
all but a subset to explode in the long run.

We think of FTPL’s high-frequency steering as “aggregate demand management,”
because it works by pinning down real demand volatility. One way to understand the
demand management interpretation transparently is to consider the rigid-price limit;
even in this limit without inflation, FTPL succeeds as a selection device. The rigid-
price limit case effectively corresponds to inflation-indexed government debt, which the
FTPL literature typically regards as ineffectual for equilibrium selection. Nevertheless,
demand volatility is pinned down.
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Related literature. This paper relates to two vast literatures: (a) on New Keynesian
indeterminacies and (b) on FTPL as equilibrium selection.

A well-developed literature exposits indeterminacies in monetary models. Going
back to Sargent and Wallace (1975), we know that exogenous interest rate paths do not
pin down the equilibrium. In related work, several papers have established indetermi-
nacies in New Keynesian models related to the zero lower bound (ZLB)—e.g., Benhabib,
Schmitt-Grohé, and Uribe (2001) identify “deflationary trap” equilibria related to infla-
tion expectations, while Benigno and Fornaro (2018) expose “stagnation trap” equilibria
related to R&D and growth expectations. There is additional scope for indeterminacy in
heterogeneous-agent versions of the New Keynesian model when income risk is coun-
tercyclical (Acharya and Dogra, 2020; Ravn and Sterk, 2021; Bilbiie, 2024; Acharya and
Benhabib, 2024). Relative to this literature, our multiplicity is novel in two ways: (i)
unlike these papers’ multiplicity of deterministic equilibria, ours vitally depends on
aggregate risk and risk premia; and (ii) our multiplicity does not rely on the ZLB or
constrained monetary policy and in fact holds for any conventional Taylor rule.

Our equilibria are nonlinear and stochastic by nature. In an important contribution,
Caballero and Simsek (2020) study a nonlinear, stochastic version of the New Keynesian
model and illustrate how risk premia are critical to aggregate demand dynamics, but re-
stricting attention to the “fundamental equilibrium.” We directly connect to their setting
in Appendix F, where we unveil a class of self-fulfilling equilibria that trap the economy
at the ZLB. Closely related to our study, contemporaneous work by Lee and Dordal i
Carreras (2024) also studies a nonlinear IS curve with risk premia driving multiplicity.
Like us, they also argue that standard “active” Taylor rules do not prune this type of
volatility. Our results are more general in proving that self-fulfilling volatility can sur-
vive any Taylor rule, that the uncertainty need not be tied to an “extrinsic shock” but
can in fact be self-fulfilling sensitivity to “fundamental shocks,” and that an entire class
of risk-premium targeting can ensure determinacy. Beyond those differences, the most
important difference between our papers is our exploration of FTPL.

There are two key differences between our FTPL analysis and the extant literature.1

First, we emphasize real indeterminacies rather than self-fulfilling inflation. Second,
unlike most of the literature, we analyze the fully nonlinear, stochastic, global dynamics
of the model and provide formal uniqueness results in several environments.

Whereas some papers have examined FTPL in stochastic nonlinear environments
with flexible prices, a benchmark nonlinear analysis of FTPL in the sticky-price New

1Seminal contributions to the FTPL include Leeper (1991), Sims (1994), Woodford (1994), Woodford
(1995), Kocherlakota and Phelan (1999), and Cochrane (2001). Cochrane (2023) synthesizes many results.
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Keynesian model does not exist. In particular, Bassetto and Cui (2018), Brunnermeier,
Merkel, and Sannikov (2023), and Brunnermeier, Merkel, and Sannikov (2024) study
stochastic and nonlinear flexible-price models, focusing on the determinacy of a bubble
and/or liquidity-service term in government debt valuation.2 Two exceptions that do
allow sticky prices, but effectively sidestep our determinacy questions, are Mehrotra
and Sergeyev (2021) and Li and Merkel (2025). Mehrotra and Sergeyev (2021) studies
fiscal sustainability with real debt, which is thus similar to the rigid-price special case of
our model; however, they consider exogenous output, which abstracts from self-fulfilling
demand fluctuations. Li and Merkel (2025) study FTPL in a New Keynesian model with
idiosyncratic risk, which can induce a government debt bubble; however, they avoid
determinacy questions by assuming that endogenous objects like inflation and the output
gap are Markovian in exogenous states and government bonds outstanding (putting the
economy into its minimum state variable solution). Overall, ours is the first paper to
provide a formal nonlinear FTPL analysis in textbook sticky-price models.

Finally, connecting to a broader literature on self-fulfilling volatility, our analysis
shows that two assumptions are critical in the New Keynesian context: (i) sticky prices
and (ii) sufficiently high prudence. In a financial accelerator model, Khorrami and
Mendo (2024) show that aggregate uncertainty is also not pinned down due to (i) in-
complete markets and (ii) heterogeneous productivity. Both papers expose recessionary
volatility, but there is a deeper similarity between them. Both feature a link between de-
mand and output (here, due to sticky prices; there, due to heterogeneous productivity)
and create conditions in which high volatility can be self-stabilizing (here, due to pru-
dence; there, due to incomplete markets). This demand-output link and self-stabilizing
volatility are necessary and sufficient conditions for indeterminacy in both contexts.

1 Model

We present a canonical New Keynesian economy with complete markets and nominal
rigidities. The setup is a continuous-time version of the model exposited in Galí (2015),
which the reader can consult for additional details.

Uncertainty. Our model features no fundamental uncertainty in preferences or technolo-
gies. However, to incorporate some uncertainty, we allow monetary policy to feature

2Other recent papers studying the FTPL in nonlinear, but deterministic, environments with “liquidity
premia” include Berentsen and Waller (2018), Williamson (2018), and Andolfatto and Martin (2018). Also
see Miao and Su (2024), which studies determinacy with sticky prices and bubbly liquidity, but applying
linearized analysis to a model which is deterministic on aggregate.
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shocks. To this end, introduce a one-dimensional Brownian motion Z that drives the
monetary policy rule, to be described later. All random processes will be adapted to Z.

Preferences. The representative agent has rational expectations and time-separable util-
ity with discount rate ρ, unitary EIS, and labor disutility parameter ϕ:

E
[ ∫ ∞

0
e−ρt

(
log(Ct)−

L1+ϕ
t

1 + ϕ

)
dt
]
. (2)

Consumption Ct has the nominal price Pt and labor Lt earns the nominal wage Wt.

Technology. The consumption good is produced by a linear technology Yt = Lt. We
abstract from fundamental uncertainty (e.g., productivity shocks) for maximal clarity.

Behind the aggregate production function is a structure common to most of the New
Keynesian literature. In particular, there are a continuum of firms who produce interme-
diate goods using labor in a linear technology. These intermediate goods are aggregated
by a competitive final goods sector. The elasticity of substitution across intermediate
goods is a constant ε. The intermediate-goods firms behave monopolistically competi-
tively and set prices strategically, described next.

Price setting. Intermediate-goods firms set prices strategically, taking into consideration
the impact prices have on their demand. Price setting is not frictionless: firms changing
their prices are subject to quadratic adjustment costs, a la Rotemberg (1982). (For sim-
plicity, we assume these adjustment costs are non-pecuniary, so that resource constraints
are not directly affected by price adjustments.) In the interest of exposition, we relegate
the statement of and solution to this standard problem to Appendix B.

Definition: inflation and output gap. Let Pt denote the aggregate price level and πt :=
Ṗt/Pt its inflation rate. Note also that the flexible-price level of output is given by Y∗ =

( ε−1
ε )

1
1+ϕ . Following the literature, define the output gap xt := log(Yt/Y∗). Conjecture

that xt and πt have dynamics of the form

dxt = µx,tdt + σx,tdZt (3)

dπt = µπ,tdt + σπ,tdZt (4)

for some µx, σx, µπ, σπ to be determined in equilibrium. The shock exposures σx and σπ

are of particular importance in this paper.

6



Monetary policy. Let ιt denote the nominal short-term interest rate, which is controlled
by the central bank. Monetary policy follows a Taylor rule that targets the output gap
and inflation with

ιt = ῑ + Φ(xt, πt) + σEt, (MP)

for some long-run target rate ῑ, some response function that satisfies Φ(0, 0) = 0, and
an exogenous, stationary “monetary shock” process Et that is driven by Zt and is mean-
reverting to zero. For analytical convenience, many of our theoretical results study the
limit σ → 0, in which case Et has no impact on the monetary rule, meaning that dZt

becomes a pure sunspot shock that nevertheless may still affect xt and πt. That said,
we will also illustrate what happens when σ > 0. For the response function, a common
linear example that we will use sometimes is

Φ(x, π) = φxx + φππ. (linear MP)

In the main paper, we abstract from the zero lower bound (ZLB), which introduces well-
known indeterminacy issues, and analyze it in Appendix F. For now, think of negative
interest rates as a proxy for unconventional monetary policy that can work even when
the short rate is zero.

Financial markets. Financial markets are complete. Let Mt be the real stochastic dis-
count factor induced by the real interest rate rt := ιt − πt and the equilibrium price of
risk ht associated to the shock Zt. The risk-free bond market is in zero net supply—this
will be generalized in Section 5 when we introduce fiscal policies. The equity market is
a claim on the profits of the intermediate-goods producers. Alternatively, we can think
of these profits as being rebated to the consumers lump-sum.

Definition 1. An equilibrium is processes (Ct, Yt, Lt, Wt, Pt, Mt, Bt, ιt, rt, πt)t≥0, such that

(i) Taking (Mt, Wt, Pt) as given, consumers choose (Ct, Lt)t≥0 to maximize (2) subject
to their lifetime budget and No-Ponzi constraints

B0

P0
+ Π0 + E

[ ∫ ∞

0
Mt

WtLt

Pt
dt
]
≥ E

[ ∫ ∞

0
MtCtdt

]
(5)

lim
T→∞

MT
BT

PT
≥ 0, (6)

where Π represents the real present-value of producer profits and B represents the
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bond-holdings of the consumer.3

(ii) Firms set prices optimally, subject to their quadratic adjustment costs.

(iii) Markets clear, namely Ct = Yt = Lt and Bt = 0.

(iv) The central bank follows the interest rate rule (MP) for some given long-run target
rate ῑ and some given response function Φ(·).

Equilibrium characterization. We first provide a summary characterization of all equi-
libria. Labor supply and consumption satisfy the following optimality conditions:

e−ρtLϕ
t = λMt

Wt

Pt
(7)

e−ρtC−1
t = λMt, (8)

where λ is the Lagrange multiplier on the lifetime budget constraint (5).
On the firm side, Appendix B shows that optimal firm price setting gives rise to

aggregate inflation dynamics that satisfy

µπ,t = ρπt − ηε
Wt

Pt
+ η(ε− 1), (9)

where η is each firm’s degree of price flexibility. Notice that as η → 0 (prices changes
become infinitely costly), one possible equilibrium is to have πt → 0 for all times. We
will assume this “rigid-price limit” is the equilibrium that obtains as η → 0.

We use these conditions to obtain an “IS curve” and a “Phillips curve.” Applying
Itô’s formula to (8), we obtain the consumption Euler equation, which may be rewritten
in terms of the output gap as

µx,t = ιt − πt − ρ +
1
2

σ2
x,t. (IS)

Equation (IS) is the IS curve. Next, divide the FOCs (7)-(8), and use goods and labor
market clearing Ct = Yt = Lt to get Y1+ϕ

t = Wt
Pt

. Substitute this into (9) to obtain

µπ,t = ρπt − κ
( e(1+ϕ)xt − 1

1 + ϕ

)
, (PC)

3In addition, to prevent arbitrages like “doubling strategies” that can arise in continuous time, we must
impose a uniform lower bound on borrowing, e.g., MtBt/Pt ≥ −b, although b can be arbitrarily large.
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where κ := η(ε− 1)(1 + ϕ). Equation (PC) is the Phillips curve. These IS and Phillips
curves are written in their fully nonlinear form.

The most important novelty in our paper is the presence of precautionary savings due
to aggregate risk. This force is captured by the term 1

2 σ2
x in (IS). We will often refer to

this term as a “risk premium” because σ2
x is exactly the equilibrium risk premium on the

aggregate consumption claim.4 When writing the IS curve in terms of log consumption,
as is typically done, the Jensen correction of 1

2 also shows up.
Together with the monetary policy rule (MP), equations (IS) and (PC) form the non-

linear “three equation model” in standard New Keynesian models. An equilibrium is
completely characterized by these three equations, along with conditions that ensure
that any output gap or inflation explosions are consistent with optimization behavior.
For example, since Ct = extY∗ = Lt, the representative agent would obtain minus in-
finite utility if xt = ±∞ in finite time, or even if xt → ±∞ too quickly. Clearly, this
is not compatible with optimizing behavior if the agent has an alternative that delivers
finite utility. Consumers would be individually better off ignoring signals to coordi-
nate, unravelling such a proposed allocation. (A straightforward example is the case
when xt → ∞, since this implies that real wages are diverging towards plus infinity, and
agents may obtain finite utility simply by working a finite amount forever.) Similarly, we
show in Appendix B that firms’ optimization rules out situations when πt → ±∞ too
quickly, because that would induce an infinite amount of price adjustment costs.

In order to emphasize that the multiplicity unveiled later does not rely on explosive
behavior (unlike the multiplicity exposited in Cochrane, 2011) and to streamline the
analysis, we only consider equilibria that satisfy a simple condition that conforms with
most of the existing literature and rules out both finite-time and asymptotic explosions:

Condition 1. A non-explosive allocation has P{|xt| < ∞, |πt| < ∞; ∀t ≥ 0} = 1,

lim sup
T→∞

E|xT| < ∞, lim sup
T→∞

E|πT| < ∞, and lim sup
T→∞

E[e(1+ϕ)xT−ρT] = 0. (10)

We summarize our characterization in the following lemma.

Lemma 1. Suppose processes (xt, πt, ιt)t≥0 satisfy (IS), (PC), (MP), and Condition 1. Then,
(xt, πt, ιt)t≥0 corresponds to an equilibrium of Definition 1.

4The aggregate risk premium is σ2
x for the following reason. Aggregate consumption growth volatility

is σx. Due to log utility, agents optimally set their individual consumption growth volatility equal to the
market price of risk (i.e., the sensitivity of d log M to dZ). Hence, the quantity of risk and price of risk are
both equal to σx, implying the risk premium (as the product of risk quantity and risk price) is σ2

x .
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The proof of this lemma is standard except for a careful treatment of potentially
explosive behavior. Condition 1 not only ensures that utility for the representative con-
sumer and firm are finite but also, together with the other equations in Lemma 1, is
sufficient to verify that their transversality conditions hold. See Appendix A.1 for these
arguments. Going forward, we will want to make reference only to equilibria which
satisfy Condition 1. For that reason, we include the following definition.

Definition 2. A non-explosive equilibrium is an equilibrium in which Condition 1 holds.

Linearized Phillips curve approximation. We will occasionally use a linearized Phillips
curve in place of (PC). Since e(1+ϕ)xt − 1 ≈ (1 + ϕ)xt, the Phillips curve to first order is

µπ,t = ρπt − κxt. (linear PC)

We will occasionally work with (linear PC) instead of (PC), because, as will become clear,
the nonlinearity in (IS) is the critically novel element, and not so much the nonlinearity
in (PC). (We do some analysis with the nonlinear Phillips curve in Appendix C.) In this
approximation, we will sometimes refer to non-explosive equilibrium as (xt, πt, ιt)t≥0

that satisfy (IS), (linear PC), (MP), and Condition 1.

2 Benchmark: MSV Equilibrium

We start by expositing the benchmark “minimum state variable” (MSV) solution to the
model. The sole state variable is Et, the monetary policy shock. An MSV solution
assumes all other endogenous variables are purely a function of Et. Let us write the
dynamics of Et in the general form

dEt = µe(Et)dt + σe(Et)dZt (11)

for some drift and diffusion coefficients µe(E) and σe(E).
Assume xt = x(Et) and πt = π(Et) for some functions x(·) and π(·). By Itô’s formula,

we may calculate µx,t = µe(Et)x′(Et) +
1
2 σe(Et)2x′′(Et) and σx,t = σe(Et)x′(Et). Plugging

these into (IS), along with the monetary policy rule (MP), and dropping time subscripts,
we have

µe(E)x′(E) + σe(E)2x′′(E)
2

= ῑ + Φ(x(E), π(E)) + σE − π(E)− ρ +
(σe(E)x′(E))2

2
(12)
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Similarly, substituting µπ,t = µe(Et)π′(Et) +
1
2 σe(Et)2π′′(Et) into (PC), we have

µe(E)π′(E) +
σe(E)2π′′(E)

2
= ρπ(E)− κ

( e(1+ϕ)x(E) − 1
1 + ϕ

)
(13)

Equations (12)-(13) is a system of second-order ODEs that characterizes the MSV so-
lution. We assume an MSV solution exists. As will become clear, all the equilibria
unveiled in this paper constitute deviations from any MSV solution, since x and π will
not be solely functions of E .

Example 1 (Linearized Phillips curve and linear monetary policy). To illustrate an exam-
ple analytically, we adopt the following specification. The monetary policy shock is an
Ornstein-Uhlenbeck process, i.e., µe(E) = −ζE and σe(E) = 1. This is the continuous-
time equivalent of an AR(1) process. In addition, the economy features a linearized
Phillips curve (linear PC) and a linear monetary policy rule (linear MP). Substituting
these linear functional forms into (12)-(13), we obtain

−ζEx′(E) + 1
2

x′′(E) = ῑ + φxx(E) + (φπ − 1)π(E) + σE − ρ +
1
2

x′(E)2 (14)

−ζEπ′(E) + 1
2

π′′(E) = ρπ(E)− κx(E) (15)

Let us guess a linear equilibrium x(E) = ax + bxE and π(E) = aπ + bπE . Plugging these
into (14)-(15), we verify the form of the solution as long as

bx = − (ζ + ρ)σ

(ζ + ρ)(ζ + φx) + κ(φπ − 1)
and bπ = − κσ

(ζ + ρ)(ζ + φx) + κ(φπ − 1)

and

ax = −ρ
ῑ− ρ + 1

2 b2
x

φxρ + (φπ − 1)κ
and aπ = −κ

ῑ− ρ + 1
2 b2

x

φxρ + (φπ − 1)κ

So long as (ζ + ρ)(ζ + φx) + κ(φπ − 1) > 0, the MSV solution has a particularly simple
and intuitive form where x and π respond negatively to monetary tightening. If, further-
more, monetary policy picks the “natural” target rate of ῑ = ρ− 1

2 b2
x, then ax = aπ = 0,

so that the time-series average values of xt and πt will be zero.

Example 2 (No monetary policy uncertainty). Next, consider the σ → 0 limiting case
where monetary shocks vanish, so that Et is an extrinsic process. Consequently, the
unique MSV solution has xt = x∗ and πt = π∗ both equal to some constants, indepen-
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dent of E . Plugging this into (12)-(13), we obtain the system of equations

0 = ῑ− ρ + Φ(x∗, π∗)− π∗

0 = ρπ∗ − κ
( e(1+ϕ)x∗ − 1

1 + ϕ

)
If the target rate is set appropriately at ῑ = ρ, then the MSV solution becomes x∗ = π∗ =

0. The fact that this benchmark is so clean is why we often specialize to the σ → 0 limit
to demonstrate deviations from the MSV solution.

3 Review: Taylor Principle in the Non-Stochastic Model

To distinguish our main results that come after, we begin by reviewing the standard
deterministic multiplicity in New Keynesian models and how aggressive monetary policy
rules can eliminate this indeterminacy. In the appendix, we generalize these existing
results to nonlinear Phillips curves and nonlinear Taylor rules as well.

We study a deterministic setting. To do this, we specialize to σ = 0 so that there are
no monetary policy shocks. In this setting, recall that the MSV equilibrium is x = π = 0
forever, provided monetary policy sets the target rate at ῑ = ρ.

Can there exist other deterministic equilibria (i.e., those with σx = σπ = 0)? As is
well known, the answer to this question hinges on the stability/instability properties of
the equilibrium dynamical system for (xt, πt). We will review this analysis here. First,
we specialize to the policy rule (linear MP) with the target rate ῑ = ρ. Combining (linear
MP) with (IS), the dynamics of xt are given by

ẋt = φxxt + (φπ − 1)πt. (16)

The IS curve is linear in a deterministic equilibrium with a linear Taylor rule. We also
consider here the linear Philips curve (linear PC) as in most of the existing literature.

The typical determinacy analysis picks an aggressive Taylor rule that renders the
above system unstable. The system (16) and (linear PC) can be written in matrix form as[

ẋt

π̇t

]
= Alinear

[
xt

πt

]
, where Alinear :=

[
φx φπ − 1
−κ ρ

]
. (17)

The eigenvalues of Alinear are both strictly positive, and the system unstable, if φx > −ρ

and φπ > 1− ρφx/κ. This is the continuous-time version of the eigenvalue conditions in
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Blanchard and Kahn (1980).
By contrast, if either parameter condition is violated, then the system has one or

two stable eigenvalues. In such case, there are a continuum of non-explosive equilibria,
which one can index by the initial conditions (x0, π0). As the explicit parameter condi-
tions make clear, instability occurs when monetary policy is sufficiently aggressive (i.e.,
“active”) in responding to the output gap and inflation, whereas stability occurs when
the response function is less aggressive (i.e., “passive”). The proof of the following
proposition and all subsequent results in Sections 3-4 is contained in Appendix A.3.

Proposition 1. Consider the linearized Phillips curve (linear PC) and monetary policy rule (lin-
ear MP) with ῑ = ρ. Assume no monetary shocks (σ = 0) and restrict attention to deterministic
equilibria (σx = σπ = 0). If φx > −ρ and φπ > 1− ρφx/κ, the only deterministic non-explosive
equilibrium is (xt, πt) = (0, 0) forever—the MSV solution. If either condition is violated, then a
continuum of deterministic non-explosive equilibria exist.

Remark 1 (Nonlinear Phillips curve). We have used the linearized Phillips curve here for
simplicity and exposition. We analyze the nonlinear Phillips curve in Appendix C, and the
conclusion is similar to Proposition 1 but the proof is more complicated.

Remark 2 (Explosive equilibria). A key clause is the requirement that equilibria satisfy Con-
dition 1, ruling out explosions. What if asymptotic explosions were permitted, while finite-time
explosions were ruled out? It turns out that, by adopting an aggressive nonlinear Taylor rule,
monetary policy can force an explosion in finite-time, and hence select a unique equilibrium. We
analyze this situation in Appendix D. In that sense, the spirit of Proposition 1 is preserved even
under broader notions of equilibrium.

4 A New Class of Stochastic Equilibria

Now, we demonstrate several new results pertaining to volatility in New Keynesian
models. For theoretical clarity, we will assume a sufficiently aggressive monetary policy,
so that the deterministic equilibrium is unique according to Section 3. Nevertheless,
we will show that a large class of stochastic equilibria exist, due to the presence of risk
premia. Moreover, such stochastic equilibria persist for any aggressive Taylor rule. As
mentioned earlier, our plan is to first illustrate this, for analytical simplicity, in the σ→ 0
limit where the shock dZ is a pure sunspot. But then we illustrate the same result for
σ > 0, which shows how the key indeterminacy is about the degree of uncertainty rather
than its attachment to a particular shock. After that, we demonstrate that a different
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type of policy rule, which targets the risk premium, is required to eliminate stochastic
multiplicities. Finally, we argue that risk premium targeting may be limited if an effective
lower bound exists for interest rates.

4.1 Constructing volatile equilibria: several examples

For simplicity, start with the limit σ→ 0, so that there are no monetary shocks and dZ is
a pure sunspot. In addition, assume that prices are permanently rigid, i.e., κ → 0. This
clarifies that we are focusing on real indeterminacy rather than inflation indeterminacy.
An additional advantage is that we only need to study the dynamics of the output gap,
rather than a two-dimensional stochastic system. Start with an example policy rule with
target rate ῑ = ρ and nonlinear response function

Φ(x) = φx(ex − e−x), φx ≥ 0. (18)

Rule (18) brings theoretical clarity to the discussion. This is a super-aggressive policy
rule, evidently more aggressive than its linear approximation 2φxx. It would send the
deterministic economy to a finite-time explosion unless xt = 0 forever (see Appendix D),
thus selecting a unique deterministic equilibrium.

Nevertheless, stochastic indeterminacy exists. Combining (MP) with (18) and (IS),
and using σ→ 0, the drift of xt is given by

µx = φx(ex − e−x) +
1
2

σ2
x .

Building off of the previous analysis, the question is whether the dynamical system char-
acterized by (µx, σx) are non-explosive. But here, the volatility σx is determined purely
via coordination, and some choices will lead to stability. The basic idea is that 1

2 σ2
x aug-

ments the drift µx, so if σ2
x rises sufficiently when x is low (i.e., in recessions), then µx

will rise high enough to “push” the equilibrium back towards x = 0. Mathematically, the
dynamical system will be stable. Economically, the rise in uncertainty creates precaution-
ary savings that slowly pushes demand (hence output) back up over time. Thus, one can
think of savings as precisely the mechanism of self-fulfillment that justifies risk. Both
the economic intuition and mathematics also suggest that excess volatility should nec-
essarily be recessionary and not expansionary. We revisit this point below and establish
that recessionary excess volatility is a general characteristic of our equilibria.

Formally, to see how multiplicity is possible, examine instead the dynamics of the
level output gap yt := ext and verify that 0 < yt < ∞ forever (which more or less suffices
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to ensure that xt is non-explosive). By Itô’s formula, the drift and diffusion of yt are

µy = φx(y2 − 1) + yσ2
x and σy = yσx (19)

Right away, we see that stability is possible, if agents coordinate on sufficiently high
volatility. For example, suppose for some constant ν > 0,

σ2
x =


(

ν
y
)2

+ φx
1−y2

y , if y < 1;

0, if y ≥ 1.
(20)

Putting these equations together, the dynamics for yt would be

dyt =

 ν2

yt
dt +

√
ν2 + φxyt(1− y2

t )dZt, if yt < 1;

φx(y2
t − 1)dt if yt ≥ 1.

(21)

It is relatively intuitive to see that yt > 0 for all t in this example: if y ever approached
0, the drift ν2

y would explode fast enough to push y back up. Formalizing this mathe-
matically, the process in (21) behaves asymptotically (as y → 0) like a Bessel(3) process,
which never hits 0 (more precisely, 0 is an “entrance boundary” for this process). And
consequently, xt = log(yt) does not explode negatively.5 Provided y0 ≤ 1, the process
also does not explode positively: there is no volatility for yt ≥ 1, so the process will even-
tually converge to and stay stuck at the efficient level yt = 1 (i.e., the sunspot volatility
is temporary in this example). This entire construction works for any ν > 0, so ν is a
parameter indexing an continuum of possible stochastic equilibria. In summary, despite
the super-aggressive response function (18), many equilibria exist with different σx.

The key reason for multiplicity is the risk premium term 1
2 σ2

x , not volatility per se.
To see this, contrast the linearized version of the Euler equation, which is µx = ι− π − ρ.
In this linearized world, there can be risk (that is, x can have volatility), but it is as if
the representative agent is risk-neutral, and so there are no risk premia or precautionary
savings. Repeating the steps above in this linearized world, (21) would be replaced by

dyt =

φx(y2
t − 1)dt +

√
ν2 + φxyt(1− y2

t )dZt, if yt < 1;

φx(y2
t − 1)dt, if yt ≥ 1.

(22)

5A Bessel(n) process corresponds to the solution of dXt = n−1
2 X−1

t dt + dZt where dZt is a one-
dimensional Brownian motion. A Bessel(n) process is also equivalent to the Euclidean norm of a n-
dimensional Brownian motion and therefore it satisfies Xt > 0 for all t > 0, provided n ≥ 2. Taking the
limit of the dyt evolution equation as y→ 0, we can see that ν−1y behaves exactly as a Bessel(3) process.
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The process in (22) behaves like an arithmetic Brownian motion with negative drift for
yt ≈ 0. Consequently, one would conclude from the linearized model that yt → 0 in
finite time with positive probability—in violation of Condition 1. Thus, the only possible
linearized non-explosive equilibrium can be yt = 1 at all times. A very aggressive Taylor
rule trims equilibria in this linearized stochastic world, exactly as in the deterministic
equilibria. It is easy to verify that a similar analysis applies for arbitrary choices of σx.

Figure 1 visualizes the difference between the actual dynamics and the linearized
dynamics. The solid blue line is the drift µy in our baseline example from equation
(21). Notice that µy rises sufficiently fast as y falls, which is enough to prevent y → 0.
This is a case of a strongly countercyclical risk premium. By contrast, the dotted red
line is the linearized drift from equation (22). Because the linearization omits the risk
premium term, it looks dramatically different: as y falls, the drift becomes more and
more negative, due to the aggressiveness of monetary policy in lowering interest rates.
Policy thus destabilizes the economy and leads to a unique equilibrium, indicated by
the solid black dot, which is equivalent to the deterministic steady state. The difference
between the nonlinear and linearized economy appears only in bad times, when y < 1,
by construction. But it is clear from the figure that volatility could not arise in good
times, when y > 1. Indeed, even without volatility, the drifts are all positive when y > 1,
i.e., dynamics are unstable; adding a risk premium only makes them more unstable and
cannot be part of a non-explosive equilibrium.

Figure 1: Output gap drifts in different scenarios with rigid prices (κ → 0) and no monetary shocks
(σ → 0). The solid blue line is the drift in equation (21). The dotted red line is the linearized drift, given
by equation (22). The dotted-dashed yellow line is the drift if, instead of (20), the volatility is alternatively
given by σ2

x = [(5ν)2 + φxy−1(1− y2)]1{y<0}. Parameters: ρ = 0.02, ν = 0.02, φx = 0.1.

Finally, we emphasize one subtle issue regarding the global dynamics. To support
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multiplicity, the risk premium must be sufficiently countercyclical. This is because, in a
stochastic system, stability is not only about the drift µy but depends on the ratio of
the drift relative to the variance, i.e., µy/σ2

y . The idea is that the forces impacting dy-
namics in expectation (via µy) must outweigh the shocks hitting the system (via σ2

y ).
Going back to equation (19), we see that our policy rule implies the following general
form for this ratio:

µy

σ2
y
= 1/y︸︷︷︸

risk premium
effect (stabilizing)

+ φx(y2 − 1)/y2σ2
x︸ ︷︷ ︸

aggressive monetary
policy effect (destabilizing)

. (23)

There is a race between these two terms. The first term arises due to the risk premium
and always works to buoy the output gap, via the precautionary savings discussed above.
The second term in equation (23), assuming φx > 0, is negative: monetary policy is re-
ducing savings with lower interest rates. As we show in the appendix (Lemma A.1), a
sufficient condition for yt > 0 forever and for the global dynamics to be stable is that
θ := limy→0 yµy/σ2

y > 1/2. In other words, the risk premium effect must be sufficiently
strong to dominate the destabilizing monetary policy effect, meaning σ2

x must be suffi-
ciently countercyclical. Under the baseline construction in equation (20), such sufficient
countercyclicality holds. Imagine, in contrast, that the risk premium took the less coun-
tercyclical form σ2

x = ν2 + φx(1− y2)/y when y < 1. Then, the second term in equation
(23) would behave like − 1

y as y → 0, which cancels the risk premium effect, and so
yµy/σ2

y → 0 as y → 0. Coordination on this proposed volatility would lead to explosive
dynamics and could not constitute an equilibrium. The dotted-dashed yellow line in
Figure 1 plots the drift for this case.

As mentioned, the particular construction in (20)-(21) features transitory volatility.
That was only to develop an initial understanding and is easily generalized. For exam-
ple, suppose agents coordinate on the following volatility process for some δ ∈ (0, 1):

σ2
x =


(

ν
y
)2

+ φx
1−y2

y , if y < 1− δ;

0, if y ≥ 1− δ.
(24)

Now, agents only expect risk premia to arise in a deep enough recession. The induced
dynamics of yt = ext are

dyt =

 ν2

yt
dt +

√
ν2 + φxyt(1− y2

t )dZt, if yt < 1− δ

φx(y2
t − 1)dt if yt ≥ 1− δ.

(25)
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Provided y0 < 1, this process will eventually exit the deterministic region, enter the
volatile region, and remain inefficiently volatile for an infinite amount of time.6 Figure 2
presents a numerical construction of this example, showing that the economy is perma-
nently inefficient (y < 1 forever), volatility is not transitory, and nevertheless Condition
1 holds and there exists a stationary distribution for y = ex.

Figure 2: Equilibrium with rigid prices (κ → 0), no monetary shocks (σ → 0), and dynamics given by
(24)-(25). The stationary CDF is computed via a discretized Kolmogorov Forward equation. The resulting
stationary CDF features a mass point at y = 1− δ. Parameters: ρ = 0.02, ν = 0.02, δ = 0.05, φx = 0.1.

4.2 General results on multiplicity with volatility

The analysis so far is confined to a particular example with a specific monetary policy.
But perhaps monetary policy could act even more aggressively and eliminate the risk
premium effect. Is there some Taylor rule that can kill these equilibria? No. Agents can
always coordinate on a level of volatility that keeps the dynamics “stable” for any level of
aggression in the Taylor rule satisfying the following mild regularity assumption (which
all rules considered in this paper satisfy):

Assumption 1. There exists β > 0 such that Φ(x) satisfies limx→−∞ eβxΦ(x) > −∞.

6To see all these points, note that the process has zero volatility and negative drift when y ∈ (1− δ, 1);
therefore, the process exits the region (1− δ, 1) and enters (0, 1− δ) in finite time almost-surely. Upon
entering the volatile region (0, 1− δ), the process can move around but will never reach y = 0, by the
same Bessel(3) argument established in the text. Finally, the stationary distribution will additionally have
a mass point at y = 1− δ, because the dynamics induce yt to visit the point 1− δ infinitely often.
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Proposition 2. Suppose prices are rigid (κ → 0) and monetary shocks are absent (σ → 0).
Consider any Taylor rule (MP) with ῑ = ρ, increasing in x, and satisfying Assumption 1. Then,

(i) There exist a continuum of non-explosive equilibria indexed by x0 < 0 and the volatility
function σx(x). The volatility can be any mapping σx : R 7→ R that is finite for all
x ∈ (−∞,−ε) and satisfies suitable boundary conditions as x → −∞ and x → 0.

(ii) If infx Φ′(x) > 0, then all non-explosive equilibria have xt ≤ 0 forever, and hence any
stochastic equilibrium is recessionary.

Intuitively, the idea behind statement (i) of Proposition 2 is contained in the example
construction above. For any Taylor rule, agents can coordinate on a level of volatility
that “undoes” the effect of interest rates on output gap dynamics. The central bank tries
to destabilize the economy, and agents coordinate on a risk premium that stabilizes it.
We also emphasize a point regarding the fact that σx(x) can essentially be any function
satisfying suitable “boundary conditions”: when one cares about global stability as we
do, all that matters are boundary conditions on the equilibrium dynamics, rather than a
local analysis around the fundamental equilibrium (x, π) = (0, 0).

Statement (ii) of Proposition 2 says that self-fulfilling volatility is recessionary. Risk
premia σ2

x always provide a positive force that increases the drift µx and buoys the output
gap. In a recession (i.e., x < 0), this stabilizes the economy, pushing x back toward zero,
and provides the needed dynamic self-justification. But in a boom (i.e., x > 0), risk
premia would send the economy further and further away from steady state, which is
destabilizing.

For simplicity, Proposition 2 is proved in the setting without monetary policy shocks,
so all stochastic fluctuations are sunspot fluctuations. But this is not critical. Let us now
reintroduce monetary policy shocks and prove a very similar result. There exists a large
class of equilibria with different sensitivities of demand to monetary shocks (σx) and in
which all equilibria with “excess volatility” are necessarily recessionary.

Proposition 3. Suppose prices are rigid (κ → 0) and monetary shocks are present (σ > 0).
Consider any Taylor rule (MP) with ῑ = ρ, increasing in x, and satisfying Assumption 1. Let
x∗(E) denote the MSV solution for this economy, and let σx∗(E) denote its volatility. Then,

(i) If E is bounded, there exist a continuum of non-explosive equilibria indexed by x0 < x∗(E0)

and the volatility function σx(E , x) with “excess volatility” in the sense that σ2
x(E , x) ≥

σ2
x∗(E). The volatility can be any mapping σx : R2 7→ R that is finite on {(E , x) : −∞ <

x ≤ x∗(E)} and satisfies suitable boundary conditions as x→ −∞ and x → x∗(E).
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(ii) If infx Φ′(x) > 0, then all non-explosive equilibria possessing excess volatility have xt ≤
x∗(Et) forever, and hence excess volatility is recessionary.

Proposition 3 shows that our results are, at their core, about an indeterminacy in
uncertainty within New Keynesian models. Our results are not about sunspot volatility
per se. It could, instead, simply be the case that agents coordinate on a responsiveness
to fundamental shocks in a manner which differs from the MSV solution. This may be
important if one wonders about the practical relevance of our indeterminacy, because it
means that no extrinsic sources of uncertainty are needed to induce coordination in New
Keynesian models.

For tractability, Propositions 2-3 are proved in the rigid-price limit. However, the
same intuition carries over to a world with partially-flexible prices. Indeed, Proposition
E.1 in Appendix E constructs a similar recessionary equilibrium in which both inflation
and the output gap are stochastic. Figure 3 displays a numerical example of such an
equilibrium in which πt = π(xt) for some function π(·). This equilibrium has the
following properties. First, as in the rigid-price construction, volatility is recessionary
and permanent, with a stationary distribution of the economy living in the region xt < 0.
Second, there is persistent deflation here. This is reasonable to expect, since demand-based
fluctuations usually induce deflation and recession to occur together, although we have
not proven that this property is general.

Comparing Propositions 1-2-3, our analysis sharply distinguishes stochastic equilib-
ria from deterministic ones. Given the Taylor principle, there is a unique deterministic
equilibrium that coincides with the MSV solution. But a stochastic equilibrium features
a risk premium, giving it a markedly different character that permits multiplicity. The
key difference is that the Taylor principle makes all deterministic paths explosive except
for the unique MSV solution, whereas many stable paths exist in the stochastic context.

4.3 Risk premium targeting

There is one type of rule that can restore determinacy. Following the suggestion in Lee
and Dordal i Carreras (2024), suppose we replace the plain-vanilla Taylor rule (MP) with
a rule that explicitly targets the risk premium. However, we will provide a much broader
proposition regarding the efficacy of this rule. We use

ιt = ρ + Φ(xt, πt)− (α−1{xt<0} + α+1{xt>0})×
(1

2
σ2

x,t

)
. (MP-vol)
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Figure 3: Equilibrium with partially-flexible prices (κ > 0), no monetary shocks (σ → 0), a linear Taylor
rule, a linearized Phillips curve, but a nonlinear IS curve. The inflation and volatility functions are de-
scribed in Appendix E, which describes a family of equilibria indexed by (i) the point x̄ in the state space
where the inflation and volatility functions have a kink (in this construction, we set x̄ = log 0.9) and (ii)
the slope of the inflation function in the region {x < x̄}. The stationary CDF is computed via a discretized
Kolmogorov Forward equation. Parameters: ρ = 0.02, κ = 0.2, ῑ = ρ, φx = 0.2, φπ = 1.5.

Although conventional wisdom would suggest that targeting an asset price—which
maps one-to-one into the output gap—suffices to target the risk premium, that is not
true here, intuitively because coordination on a fearful equilibrium can raise uncertainty
σx,t independently, i.e., without affecting xt in the short run. Rule (MP-vol) directly
targets the uncertainty that generates risk premia.

Risk premium targeting restores determinacy. Substitute (MP-vol) into (IS) to get

dxt =
[
Φ(xt, πt)− πt +

1
2
(1− α(xt))σ

2
x,t

]
dt + σx,tdZt, (26)

where α(x) := α−1{x<0} + α+1{x>0} is the state-dependent responsiveness to the risk
premium. If α− = α+ = 1, then the risk premium vanishes from the drift, and we
are back in a situation where an aggressive response function Φ can trim equilibria by
destabilizing the economy. If α+ < 1 < α−, then the risk premium itself becomes desta-
bilizing: higher levels of σ2

x,t make the drift push xt further away from zero. Therefore, a
modified Taylor rule like (MP-vol), with more aggressive risk premium targeting in bad
times, can always eliminate equilibrium multiplicity. Again, for analytical purposes, we
state this result in the rigid price limit, with the proof in Appendix A.

Proposition 4. Suppose prices are rigid (κ → 0) and monetary shocks are absent (σ→ 0). With

21



sufficient risk premium targeting (α+ ≤ 1 ≤ α−) and sufficient responsiveness to the output gap,
the modified Taylor rules (MP-vol) ensure that the unique non-explosive equilibrium is xt = 0.

The deep difference between the multiplicity of stochastic equilibria and the multi-
plicity of deterministic equilibria was the presence of a stabilizing risk premium. And
this manifests in a qualitatively distinct policy response to restore determinacy: by tar-
geting the risk premium, with the interest rate moving more than one-for-one in bad
times, the central bank can use it as a destabilizing threat.

4.4 Effective lower bounds

While risk-premium targeting can work to ensure determinacy, it requires an uncon-
strained monetary policy. To understand this, recall that all the rules advocated above
share the property that ιt → −∞ as xt → −∞. If interest rates are lower bounded,
this cannot work. In this section, we explore here a situation where monetary policy is
constrained: suppose ιt must respect the lower bound ιt ≥ ι.

With an effective lower bound, volatile equilibria cannot be trimmed. To see this,
consider the rigid-price equilibria and inspect output gap dynamics when ιt is at its
lower bound:

dxt =
[
ι− ρ +

1
2

σ2
x,t

]
dt + σx,tdZt, when xt < 0 and ιt = ι. (27)

A sufficiently high level of uncertainty can raise the drift and create stable dynamics by
“pushing” xt to stay away from −∞. Using this logic, it is easy to prove the following.

Proposition 5. Suppose prices are rigid (κ → 0) and monetary shocks are absent (σ → 0).
Let ιt be any interest rate process that obeys ιt ≥ ι and is “at target” in steady state (i.e.,
ιt = ῑ = ρ when xt = σx,t = 0). Then, any x0 ≤ 0 corresponds to at least one valid non-
explosive equilibrium with volatility.

With a zero lower bound (ZLB), or any lower bound, certain monetary threats are
not credible. The reason is precisely that our stochastic equilibria are recessionary and
self-sustained by high risk premia. In particular, suppose we are in a hypothetical recession
(i.e., low x). An active monetary policy seeking to eliminate this hypothetical recession
would want to set interest rates very low, thereby impounding a very negative drift to
consumption growth. But the lower bound ιt ≥ ¯

ι prevents such a force from being too
strong. In that case, risk premia can be so high as to stabilize the economy, outweighing
the destabilizing effect of monetary policy.
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We further analyze the ZLB case in Appendix F. There, we even generalize policy
by allowing for optimal discretionary monetary policy, following the work of Caballero and
Simsek (2020), and yet a tremendous amount of equilibrium multiplicity remains, pre-
cisely because policy is constrained at the ZLB. The mechanics at play are well-described
as a “volatility trap”: volatility rises, pushes the economy to the ZLB, and then keeps it
trapped there, because of the stabilizing effect of risk premia.

4.5 Prudence and the generality of risk-based multiplicity

In this section, we briefly elaborate on the key mechanism and connect it to prudence.
Doing so will also clarify that our volatile equilibria are substantially more general than
our particular log utility model would suggest.

For this section, we suppose the representative agent has a general time-additive util-
ity function u(c). The consumption FOC is now e−ρtu′(Ct) ∝ Mt. Writing consumption
dynamics as dCt = Ct[µC,tdt + σC,tdZt], this then implies the Euler equation

µC,t =
(
− Ct

u′′(Ct)

u′(Ct)

)−1

︸ ︷︷ ︸
:=EISt

(ιt − πt − ρ) +
1
2

(
− Ct

u′′′(Ct)

u′′(Ct)

)
︸ ︷︷ ︸

:=RPt

σ2
C,t.

The elasticity of intertemporal substitution EISt modulates the consumption growth sen-
sitivity to real rates ιt − πt, while the relative prudence RPt modulates the consumption
growth sensitivity to risk σ2

C,t. What is clear is that higher prudence RPt strengthens our
channel, because it strengthens the mechanism that risk creates precautionary savings
that raises future consumption which “stabilizes” the equilibrium.

In this paper, as in all the New Keynesian literature, we study the output gap xt,
whose dynamics here coincide with log(Ct). These dynamics are

µx,t = EISt × (ιt − πt − ρ) +
1
2
(RPt − 1)σ2

x,t (28)

Risk induces stable dynamics in recessions—namely, higher σ2
x raises µx—if and only if

RPt > 1. Sufficiently high prudence is the key assumption needed for our equilibria.
But the most popular preferences in macroeconomics satisfy this assumption. For

example, with CRRA preferences u(C) = C1−γ−1
1−γ , we have RPt = 1 + γ which is larger

than one for any degree of risk aversion γ > 0. In fact, because these CRRA preferences
impose a tight inverse link between EISt = γ−1 and RPt = 1 + γ, an easy observation is
that higher γ facilitates our self-fulfilling equilibria on two fronts: it increases RPt, thus
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allowing risk to bring stability, and it reduces EISt, thus reducing the power of monetary
policy to affect consumption through real rates.

5 Fiscal Theory

Let us now explore a version of “Fiscal Theory of the Price Level” (FTPL). The idea
here is to propose some fiscal policies that can prune equilibria. Our contribution to the
literature is analysis of FTPL in a nonlinear stochastic monetary model.

We formulate fiscal policy in a particularly transparent situation: lump-sum taxation
with government transfers to the representative household. Denote the lump-sum taxes
levied by τ+

t and the transfers by τ−t , both in real terms. The real primary surplus of the
government is then

St := τ+
t − τ−t .

Since the government can pick both taxes and transfers, it can effectively choose St, and
we no longer make reference to τ+ or τ−.

Taxes and transfers do not necessarily offset, so the government borrows by issuing
short-term nominally riskless bonds Bt. Later we will generalize to long-term debt. The
flow budget constraint of the government is

Ḃt = ιtBt − PtSt. (29)

The nominal interest rate ιt will be controlled by monetary policy.
Because of the lump-sum nature of the taxes and transfers, there is no impact on the

household optimality conditions. Essentially, Ricardian equivalence holds. Indeed, the
present-value formula for government debt is

Bt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
, (GD)

where M denotes the real stochastic discount factor process (this is because the transver-
sality condition limT→∞ Et[MTBT/PT] = 0 holds in our representative agent setup).
While the representative household holds the government bonds Bt, it also owes the
government future taxes and is owed future transfers. Therefore, the lifetime budget
constraint of the representative household is

Et

[ ∫ ∞

t

Mu

Mt

WuLu

Pu
du
]
+

Bt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
+ Et

[ ∫ ∞

t

Mu

Mt
Cudu

]
.
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By (GD), the lifetime budget constraint is equivalent to the budget constraint without
any debt at all. And so the household consumption FOC is unchanged.

For reference, let us restate the IS curve (IS) and Phillips curve (PC) as the following
dynamical system in terms of (xt, πt):

dxt =
[
ιt − πt − ρ +

1
2

σ2
x,t

]
dt + σx,tdZt (30)

dπt =
[
ρπt − κ

( e(1+ϕ)xt − 1
1 + ϕ

)]
dt + σπ,tdZt. (31)

(When we allow surplus shocks or non-logarithmic utility, the IS and Phillips curves
change slightly; see Appendix A.4.) Together with some nominal interest rate rule for
ιt and some surplus rule for St, equilibrium is fully characterized by the government
debt valuation (GD) and the dynamical system (30)-(31). We continue to require the
non-explosion Condition 1.

Our previous results did not have government debt or taxes/transfers. However,
everything we have said until now still holds with fiscal policies, so long as those policies
are “passive” in the language of Leeper (1991). In particular, suppose fiscal policies are
chosen so that equation (GD) always holds. Then, government debt valuation plays
no role in the analysis, and by the Ricardian equivalence property shown above, the
equilibria must be identical to those in Sections 2-3-4. Next, we explore what happens
when fiscal policies are “active,” as opposed to passive.

5.1 FTPL as equilibrium selection: the key argument

Consider, as a first example, a fiscal policy with real primary surpluses given by

St = s̄Yt, with s̄ > 0. (32)

This policy is “active” because its real levels are chosen in a way that does not automat-
ically ensure the government debt valuation equation holds (e.g., St is independent of
the price level). Such proportional surpluses are also quite natural, in that they arise in
the real world the case of proportional taxes and transfers—although we abstract from
the distortionary effects of such policies.

With this policy, and using (GD) along with the consumption FOC (8), we have

Bt

Pt
= s̄Et

∫ ∞

t
e−ρ(u−t) Yt

Yu
Yudu = ρ−1s̄extY∗. (33)
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Now, apply Itô’s formula to (33), using the fact that dPt/Pt = πtdt, to get[Bt

Pt
ιt − s̄Yt −

Bt

Pt
πt

]
dt = ρ−1s̄extY∗[ιt − πt − ρ + σ2

x,t]dt + ρ−1s̄extY∗σx,tdZt.

Matching the “dZ” terms on both sides, we find σx,t = 0. Then, matching the “dt” terms
on both sides, we find an identity: given σx,t = 0, and using equation (33), the “dt” terms
match for any ιt, πt, and xt. In other words, the FTPL selects σx,t = 0, and that is all it
does after the initial date t = 0. This argument is completely independent of the level of
price stickiness κ and amount of inflation volatility σπ,t (if any).

It turns out this same logic holds even if the surplus-to-output ratio is not constant
but almost any exogenous process. In particular, let Ωt be an exogenous vector Markov
diffusion, driven by a multivariate Brownian motion Z that is independent of the shock
Z. Let st = s(Ωt) for some function s(·), and suppose

St = s(Ωt)Yt. (34)

Of course, allowing surplus shocks through Ωt does alter the IS curve, which we take
into account in the appendix. Even in this more general specification, the following
theorem holds. The proof of all results in this section can be found in Appendix A.5,
with some important preliminary characterizations provided in Appendix A.4.

Theorem 1. The economy with fiscal policy following (34) necessarily has σx,t = 0. Conversely,
if σx,t = 0, and if dxt takes a particular loading on the surplus shocks dZt, then the government
debt valuation equation (GD) automatically holds at every date, given it holds at t = 0.

Remark 3. Theorem 1 applies regardless of the value of σ (the size of the monetary policy shock).
Thus, if σ > 0, Theorem 1 says that demand must not respond to monetary policy shocks. If
σ = 0, so that E is a pure sunspot, then Theorem 1 rules out real sunspot volatility.

Theorem 1 says that FTPL (i) pins down real demand shocks and (ii) does nothing else
besides pin down real demand shocks. This is surprising because we usually think of FTPL
as selecting inflation or the price level. We elaborate on (i)-(ii) in turn.

Why FTPL eliminates volatility. The mathematical reasoning for why FTPL selects
these equilibria is quite simple in this case: the aggregate real debt balance Bt/Pt evolves
“locally deterministically” (meaning it only has drift and no diffusion over small time
intervals dt), and so its present value Et[

∫ ∞
t

Mu
Mt

Sudu] must also not have any diffusion.
This then implies xt must not have any sunspot volatility. Indeed, in all the surplus
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specifications considered so far, St/Yt = st = s(Ωt) is an exogenous process. And so you
can break up the real present value of surpluses into two components:

Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
= Yt ×Et

[ ∫ ∞

t
e−ρ(u−t)sudu

]
︸ ︷︷ ︸

exogenous for now

, (35)

where we have used the consumption FOC (8) to replace the SDF with Mu = e−ρuY−1
u .

The second term is exogenous and only driven by the surplus shocks dZ . For the overall
expression to have no diffusion, the first term Yt must offset those surplus shocks (im-
plying a particular loading of dx on dZ) and must not have any other volatility. Hence,
σx,t = 0. This result holds for any degree of price stickiness (any κ) and any inflation
volatility (any σπ,t). We revisit the determination of σπ in Section 5.5.

At first glance, the fact that Bt/Pt evolves locally deterministically seems critical but
potentially fragile. In principle, the price level itself could feature a diffusive compo-
nent, i.e., dPt/Pt = πtdt + σP,tdZt for some σP,t to be determined. However, in typical
continuous-time models of price stickiness, such a diffusion does not arise. For exam-
ple, in our world with Rotemberg price stickiness, we have proved that σP,t = 0 (see
Appendix B). If firms had such fast-moving prices, they would incur too many price ad-
justment costs, and this is not optimal. Similarly, in a world with Calvo price stickiness,
where price-setting opportunities arrive idiosyncratically at some rate χ, a fraction χdt
of firms may change their price over a short time interval dt. This also implies σP,t = 0.
In other words, the fact that Pt evolves locally deterministically is a standard outcome of
sticky price models. Beyond being an implication of the modeling, σP,t = 0 is also deeply
reasonable: nominal rigidities should mean that there is some high-enough frequency
at which prices don’t adjust; in continuous time, that high frequency is the Brownian
one. (Furthermore, even if σP,t 6= 0 somehow, it could not be some arbitrary equilibrium
object that allowed the government debt valuation equation to hold; it would need to be
consistent with firms’ pricing strategies.)

Debt prices, surplus rules, and discount rate variation. More broadly, one wishes to
generalize the insights above to avoid the idea that our result is “knife-edge.” In the
baseline case, the unit price of debt is fixed at 1 (given it is short-term debt), surplus-to-
output ratios are exogenous, and the equilibrium SDF is exactly reciprocal to surpluses
(due to log utility). Because of these assumptions, there is no channel that can poten-
tially absorb self-fulfilling demand shocks. The generalizations we pursue in the next
subsections relax each of these assumptions one-by-one.
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Just to motivate briefly why these extensions matter, let us preview a general model
with long-term debt, a potentially endogenous surplus-to-output ratio, and CRRA utility
with risk aversion γ. In that case, we show in Appendix A.4 that the present-value
formula for aggregate government debt is

QtBt

Pt
= YtEt

[ ∫ ∞

t
e−ρ(u−t)su

(Yu

Yt

)1−γ
du
]
, (36)

paralleling equation (1) in the introduction. Suppose Yt has some volatility via σx,t 6= 0.
Equation (36) illustrates three possible channels that can absorb this volatility, and thus
permit it to exist. First, the long-term debt price Qt can adjust to shocks; in the baseline
model, Qt = 1, and so this was not possible. Second, future surplus-to-output ratios
(su)u≥t can be endogenous, through a rule that responds to output and inflation, which
allows the present value of surplus-to-output ratios to adjust to shocks. Third, the term
e−ρ(u−t)(Yu

Yt

)1−γ
= Mu

Mt
Yu
Yt

represents the net variation of discount rates (i.e., marginal
utility growth Mu/Mt) and economic growth (i.e., output growth Yu/Yt); in the baseline
model, γ = 1, and this net variation was zero.

Overall, these three extensions are ways in which terms besides Yt can have diffusive
variation. Nevertheless, we will demonstrate in subsequent sections that the key conclu-
sion of Theorem 1 continues to hold, suggesting the logic of why FTPL selects σx = 0
runs deeper than timing assumptions or mathematical artifacts.

What is the general intuition for why FTPL selects equilibria even in these more
complex environments? Although bond prices and the present-value of surpluses can
absorb demand shocks in principle, these objects are forward-looking. For instance, in
the case of the bond price, it must satisfy an asset-pricing equation that constrains the
bond pricing function; the bond price is not free to take the form required to absorb any
and all demand shocks. The present-value of surpluses is essentially a long-dated asset
and also satisfies an asset-pricing equation, so a similar logic applies to the models with
surplus rules and CRRA utility. In all cases, the extensions add a degree of freedom that
might absorb demand shocks, but they also add a constraint, namely an asset-pricing
equation, that forbids such absorption.

Formalizing the generalizations: a Markovian class of equilibria. Next, we generalize
the key result that σx = 0. We explore (i) long-term debt; (ii) fiscal “rules” rather than
exogenous surpluses; and (iii) more general CRRA utility. Because these settings can
become substantially more complex, the proofs become unwieldy in the general case.
For that reason, we introduce these extensions one-by-one and specialize our analysis in
two ways. First, going forward, we will not consider surplus shocks (i.e., no exogenous
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states Ω with shocks dZ) nor monetary policy shocks (i.e., σ = 0), as they are mostly a
distraction that complicates expressions and introduces extra state variables. That said,
the reader can find the general equations including surplus shocks in Appendix A.4
(and see Lemma A.4 for a generic result including surplus shocks and all the exten-
sions simultaneously). Second, we restrict attention to the following class of Markovian
equilibria and prove our claims within this class.

Definition 3. An x-Markov equilibrium is a non-explosive equilibrium in a setting without
monetary shocks (σ = 0) in which inflation πt and volatility σx,t are functions of xt.

For our purposes, the equilibria covered by Definition 3 constitute a sufficiently gen-
eral class. Indeed, all the sunspot equilibria constructed in this paper fall under the
x-Markov type. This is clear for the rigid-price limit examples of Section 4, since πt = 0
and σx,t = σx(xt) in those cases. The construction with non-trivial inflation in Appendix
E is also of the x-Markov type: there, we construct a class of equilibria with πt = π(xt).
Thus, if FTPL can induce σx = 0 within the class of x-Markov equilibria, then it will have
ruled out all the sunspot equilibria constructed in this paper. In this sense, we think the
x-Markov class is rich enough to be useful in contrasting the equilibrium selection prop-
erties of Taylor rules versus FTPL.

5.2 FTPL with long-term debt

One important generalization replaces short-term debt with long-term debt. This is
naturally of interest because short-term debt prices can never respond to shocks. This
may lead one to think that short-term debt mechanically, in a knife-edge sense, rules out
self-fulfilling demand volatility.

To fix ideas and keep things tractable, let us assume that debt is coupon-free and has
a constant exponential maturity structure. Per unit of time dt, a constant fraction βdt of
outstanding debts mature, and their principal must be repaid. Denote the per-unit price
of this debt by Qt. The government’s flow budget constraint is now

QtḂt = βBt − βBtQt − PtSt. (37)

This says that new net debt sales Ḃt + βBt, which garner price Qt, plus primary surpluses
PtSt must be sufficient to pay back maturing debts βBt. By standard no-arbitrage asset-
pricing, the per-unit bond price is given by

Qt = Et

[ ∫ ∞

t

MT

Mt

Pt

PT
βe−β(T−t)dT

]
. (38)
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In the above, debt is nominal, so it is priced using the nominal SDF M/P (intuitively,
dividing by P converts a nominal cash flow into a real cash flow). The total real value of
debt is QtBt/Pt, and so the government debt valuation equation is now

QtBt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
. (39)

In an equilibrium with long-term debt, all three equations (37), (38), and (39) must hold.
To develop the intuition, we first consider the special example where the interest rate

is pegged ιt = ῑ. Recall the result that, with st = s̄, the right-hand-side of (39) equals
ρ−1s̄extY∗. Equate this expression to QtBt/Pt and apply Itô’s formula to both sides,
recalling equation (37) for Ḃt and that Ṗt/Pt = πt. By matching the “dZ” terms, we
obtain

σQ,t = σx,t, (40)

where σQ denotes the sunspot loading of log(Qt) on dZt. In other words, the self-
fulfilling demand shocks must be absorbed by long-term debt prices. The key question
is whether the pricing of long-term debt in (38) is consistent with this absorption.

Now, to price each bond, note that the nominal SDF in this setting is

Mt

Pt
= exp

[
−
∫ t

0
ιudu− 1

2

∫ t

0
σ2

x,udu−
∫ t

0
σx,udZu

]
.

Using the notation Ẽ for the risk-neutral expectation (which absorbs the martingale
1
2

∫ t
0 σ2

x,udu−
∫ t

0 σx,udZu), the debt price from (38) is then

Qt = Ẽt

[ ∫ ∞

t
βe−

∫ T
t (ιu+β)dudT

]
.

Finally, use the assumption of a pegged interest rate ιt = ῑ, which implies Qt = β
ῑ+β .

Debt prices are constant, so σQ = 0, and therefore equation (40) implies σx = 0. In fact,
the risk-neutral bond pricing formula just above reveals that the only way self-fulfilling
demand can enter Qt is via the interest rate rule. But this suggests that the result is
much more general than the peg example: monetary policy would need to follow a very
particular rule in order to create fluctuations in the bond price that are consistent with
self-fulfilling demand, which generically would not happen.

With unpegged interest rates, the debt price is no longer constant and can have
volatility. However, the volatility implied by the bond pricing equation (38) is inconsis-
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tent with the bond price volatility required to support self-fulfilling demand in (39), un-
less all these volatilities are zero. To summarize the reasoning, the introduction of long-
term debt allows for one extra degree of freedom, namely σQ, to absorb self-fulfilling
demand shocks, but it also introduces an extra constraint, namely the no-arbitrage pric-
ing equation for a single unit of debt. If σQ were some arbitrary process absorbing
demand shocks, that would violate the pricing equation for debt.

Theorem 2. Consider the economy with long-term debt and st = s̄. Suppose monetary shocks
are absent (σ→ 0) and equilibrium is x-Markov. Then, the economy generically has σx,t = 0.

5.3 FTPL with fiscal rules

Our next generalization allows surpluses to respond to endogenous variables, similarly
to the interest rate rule. Suppose again that St = stYt, where

st = s(xt, πt), (41)

for some bounded function s that satisfies s(0, 0) = s̄ > 0. In this environment, we will
also specialize to the linear Taylor rule (linear MP) to keep the analysis tractable.

Repeating the debt valuation computation from (GD), we obtain

Bt

Pt
= YtΨt, (42)

where Ψt := Et

[ ∫ ∞

t
e−ρ(T−t)sTdT

]
(43)

In the class of x-Markov equilibria of Definition 3, we have the major simplification that
Ψt = Ψ(xt) for some function Ψ that only depends on xt. In that case, even without
computing the function Ψ, by applying Itô’s formula to (42) and examining the loading
on the sunspot shock dZ, we can say that

0 = σx,t
[
Ψ(xt) + Ψ′(xt)

]
(44)

One possibility is σx = 0, which is the natural case we hope to prove. On the other
hand, if σx 6= 0, then the present-value of future surpluses needs to inherit any output
gap volatility, implying a particular functional form for Ψ. What we show is that this
functional form is generically inconsistent with equation (43), which provides a different
equation for Ψ, unless inflation π(x) and volatility σx(x) take a particular form. Then,
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we show that this particular sunspot form, under some conditions on the policy rules,
implies unstable dynamics, meaning that σx = 0 must hold.

Theorem 3. Consider the economy with fiscal rule (41) and monetary rule (linear MP), with
φx > 0, φπ < 1, and φx

1−φπ
> − s+∂xs

∂πs . Suppose monetary shocks are absent (σ → 0) and
equilibrium is x-Markov. Then, the economy generically has σx,t = 0.

5.4 FTPL with general CRRA utility

Finally, we replace log utility with general CRRA u(c, l) = c1−γ

1−γ −
l1+ϕ

1+ϕ . This extension
is of interest because log utility exhibits the knife-edge property that the present-value
of future surplus growth can have no net fluctuations from “discount rates” in excess of
“cash flows”, since the log utility SDF is related to the inverse of output.

In the CRRA world, two changes arise from the new consumption FOC Mt = e−ρtY−γ
t .

First, the IS curve now takes the slightly different form (A.19), and it depends on γ. Sec-
ond, the present value of surpluses is now different: with a constant surplus-to-output
ratio st = s̄, we have

Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
= s̄YtEt

[ ∫ ∞

t
e−ρ(u−t)

(Yu

Yt

)1−γ
du
]

The important point relative to log utility is that the present-value of surpluses can now
admit an additional type of fluctuation, because discount rates Mu

Mt
= e−ρ(u−t)(Yu

Yt
)−γ do

not exactly offset surplus growth Su
St

= Yu
Yt

. This potentially permits short-run volatility σx

because it can be absorbed, leaving the present-value of surpluses unaffected. That said,
we prove that our key result carries over to CRRA preferences in some cases. The key
intuition is that the absorption of short-run volatility by future discount rates requires
a very particular specification for the present-value of surpluses, which will generically
not arise.

Theorem 4. Consider the economy with CRRA utility. Suppose st = s̄ > 0 and monetary policy
follows a linear Taylor rule (linear MP) with φx

1−φπ
> 0. Suppose monetary shocks are absent

(σ→ 0) and equilibrium is x-Markov. Then, the economy generically has σx,t = 0.

Remark 4 (Conditions on policy rules). One may notice that Theorems 3-4 included addi-
tional conditions on the ratio φx

1−φπ
beyond what was required for the other cases. It is important

to realize that these conditions are only needed in ruling out a single particular sunspot equilib-
rium. Specifically, the proofs show that FTPL generically rules out all sunspot equilibria except a
particular one where σx(x) and π(x) are uniquely-determined functions. The conditions on the
policy rules are needed to rule out this final sunspot equilibrium.
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5.5 Inflation determination in FTPL

Theorems 1-4 only provide a “local” result, i.e., that σx = 0, without characterizing the
full dynamic equilibrium. They also show that inflation is not determined from the debt
valuation equation alone. Monetary policy is needed to pin inflation down.

For tractability, we specialize here to a quasi-linear setting that corresponds to Exam-
ple 1 in Section 2. In particular, this section assumes a linearized Phillips curve (linear
PC), the linear Taylor rule (linear MP), and an Ornstein-Uhlenbeck process for monetary
shocks dEt = −ζEtdt + dZt, which is the continuous-time version of an AR(1). In Section
2, we obtained a closed-form solution for the MSV equilibrium in this setting.

Here with FTPL, we will obtain a different solution. For the fiscal side, we assume the
surplus-to-output has dynamics following dst = λs(s̄− st) + ςs,t · dZt, for some arbitrary
volatility process ςs,t. We also assume debt is short-term as in the baseline specification.
Finally, to keep the analysis simple, we assume monetary policy adopts the time-varying
target rate ῑt = ρ − 1

2 |ςx,t|2, where ςx is the endogenous sensitivity of x to the fiscal
shocks dZ . Because Theorem 1 pins down ςx,t uniquely, its inclusion in the target rate is
conceptually distinct from the “risk premium targeting” we studied in Section 4.3. The
present target rate only serves as a normalization, so that the economy fluctuates around
(x, π) = (0, 0) rather than inheriting a non-zero steady-state.

Writing the equilibrium dynamics in vector form, with Ft := (xt, πt, Et)′, we have

dFt = AFtdt + BtdZt + CtdZt,

where A :=

 φx φπ − 1 σ

−κ ρ 0
0 0 −ζ

 , Bt :=

 0
σπ,t

1

 , and Ct :=

ς′x,t

ς′π,t

0


Notice that the first entry of Bt is zero, because of Theorem 1. Theorem 1 also restricts the
first entry of surplus shock loadings Ct. We follow a relatively standard analysis by doing
a spectral decomposition of the transition matrix A = VΛV−1, and analyzing the rotated
system F̃t := V−1Ft. By integrating the system dF̃t = ΛF̃tdt + V−1BtdZt + V−1Ct · dZt,
we obtain

E0F̃t = exp(Λt)F̃0. (45)

The rest is a familiar stability analysis of (45), in view of the non-explosion Condition
1. One eigenvalue of A is −ζ, corresponding to the exogenous monetary shock. There
are three cases regarding the other two eigenvalues that correspond to the dynamics of
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(x, π): both eigenvalues have positive real parts, the eigenvalues have opposite signs,
or both eigenvalues have negative real parts. Pursuing this analysis, we then obtain the
following generalization of some familiar results, with the proof in Appendix A.6.

Proposition 6. Consider the linearized Phillips curve (linear PC), the linear Taylor rule (linear
MP) with target rate ῑt = ρ+ 1

2 |ςx,t|2, and the surplus dynamics dst = λs(s̄− st)+ ςs,t · dZt. A
non-explosive equilibrium takes one of three forms, ignoring knife-edge cases for the parameters:

1. If ρ + φx > 0 and ρφx + κ(φπ − 1) > 0, then equilibrium generically fails to exist.

2. If ρφx + κ(φπ − 1) < 0, the unique equilibrium features

πt =
1

φπ − 1

[
βxt +

β(ρ + ζ)− κ(φπ − 1)
(φx + ζ)(ρ + ζ) + κ(φπ − 1)

σEt

]
,

where β := 1
2

(
ρ− φx −

√
(ρ− φx)2 − 4κ(φπ − 1)

)
.

3. If ρ + φx < 0 and ρφx + κ(φπ − 1) > 0, then the equilibrium is not unique.

In all cases, the output gap is pinned down by fiscal states (Bt
Pt

, st) as xt = log( Bt/Pt
Ψ(st)Y∗

) for some
function Ψ(s).

Proposition 6 is reminiscent of the large literature of FTPL in linearized New Key-
nesian models. Equilibrium cannot exist with both “active fiscal” and “active money”
regimes (case 1). Equilibrium exists and is unique when “passive money” is paired
with “active fiscal” (case 2). Passive money just means that ρφx + κ(φπ − 1) < 0, which
says that monetary policy is not too aggressive. These results echo Leeper (1991). A
finding which differs slightly from the literature is our case 3: monetary policy that
acts super aggressively against inflation but acts counterintuitively to output induces
non-uniqueness, despite active fiscal policy. This case can have self-fulfilling inflation
dynamics because monetary policy induces globally stable dynamics through its rule.
This third case shows clearly that monetary policy remains, in fact, critical to inflation
determination, even when FTPL is operative.

Of these three cases, the interesting case is the active-fiscal passive-money regime
(case 2), which delivers a unique equilibrium. There are two important takeaways. First,
FTPL ensures uniqueness for a broad range of monetary policy rules and not some knife-
edge rule. A unique equilibrium is achieved even under an interest rate peg, which fits
into case 2 by φx = φπ = σ = 0. Second, the FTPL equilibrium is observationally
distinct from the self-fulfilling stochastic equilibria under the Taylor principle. Under
FTPL, the output gap xt is pinned down as a function of the real debt balance Bt/Pt

34



and the primary surplus level st. All output gap volatility is tied to fiscal states and
not directly to monetary shocks. By contrast, the volatile equilibria possible under the
Taylor principle feature an entire class of possible output gap dynamics which are all
decoupled from fiscal states.

5.6 Summary and discussion: the roles of fiscal and monetary policies

Theorem 1 and Proposition 6 provide a clean breakdown of what fiscal and monetary
policies do. Fiscal policy provides what we refer to as “aggregate demand management”:
all demand shocks are fiscal shocks (i.e., σx = 0, whereas ςx is pinned down by ςs), for
any monetary policy rule. The monetary policy rule then connects inflation to output.
For example, in the standard passive-money regime (case 2 of Proposition 6), monetary
policy forces πt to be a function of xt and Et.

Let us elaborate on our view of FTPL as “aggregate demand management.” One way
to develop an intuition is to consider the rigid price limit κ → 0, where government
debt becomes equivalent to real debt. Nothing about the analysis above hinges on the
value of κ, and so FTPL still selects σx = 0. The key reason for this selection is that the
government debt valuation equation (GD) becomes a “no-default” condition in a rigid-
price world. Rather than determine the price level, or future inflation, equation (GD) says
that surpluses must eventually be positive enough to justify the current debt value. But
if the government’s taxation and spending regime is exogenous, and lacks the flexibility
that inflation provides, the only way a government can fulfill its no-default commitment
is if demand takes a particular path. The government debt valuation equation (GD) thus
constrains demand if κ → 0.

Our argument is that, surprisingly, a version of this logic extends to any κ > 0,
because FTPL is not really a theory of the price level per se, but a theory of aggregate
demand management. In fact, demand management corresponds to the typical stories
told about FTPL. Cochrane (2023), Chapter 2.3, writes

What force pushes the price level to its equilibrium value? ...If the price
level is too low, money may be left overnight. Consumers try to spend this
money, raising aggregate demand. Alternatively, a too-low price level may
come because the government soaks up too much money from bond sales.
Consumers either consume too little today relative to the future or too little
overall, violating intertemporal optimization or the transversality condition.
Fixing these, consumers again raise aggregate demand, raising the price level.
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The key margin of adjustment in these stories is aggregate demand. In a frictionless
model, the equilibrium price reflecting this adjustment is the price level. But in sticky
price models, the price level cannot jump, so equilibrium instead adjusts via output.

6 Conclusion

We show that New Keynesian models inherently fail to pin down demand volatility. The
distinguishing features of this volatility are that it is self-fulfilled by the presence of risk
premia and is countercyclical, arising only in recessionary times. Unlike conventional
monetary policy that only targets output and inflation, an enriched monetary rule that
directly targets risk premia, lowering rates aggressively when risk premia rise, can en-
sure determinacy. As an alternative to monetary policies, active fiscal policies ensure
determinacy across a wide variety of settings. Our fiscal theory examples permit: any
level of price stickiness, long-term debt, arbitrary exogenous surpluses, and some types
of surplus rules. In contrast to all interest rate rules, fiscal policies can ensure determi-
nacy even when monetary policy is constrained (e.g., by an effective lower bound).

What are the implications of our results for current practices in monetary economics?
Importantly, the standard New Keynesian paradigm of imposing the Taylor principle
and assuming determinacy is not valid when considering risk and risk premia. Hence,
the claims of such papers regarding, e.g., responses to monetary shocks are only one
possibility of many within their very own frameworks. By contrast, the FTPL approach
to selection has merit, implying monetary and fiscal policies are not alternatives to each
other in selecting a unique equilibrium. Rather, active fiscal policy provides determinacy
in strictly more situations than active money. But here, FTPL operates differently than
conventionally thought. In our nonlinear, stochastic solution, FTPL works by pinning
down demand volatility, and more specifically eliminating all non-fiscal demand volatil-
ity, while the monetary policy rule is needed to determine inflation. Thus, our analysis
provides a clean distinction between the role of fiscal and monetary policies, a distinction
that is not evident in existing research that restricts attention to linear equilibria.
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Online Appendix:
Fear, Indeterminacy, and Policy Responses

Paymon Khorrami and Fernando Mendo
May 18, 2025

A Proofs

A.1 Non-explosion and transversality conditions

For completeness, we briefly document the non-explosion requirements imposed by con-
sumer and firm optimality. We then show that our non-explosion Condition 1 suffices to
ensure these requirements hold. Thus, besides the standard derivations in the text, this
completes the proof of Lemma 1.

For the consumer side, note that the representative agent’s utility can be written

U0 = ρ−1
(

log Y∗ − (Y∗)1+ϕ

1 + ϕ

)
+
∫ ∞

0
e−ρtE

[
xt −

e(1+ϕ)xt

1 + ϕ

]
dt

We need to ensure the consumer obtains finite utility and that his transversality condition
holds. To ensure U0 > −∞, we require

lim
T→∞

Et[e−ρTxT] = 0 (A.1)

lim
T→∞

Et[e(1+ϕ)xT−ρT] = 0 (A.2)

Requirement (A.1) rules out ExT diverging to −∞ faster than rate ρ. Requirement (A.2)
rules out Ee(1+ϕ)xT diverging to +∞ faster than rate ρ. It is clear that if Condition 1
holds, then both (A.1)-(A.2) are satisfied.

The consumer’s transversality condition holds if and only if the lifetime budget con-
straint (5) holds with equality. Now, note that since price adjustment costs are non-
pecuniary, the real present value of aggregate profits are Πt = Et[

∫ ∞
t

Ms
Mt

(Ys − WsLs
Ps

)ds].
Using the resource constraint Ct = Yt and B0 = 0, we therefore have that the consumer
lifetime budget constraint (5) holds with equality, so long as all these integrals converge.
Convergence of the integrals can be evaluated using the FOCs. The consumption FOC
(8) implies E0[

∫ ∞
0 MtCtdt] = (ρλ)−1, so this integral converges. The labor FOC (7) and

market clearing Ct = Lt imply E0[
∫ ∞

0 Mt
WtLt

Pt
dt] = λ−1E0[

∫ ∞
0 e−ρtC1+ϕ

t dt], so this inte-

gral converges so long as E[C1+ϕ
t ] grows slower than eρt, which is exactly identical to

requirement (A.2) that has already been verified.
For the firm side, note that Appendix B derives the optimality conditions from the

firm’s price setting problem. There, we show that the firm’s transversality conditions
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are, in a symmetric equilibrium in which firms charge identical prices,

lim
T→∞

Et[e(1+ϕ)xT−ρT] = 0 (A.3)

lim
T→∞

Et[e−ρTπ2
T] = 0 (A.4)

Notice that requirement (A.3) is identical to (A.2), which we have already verified. Re-
quirement (A.4) avoids nominal explosions that imply an infinite present value of ad-
justment costs. Note that under Condition 1, this automatically holds.

A.2 Sufficient conditions for non-explosive equilibria

Here, we provide an abstract non-explosiveness lemma that is general enough to cover
all the candidate stochastic equilibria in this paper, at least after an appropriate change-
of-variables.

Let Z be a one-dimensional Brownian motion. Let Et ∈ (eL, eH) be one-dimensional
diffusion, following

dEt = µe(Et)dt + σe(Et)dZt, (A.5)

where −∞ < eL < eH < ∞. Assume µe, σe are continuous on [eL, eH]. Let Vt ≥ 0 satisfy

dVt = µv(Vt, Et)dt + σv(Vt, Et)dZt. (A.6)

Lemma A.1. Consider the setting above. Assume that

(H1) There is a strictly positive, bounded, and continuous function v̄ : [eL, eH] 7→ R+ such that
Vt ≤ v̄(Et) at all times.

(H2) µv(v, E) and σv(v, E) are finite on {(v, E) : 0 < v ≤ v̄(E)}.

(H3) σ2
v (v, E) is strictly positive for all v > 0 and v < v̄(E).

(H4) limv→0(
σv(v,E)

v )2 > 0 for all E (i.e., σ2
v vanishes at most quadratically).

(H5) θ > 1, where

θ := inf
E∈(eL,eH)

lim
v→0

2vµv(v, E)
σ2

v (v, E) . (A.7)

Then, lim inft→∞ E[log(Vt)] > −∞.
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Proof of Lemma A.1. Let D := {(v, E) : 0 ≤ v ≤ v̄(E), eL < E < eH} denote the do-
main of the state dynamics. By assumption (H1), the process (Vt, Et) remains in D with
probability 1. The crux of the proof is to essentially show that Vt does not concentrate
probability near the lower boundary v = 0.

Let θ be defined by (A.7). Choose α ∈ (0, θ−1
2 ). Define the Lyapunov function

f (v, E) = v−α.

Letting L denote the infinitesimal generator of (V, E), we have

L f (v, E) = −αµv(v, E)v−α−1 +
1
2

α(1 + α)σ2
v (v, E)v−α−2. (A.8)

By assumption (H5), there exists v− < minE v̄(E) such that for all v ≤ v−,

µv(v, E) ≥ 1
2
(1 + 2α)

σ2
v (v, E)

v
. (A.9)

Using (A.9) in (A.8), we have

L f (v, E) ≤ −1
2

α2v−α−2σ2
v (v, E), for v ≤ v− (A.10)

By assumptions (H3) and (H4), we have that σ2
v /v2 above is strictly positive for all v ≤ v−

and all E . Thus, c := infE infv≤v−
1
2 α2v−2σ2

v (v, E) is strictly positive, and so

L f (v, E) ≤ −c f (v, E), with c > 0, for v ≤ v−. (A.11)

On {v− ≤ v ≤ v+}, where v+ := maxE∈[eL,eH ] v̄(E), compactness and assumption (H2)
implies that for some b < ∞, we have

L f (v, E) ≤ b− c f (v−, E), for v− ≤ v ≤ v+ (A.12)

Therefore, combining (A.11)-(A.12), and noting that f (v, E) < f (v−, E) for all v > v−,
we obtain

L f (v, E) ≤ b− c f (v, E), on D. (A.13)
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By Lemma A.2 below, (A.13) implies

sup
t≥0

E[V−α
t ] = sup

t≥0
E[ f (Vt, Et)] < ∞. (A.14)

Letting xt := log(Vt) and applying Jensen’s inequality on the convex map u 7→ e−αu

gives
e−αE[xt] ≤ E[e−αxt ] = E[V−α

t ] < ∞,

so E[xt] ≥ − 1
α log E[V−α

t ]. Finally, take the infimum of both sides, using (A.14), to obtain
lim inft→∞ E[xt] > −∞. This completes the proof.

Lemma A.2. Let (Xt)t≥0 be a time-homogeneous diffusion process on a state space X with
extended generator L. Suppose a C2 function f : X 7→ R+ satisfies

L f (x) ≤ −c f (x) + b, c > 0, b < ∞.

Then, for all t ≥ 0,

Ex[ f (Xt)] ≤
(

f (x)− b/c
)
e−ct +

b
c

.

In particular, supt≥0 Ex[ f (Xt)] < ∞.

Proof of Lemma A.2. Using the generator bound, for any fixed t > 0, one gets

Ex[ f (Xt)] = f (x) +
∫ t

0
Ex[L f (Xs)

]
ds ≤ f (x)− c

∫ t

0
Ex[ f (Xs)]ds + bt.

Set F(t) = Ex[ f (Xt)]. Then,

F(t) ≤ f (x)− c
∫ t

0
F(s)ds + bt.

Note that F is time-differentiable, by Itô’s formula, since f is a C2 function. Differentiat-
ing yields

F′(t) ≤ −cF(t) + b, F(0) = f (x).

Solve this linear differential inequality by integrating against the factor ect:

d
dt
[ectF(t)] ≤ bect =⇒ ectF(t)− F(0) ≤ b

c
(ect − 1).

Rearranging gives the stated bound.
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A.3 Proofs for Sections 3-4

Proof of Proposition 1. Similar to the proof of Proposition 6 in Appendix A.6, the spec-
tral decomposition of Alinear is the key. Asymptotic instability of this system is guaran-
teed if Re(λ1), Re(λ2) > 0. This holds if and only if det(Alinear) > 0 and tr(Alinear) > 0,
which is equivalent to φx > −ρ and φπ > 1− ρφx/κ.

Proof of Proposition 2. This proposition is a special case of Proposition 3. Indeed, the
MSV equilibrium with κ → 0 and σ → 0 is exactly x∗ = 0 and σx∗ = 0. Therefore,
the “gap process” xt − x∗t studied in that proof exactly coincides with xt for the present
situation.

Proof of Proposition 3. Let x∗t = x∗(Et) denote the MSV solution. Denote demand
volatility in the MSV solution by σx∗(Et) =

d
dE x∗(Et). Note that both x∗ and σx∗ must be

bounded, since the MSV solution requires the second derivative of x∗ to exist, and since
the monetary state E is bounded.

Proof of statement (i). First, construct the volatility function σx(E , x). Let ω > 0 and
δ > 0 be arbitrary. Let β > 0 be a constant such that Assumption 1 holds. Define
x̄(E) := min[0, x∗(E)− δ]. Let the volatility function be given by

σ2
x(E , x) := σ2

x∗(E) +

2
[
e−2β(x−x∗(E))ω2 −Φ(x) + Φ(x∗(E))

]
, if x < x̄(E);

0, if x ≥ x̄(E).
(A.15)

Since this only defines the squared volatility, we also pick the construction such that σx

and σx∗ always have the same sign. Since Φ(·) is increasing and continuous, we have that
σ2

x(E , x) ≥ σ2
x∗(E), as required for there to be “excess volatility.” For the same reason,

notice that σ2
x(E , x) > σ2

x∗(E) for all x < x̄(E).
Next, consider the change of variables:

Vt = exp[β(xt − x∗t )].

Given ῑ = ρ, the dynamics of xt and x∗t = x∗(Et) are

dxt =
[
Φ(xt) + σEt +

1
2

σ2
x(Et, xt)

]
dt + σx(Et, xt)dZt

dx∗t =
[
Φ(x∗t ) + σEt +

1
2

σ2
x∗(Et)

]
dt + σx∗(Et)dZt
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Therefore, the dynamics of Vt are

dVt = µv(Et, Vt)dt + σv(Et, Vt)dZt, where

µv(E , v) := βv
[
Φ(χ(E , v))−Φ(x∗(E)) + σ2

x(E , χ(E , v))− σ2
x∗(E)

2
+

β

2

(
σx(E , χ(E , v))− σx∗(E)

)2]
σv(E , v) := βv

(
σx(E , χ(E , v))− σx∗(E)

)
where χ(E , v) := x∗(E) + β−1 log(v). The plan is to show that Vt satisfies the hypothe-
ses of Lemma A.1. Doing so will show that lim inft E[log(Vt)] > −∞, which ensures
lim inft E[xt] > −∞ (i.e., Condition 1 holds) because x∗(Et) is bounded.

We obviously have that Vt ≥ 0 forever. Defining v̄(E) := e−β max[x∗(E),δ], let us show
that Vt ≤ v̄(Et) forever if V0 starts below v̄(E0). For xt such that x̄(Et) ≤ xt < x∗(Et), or
equivalently v̄(Et) ≤ Vt < 1, we have that σv = 0, and so dVt = [Φ(xt)−Φ(x∗t )]dt < 0,
by the fact that Φ is increasing and that x < x∗(E). Therefore, Vt enters the region below
v̄(Et) in finite time when starting from any point V0 < 1. And if Vt ≤ v̄(Et), it can never
exit this region. So Vt satisfies hypothesis (H1) of Lemma A.1.

It is easy to see that µv and σ2
v are continuous on {v < v̄(E)} and are only potentially

infinite when v = 0. So Vt satisfies hypothesis (H2) of Lemma A.1.
Next, we showed earlier that σ2

x(E , x) > σx∗(E) for all x < x̄(E), and so σ2
v (E , v) > 0

for all v < v̄(E). This verifies that Vt satisfies assumption (H3) of Lemma A.1.
Next, analyze the diffusion σ2

v asymptotically as v → 0. We have that, for every E in
its bounded space,

lim
v→0

σv(E , v)2 = β2 lim
x→−∞

e2β(x−x∗(E))σx(E , x)2

= β2 lim
x→−∞

e2β(x−x∗(E))[σ∗x (E)2 − 2Φ(x) + 2Φ(x∗(E))] + 2β2ω2

= 2β2ω2 − 2β2 lim
x→−∞

e2β(x−x∗(E))Φ(x)

= 2β2ω2.

The first line uses the fact that x∗ and σx∗ are bounded. The second line uses the ex-
pression for σ2

x in (A.15). The third line uses again that x∗ and σ∗x bounded. The fourth
line uses Assumption 1. Hence, we have proved that σ2

v converges to a finite constant as
v→ 0, for every E , implying Vt satisfies hypothesis (H4) of Lemma A.1.

We next do a similar limiting analysis for the drift. Plugging (A.15) into the ex-
pression for µv, we see that vµv(E , v) = βω2 + 1

2 σv(E , v)2. Hence, we use the previous
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limiting results to show that

lim
v→0

vµv(E , v) = βω2 +
1
2

lim
v→0

σv(E , v)2 = β(1 + β)ω2,

for every E . Combining the limits for the diffusion and the drift, we have that

θ := lim
v→0

2vµv(E , v)
σv(E , v)2 =

1 + β

β
> 1

for every E . Consequently, hypothesis (H5) of Lemma A.1 holds.
This verifies all the hypotheses of Lemma A.1, proving that the construction is a valid

non-explosive equilibrium.
Finally, we prove the claim that any volatility function is valid if it satisfies suitable

boundary conditions. Instead of the σ2
x function in (A.15), consider any alternative func-

tion σ̃2
x , which (a) coincides with σ2

x for x 6∈ (−K, x̄(E)− K−1) for K arbitrarily large; and
(b) is finite and exceeds σ2

x∗ on x ∈ (−K, x̄(E) − K−1). By inspection, the entire proof
above remains valid. This proves statement (i) of the proposition.

Proof of statement (ii). We now prove that all equilibria with “excess volatility” are
recessionary. Consider a general rule Φ(x) satisfying φx := infx Φ′(x) > 0. Let σ2

x,t

be any volatility process such that σ2
x,t ≥ σ∗x (Et)2. We will study the “gap process”

∆t := xt − x∗t . Suppose, leading to contradiction that ∆0 > 0 was part of a non-explosive
equilibrium.

The dynamics of ∆t are

d∆t =
[
Φ(∆t + x∗t )−Φ(x∗t ) +

1
2

(
σ2

x,t − σ∗x (Et)
2
)]

dt +
(

σx,t − σ∗x (Et)
)

dZt, ∆0 > 0.

Consider the alternative process ∆̃t which drops the excess variance from the drift:

d∆̃t =
[
Φ(∆̃t + x∗t )−Φ(x∗t )

]
dt +

(
σx,t − σ∗x (Et)

)
dZt, ∆̃0 = ∆0 > 0.

Define the stopping time

τ0 := inf{t > 0 : ∆̃t = 0},

and put T0 := T ∧ τ0. Then,

E0[e−φxT0∆̃T0 ] = ∆̃0 + E0

[ ∫ T0

0
e−φxt

(
Φ(∆̃t + x∗t )−Φ(x∗t )− φx∆̃t

)
dt
]
≥ ∆̃0 = ∆0,
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since Φ(∆̃ + x∗)− Φ(x∗) ≥ φx∆̃ for all ∆̃ ≥ 0 (recall that φx > 0 is the minimal slope
of the general rule Φ(x)). The left-hand-side can be written e−φxTE0[∆̃T1{T<τ0}], since
∆̃τ0 = 0. Thus,

E0[∆̃T1{T<τ0}] ≥ eφxT∆0,

which by taking T → ∞ proves that lim supT→∞ E0[∆̃T] = +∞ with positive prob-
ability. This implies that lim supT→∞ E0[∆T] = +∞, since standard diffusion com-
parison theorems imply that ∆T ≥ ∆̃T almost-surely. Finally, this then implies that
lim supT→∞ E0[xT] = +∞, in violation of Condition 1, which proves the result.

Proof of Proposition 4. Let the enriched monetary rule be such that α+ ≤ 1 ≤ α− and
assume a linear output response function Φ(x) = φxx for φx > 0. Suppose, leading to
contradiction, that a non-zero non-explosive equilibrium exists, and in particular x0 6= 0.

By the Itô-Tanaka formula, the dynamics of |xt| are

d|xt| = sign(xt)
[
φxxt +

1
2
(1− α(xt))σ

2
x,t

]
dt + sign(xt)σx,tdZt + dL0

t ,

where α(x) := α+1{x>0} + α−1{x<0} is the state-dependent risk premium response, and
L0

t is the local time of xt at 0 (note that L0
t is a non-negative, non-decreasing process).

Integrating, taking expectations, and using the facts that sign(x)x = |x|, that L0
T ≥ 0,

that σ2
x ≥ 0, and that sign(x)(1− α(x)) ≥ 0, we obtain

E0|xT| = |x0|+ E0

∫ T

0

[
φx|xt|+ sign(xt)(1− α(xt))σ

2
x,t

]
dt + E0L0

T

≥ |x0|+ φx

∫ T

0
E0|xt|dt

Given x0 6= 0 and φx > 0, this proves that limT→∞ E0|xT| > 0. But if that is the
case, then the integral on the right-hand-side does not converge, which then implies
that limT→∞ E0|xT| = +∞, in violation of Condition 1. This contradicts the non-
explosiveness of the proposed equilibrium, and so x0 = xt = 0 for all t must hold.

Proof of Proposition 5. To prove the proposition, we only need to provide an example
construction for any x0 ≤ 0 starting point. The construction is as follows. Let ιt be
any interest rate process, subject to the lower bound ιt ≥ ι. Consider some constant
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b > 2(ρ− ι) and set

σ2
x =

b, if x < 0;

0, if x ≥ 0.

Then, the dynamics of xt are

dxt =


[
ιt − ρ + 1

2 b
]
dt +

√
bdZt, if xt < 0;

[ιt − ρ]dt, if xt ≥ 0.

This will constitute a non-explosive equilibrium if xt satisfies Condition 1. Consider the
auxiliary process x̃t, which satisfies x̃t = xt whenever xt ≥ 0 and otherwise follows

dx̃t =
[
ι− ρ +

1
2

b
]
dt +

√
bdZt, if xt < 0.

Because the drift of x exceeds that of x̃, standard diffusion comparison theorems imply
that xt ≥ x̃t forever. Furthermore, x̃t behaves like an arithmetic Brownian motion with
positive drift when xt < 0. By the well-known fact that a positive-drift arithmetic Brow-
nian motion has +∞ as its limit, we establish that lim inft→∞ E[x̃t] > −∞ almost-surely,
hence by the inequality xt ≥ x̃t we have lim inft→∞ E[xt] > −∞. On the other hand, xt is
a path-continuous process and crosses 0 continuously. At xt = 0, we have σx,t = 0, hence
ιt = ῑ = ρ is the interest rate, implying dxt = 0. So x = 0 is an absorbing boundary, and
lim supt→∞ E[xt] = 0 < +∞. Thus, Condition 1 is satisfied for x.

A.4 Characterization of FTPL in a general setting

Before proving the theorems from the text, we derive a useful characterization of the
government debt valuation equation that holds in a general environment nesting all the
cases in the text. The environment below will feature a general surplus process, long-
term debt, and CRRA utility.

We first set up a general surplus dynamic that nests all cases of interest. Let Zt be a
k-dimensional Brownian motion independent of the monetary/sunspot shock Zt. Let Ω
follow a Markov diffusion driven by Z . Let st := St/Yt be a rule of the form

st = s(Ωt, xt, πt) (A.16)

dΩt = µΩ(Ωt)dt + ςΩ(Ωt) · dZt (A.17)
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For now, we let the rule s(·) and dynamics µΩ, ςΩ be arbitrary functions. This is more
general than what we need going forward. Note that we obtain exogenous surpluses,
following the description in the text before equation (34), if we impose that s only de-
pends on Ω. Furthermore, we obtain surplus rules if we pick the dependence of s on
(x, π) appropriately.

Second, we generalize the model to the CRRA utility u(c, l) = c1−γ

1−γ + l1+ϕ

1+ϕ as in Section
5.4. In that case, the consumption FOC says

Mt = e−ρtC−γ
t . (A.18)

The labor-consumption margin is unaffected. Applying Itô’s formula to (A.18), and
noting that Ct = Yt = Y∗ext and − 1

dt E[ dMt
Mt

] = rt = ιt − πt, the IS curve generalizes to

dxt =
[ ιt − πt − ρ

γ
+

1
2

γσ2
x,t +

1
2

γ|ςx,t|2
]
dt + σx,tdZt + ςx,t · dZt. (A.19)

The dynamics of Yt = Y∗ext can be derived from (A.19). When γ 6= 1, the Phillips curve
is also different and requires an additional approximation to obtain a form similar to that
used throughout the paper. Indeed, the derivation of the Phillips curve in Appendix B
relies on MtYt ∝ e−ρt, which is no longer true with general CRRA utility. We make
this approximation, which is tantamount to approximating around steady-state where
Yt/Y0 ≈ 1. With this approximation, the Phillips curve (PC) is replaced by

µπ,t = ρπt − κ
( e(γ+ϕ)xt − 1

γ + ϕ

)
, (A.20)

where Y∗ := ( ε−1
ε )

1
γ+ϕ is the flexible-price output level and κ := η(ε− 1)(γ + ϕ) is the

composite price-stickiness parameter.
Third, we generalize to the long-term debt setup described in Section 5.2. Let Qt

denote the per-unit bond price, which has dynamics of the form

dQt = Qt

[
µQ,tdt + σQ,tdZt + ςQ,t · dZt

]
(A.21)

for some µQ, σQ, and ςQ to be determined. With long-term debt, the flow government
budget constraint is (37), the per-unit bond pricing equation is (38), and the aggregate
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government debt valuation equation is (39), all repeated here for convenience:

QtḂt = βBt − βBtQt − PtSt. (A.22)

Qt = Et

[ ∫ ∞

t

MT

Mt

Pt

PT
βe−β(T−t)dT

]
(A.23)

QtBt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
. (A.24)

Substituting the consumption FOC (A.18) into (A.24), we may rewrite the aggregate debt
valuation equation as

QtBt

Pt
= Yγ

t Ψt where Ψt := Et

[ ∫ ∞

t
e−ρ(u−t)suY1−γ

u du
]

(A.25)

The next steps are to derive the dynamics of the two key present values Qt and Ψt. These
are essentially two “asset-pricing equations.”

Starting from the per-unit bond pricing equation (A.23), we have that the object

e−βt QtMt

Pt
+
∫ t

0

Mu

Pu
βe−βudu

is a local martingale and has zero drift. Note that, from the consumption FOC (A.18),
the nominal SDF Mt/Pt has dynamics

d(Mt/Pt) = −(Mt/Pt)
[
ιtdt + γσx,tdZt + γςx,t · dZt

]
(A.26)

Then, by applying Itô’s formula to the previous expression, and setting the resulting
drift to zero, we have

µQ,t = β− β

Qt
+ ιt + γσx,tσQ,t + γςx,t · ςQ,t (A.27)

From the definition of Ψt, we have

e−ρtΨt +
∫ t

0
e−ρusuY1−γ

u du = Et

[ ∫ ∞

0
e−ρusuY1−γ

u du
]
,

which is a local martingale. By the martingale representation theorem, we have that

d
(

e−ρtΨt +
∫ t

0
e−ρusuY1−γ

u du
)
= e−ρt

(
σΨ,tdZt + ςΨ,t · dZt

)
for some σΨ,t and some ςΨ,t. On the other hand, we also have by applying Itô’s formula
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to the left-hand-side,

d
(

e−ρtΨt +
∫ t

0
e−ρusuY1−γ

u du
)
=
[
− ρe−ρtΨt + e−ρtstY

1−γ
t

]
dt + e−ρtdΨt

Equating these last two results, and rearranging for dΨt, we have

dΨt = (ρΨt − stY
1−γ
t )dt + σΨ,tdZt + ςΨ,t · dZt (A.28)

We now state and prove a useful characterization lemma.

Lemma A.3. In the setting above with general surpluses, long-term debt, and CRRA utility,

Ψtγσx,t = ΨtσQ,t − σΨ,t (A.29)

Ψtγςx,t = ΨtςQ,t − ςΨ,t (A.30)

Conversely, if the asset-pricing equations (A.27)-(A.28) hold, and the diffusion-matching equa-
tions (A.29)-(A.30) hold, then the government debt valuation equation (A.25) holds at every date,
provided it holds at the initial date.

Proof of Lemma A.3. We apply Itô’s formula to both sides of (A.25), using the flow gov-
ernment budget constraint (A.22), the price level dynamics dPt/Pt = πtdt, the dynamics
of xt in (A.19), the dynamics of Ψt in (A.28), and the dynamics of Qt in (A.21) and (A.27).
Matching drift and diffusion coefficients, we obtain

[dt] :
QtBt

Pt

[
ιt − πt + γσx,tσQ,t + γςx,t · ςQ,t

]
− stYt

= Yγ
t (ρΨt − stY

1−γ
t ) + γYγ

t Ψt

[ ιt − πt − ρ

γ
+

1
2
(γ + 1)(σ2

x,t + |ςx,t|2)
]

+
1
2

γ(γ− 1)Yγ
t Ψt(σ

2
x,t + |ςx,t|2) + γYγ

t σx,tσΨ,t + γYγ
t ςx,t · ςΨ,t

[dZ] :
QtBt

Pt
σQ,t = γYγ

t Ψtσx,t + Yγ
t σΨ,t

[dZ ] :
QtBt

Pt
ςQ,t = γYγ

t Ψtςx,t + Yγ
t ςΨ,t

Equations [dZ] and [dZ ], combined with (A.25), imply (A.29)-(A.30).
Conversely, plugging (A.29)-(A.30) into the first equation [dt], using (A.25), and sim-

plifying, we obtain an identity. Therefore, the [dt] equation holds automatically, given
the other equations all hold. This means that, provided (A.25) holds at t = 0, it will hold
at every future date t > 0.
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We next provide a generalization of Definition 3 that allows exogenous state variables
in the fiscal rule. This permits a general analysis that nests all special cases in Section 5.

Definition 4. An (x, Ω)-Markov equilibrium is a non-explosive equilibrium without mone-
tary shocks (σ = 0) such that inflation πt and volatilities σx,t, ςx,t are functions of (xt, Ωt).

Lemma A.4. The generalized model above has no (x, Ω)-Markov sunspot equilibria “generi-
cally,” in the sense that the 2 + dim(Z) endogenous variables π(x, Ω), σx(x, Ω), and ςx(x, Ω)

have only dim(Z) degrees of freedom whenever σx 6= 0. In particular, if dim(Z) = 0 (no fiscal
shocks), then π(x) and σx(x) are pinned down uniquely.

Proof of Lemma A.4. We start by using the (x, Ω)-Markov assumption, which implies
all dynamics are fully Markovian in (xt, Ωt). Hence, the bond price Qt and the present-
value Ψt solely functions of xt and Ωt, i.e., Qt = Q(xt, Ωt) and Ψt = Ψ(xt, Ωt) for some
functions Q(·) and Ψ(·) to be determined.7

Let us define the differential operator L that acts on C2 functions g of (x, Ω) by

L g =
(

µx∂x + µ′Ω∂Ω +
1
2
(σ2

x + |ςx|2)∂xx +
1
2

tr(ς′ΩςΩ∂ΩΩ′) + ς′xςΩ∂Ωx

)
g (A.31)

This operator produces drifts of any process which is a function of (x, Ω). Apply Itô’s
formula to Q and Ψ to obtain (after dropping t subscripts)

QσQ = σx∂xQ (A.32)

QςQ = ςx∂xQ + ςΩ∂ΩQ (A.33)

QµQ = L Q (A.34)

σΨ = σx∂xΨ (A.35)

ςΨ = ςx∂xΨ + ςΩ∂ΩΨ (A.36)

µΨ = L Ψ (A.37)

7 Indeed, in an (x, Ω)-Markov equilibrium, we have that (xt, Ωt) is a bivariate Markov diffusion. Now,
recall the bond pricing equation (38), which after plugging in the nominal SDF from (A.26) says

Qt = Et

[ ∫ ∞

t
e−
∫ u

t (ιτ+
1
2 γ2(σ2

x,τ+|ςx,τ |2))dτ−
∫ u

t γσx,τdZτ−
∫ u

t γςx,τ ·dZτ βe−β(u−t)du
]
.

Since ιt = ῑ + Φ(xt, πt) = ῑ + Φ(xt, π(xt, Ωt)) is purely a function of (xt, Ωt), as are σx,t and ςx,t, the bond
pricing equation above implies that Qt is purely a function of (xt, Ωt). Similarly, we have that surpluses st

are solely a function of (xt, Ωt). Given the definition of Ψt in (A.25), i.e., Ψt := Et
[ ∫ ∞

t e−ρ(u−t)suY1−γ
u du

]
,

and given that Yt = Y∗ext , we obtain that Ψt is a function of (xt, Ωt) alone.
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Combining these results with equations (A.27), (A.28), (A.29), and (A.30), we obtain

γσx = σx∂xQ/Q− σx∂xΨ/Ψ (A.38)

γςx = ςx∂xQ/Q− ςx∂xΨ/Ψ + ςΩ∂ΩQ/Q− ςΩ∂ΩΨ/Ψ (A.39)

and

(β + ῑ + Φ(x, π))Q− β + γσ2
x ∂xQ + γ|ςx|2∂xQ + γςx · ςΩ∂ΩQ = L Q (A.40)

ρΨ− s(Ω, x, π)(Y∗)1−γe(1−γ)x = L Ψ (A.41)

The equations above hold in all the particular specifications considered in the paper.
Note that in the short-term debt case, which can be derived by taking β → ∞, equation
(A.40) implies Q → 1 uniformly, as we have imposed in the paper. In addition, after
taking this limit we have limβ→∞ ∂xQ = 0 and limβ→∞ ∂ΩQ = 0, and so limβ→∞( β

Q −
β) = ῑ + Φ(x, π). This limiting result is also consistent with taking the β → ∞ in the
flow budget constraint (A.22) in order to recover (29).

Now, suppose σx 6= 0. In that case, equation (A.38) says that γ = ∂xQ/Q− ∂xΨ/Ψ,
and equation (A.39) says that ∂ΩQ/Q = ∂ΩΨ/Ψ. The first equation implies that Q(x, Ω) =

Ψ(x, Ω)G(Ω)eγx for some function G(·). The second equation implies that G(Ω) = G
constant. Thus,

Q(x, Ω) = GΨ(x, Ω)eγx. (A.42)

Note that then G is pinned down by equation (A.25) at time t = 0, since combining that
equation with (A.42) says B0

P0
G = (Y∗)γ. Thus, (A.42) pins down Q given Ψ. Substitute

(A.42) into equation (A.40) and then subtract equation (A.41) to get

s(Ω, x, π)(Y∗)1−γ

Ψ
e(1−γ)x − ρ + β + ῑ + Φ(x, π)− β

GΨ
e−γx = γµx −

1
2

γ2(σ2
x + |ςx|2)

Now, plug in µx from the IS curve (A.19) to get

0 = π +
s(Ω, x, π)(Y∗)1−γ

Ψ
e(1−γ)x + β− β

GΨ
e−γx (A.43)

Note that, for the short-term debt case, lim β(1− 1
GΨ e−γx) = −(ῑ + Φ(x, π)) as argued

above. Equation (A.43) thus pins down Ψ given π. Since we only used so far the
difference between equations (A.40) and (A.41), we still need to ensure that one of them
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holds in isolation. Thus, consider equation (A.41), after plugging in µx from (A.19):

ρΨ− s(Ω, x, π)(Y∗)1−γe(1−γ)x (A.44)

=
[ ῑ + Φ(x, π)− π − ρ

γ
+

1
2

γ(σ2
x + |ςx|2)

]
∂xΨ + µ′Ω∂ΩΨ +

1
2
(σ2

x + |ςx|2)∂xxΨ

+
1
2

tr(ς′ΩςΩ∂ΩΩ′Ψ) + ς′xςΩ∂ΩxΨ

Given (π, σx, ςx), equation (A.44) is a PDE for Ψ. Finally, recall the Phillips curve (A.20),
apply Itô’s formula to a generic inflation function π(x, Ω) to replace µπ, and then plug
in µx from (A.19):

ρπ − κ f (x) (A.45)

=
[ ῑ + Φ(x, π)− π − ρ

γ
+

1
2

γ(σ2
x + |ςx|2)

]
∂xπ + µ′Ω∂Ωπ +

1
2
(σ2

x + |ςx|2)∂xxπ

+
1
2

tr(ς′ΩςΩ∂ΩΩ′π) + ς′xςΩ∂Ωxπ

where f (x) := e(γ+ϕ)x−1
γ+ϕ . Given (σx, ςx), equation (A.45) is a PDE for π.

At this point, consider the following experiment. Suppose π(x, Ω) is any function.
Then, equation (A.43) pins down Ψ(x, Ω) uniquely, and equation (A.42) pins down
Q(x, Ω) uniquely. Given π and Ψ, we can compute all their derivatives, and so equa-
tions (A.44) and (A.45) pin down 2 dimensions of the 1 + dim(Z) dimensional vector
(σx, ςx). In other words, we must pick σx and/or ςx in order to ensure equations (A.44)
and (A.45) hold.

Thus, if dim(Z) = 0, then either σx = 0, or π(x) and σx(x)2 must take a particular
form. Note also that these functions are independent of Ω since there are no sunspot
shocks (hence Ω is not a state variable for any object in the case dim(Z) = 0).

Corollary A.1. Without fiscal state variables (no Ω) and without monetary shocks (σ = 0), in
an x-Markov equilibrium, the model above requires the following to hold whenever σx 6= 0:

Q(x) = GΨ(x)eγx (A.46)

Ψ(x) =
G−1βe−γx − s(x, π(x))(Y∗)1−γe(1−γ)x

β + π(x)
(A.47)

σx(x)2 = 2
ρπ(x)− κ f (x)− ῑ+Φ(x,π(x))−π(x)−ρ

γ π′(x)

γπ′(x) + π′′(x)
(A.48)
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and

ρΨ(x)− s(x, π(x))(Y∗)1−γe(1−γ)x =
γΨ′(x) + Ψ′′(x)
γπ′(x) + π′′(x)

(ρπ(x)− κ f (x)) (A.49)

=
[ ῑ + Φ(x, π(x))− π(x)− ρ

γ

]Ψ′(x)π′′(x)−Ψ′′(x)π′(x)
γπ′(x) + π′′(x)

Thus, the objects (Q, Ψ, σ2
x , π) are all pinned down in an x-Markov equilibrium when σx 6= 0.

A.5 Proofs of FTPL Theorems 1-4

Proof of Theorem 1. We specialize the result of Lemma A.3 as follows. (We use Lemma
A.3 as opposed to Lemma A.4 because this theorem does not specialize to the x-Markov
class of equilibria.) First, with log utility (γ = 1), the present value Ψt in (A.25) becomes

Ψt := Et

[ ∫ ∞

t
e−ρ(u−t)sudu

]
Second, with the exogenous Markovian surplus process st = s(Ωt), we have that Ψt

is purely determined by Ωt, i.e., there exists a deterministic function Ψ(·) such that
Ψt = Ψ(Ωt). In that case, we have by Itô’s formula and (A.17) that σΨ,t = 0. Third, we
have instantaneously-maturing debt, which is nested in the above formulas by setting
Qt = 1. This implies σQ,t = 0. Using these results, (A.29) holds if and only if Ψtσx,t = 0.
Thus, σx,t = 0 for almost all t (except at the times when Ψt = 0, which are zero Lebesgue
measure almost-surely). For the statement about (GD) holding for every t > 0, given it
holds at t = 0, see the final statement of Lemma A.3.

Remark A.1 (Non-Markovian surpluses). From the proof of Theorem 1, it is clear that the
same arguments hold even in the more general non-Markovian case where (st)t≥0 is independent
of (Zt)t≥0, because in that case σΨ,t = 0 still holds.

Proof of Theorem 2. The combination of log utility (γ = 1) and constant surplus-to-
output ratio st = s̄ implies that Ψt = s̄/ρ is constant for any π(x) and any σx(x) func-
tions. We then specialize the results of Corollary A.1 as follows. Equation (A.47) pins
down inflation as

π(x) =
ρβ

Gs̄
e−x − β− ρ, when σx 6= 0. (A.50)

Note that π′(x) + π′′(x) = 0. Then, equation (A.48) implies that, after plugging in the
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derivatives of π from (A.50),

e−x ρβ

Gs̄
(
ῑ + Φ(x, π)− π

)
− κ f (x) = ρ(ρ + β), when σx 6= 0. (A.51)

But everything is pinned down in equation (A.51). The result cannot be consistent
with the solution for π in (A.50) unless the monetary policy rule Φ takes a knife-edge
form, and so generically we reach a contradiction. Thus, σx = 0 must hold.

Proof of Theorem 3. We specialize the results of Corollary A.1 as follows. Using log
utility (γ = 1) and short-term debt (β→ ∞) in equation (A.47) implies that

Ψ(x) = Ψ̄e−x, when σx 6= 0,

for Ψ̄ = 1/G. Notice that Ψ′(x) + Ψ′′(x) = 0 in this solution. Thus, equation (A.49),
after plugging in the solution for Ψ and its derivatives, says that

s(x, π) = (ῑ + Φ(x, π)− π)Ψ̄e−x, when σx 6= 0. (A.52)

Equation (A.52) pins down π uniquely when σx 6= 0, unless the rules s(·), Φ(·) take a
knife-edge form. Finally, equation (A.48) specializes to

σ2
x = σ̃2

x := 2
ρπ − κ f (x)− [ῑ + Φ(x, π)− π − ρ]π′

π′ + π′′
, when σx 6= 0. (A.53)

Given the solution for π, this pins down σ2
x uniquely when it is non-zero.

Given the functions Ψ(x), π(x), and σx(x)2 are all pinned down assuming σx 6= 0, it
remains to verify that the candidate sunspot equilibrium explodes, which then implies
σx = 0. First, we want to show that the solution for σ̃2

x in (A.53) necessarily becomes
negative at some x > −∞, which implies that non-exposiveness requires us to ensure
xt ≥ x for all t. Using the equation (A.52) for π, notice that s bounded implies that, as
x → −∞, we must have ῑ + Φ(x, π)− π → 0. This then implies that, using the linear
Taylor rule Φ(x, π) = φxx + φππ,

lim
x→−∞

(
π(x)− ῑ + φxx

1− φπ

)
= 0.

As x → ∞, we thus have π → −∞ (using the assumption that φx > 0 and φπ < 1),
π′ → φx

1−φπ
, and π′′ → 0. Plugging these into (A.53), we obtain limx→−∞ σ̃2

x = −∞. Thus,
let us define x := inf{x : σ̃2

x = 0} > −∞.
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Second, note that to ensure xt ≥ x, we require

µx(x) = ῑ + Φ(x, π(x))− π(x)− ρ ≥ 0.

Rather than prove this cannot hold, we instead prove that the function µ̃x(x) := ῑ +

Φ(x, π(x)) − π(x) − ρ is strictly increasing when π is given by (A.52). This suffices,
since it implies that xt → +∞ under any parameters such that xt ≥ x, in violation of the
non-explosion condition. Indeed, µ̃x(x) is the drift of xt when volatility is zero, and the
volatility only serves to increase the drift.

Differentiating µ̃x(x), using the linear form of the Taylor rule, and substituting π′

from implicitly differentiating (A.52), we obtain

µ̃′x = φx + (φπ − 1)π′ = φx − (φπ − 1)
∂xs + s− Ψ̄e−xφx

∂πs + (1− φπ)Ψ̄e−x

Using the assumptions of the theorem that φx > 0, φπ < 1, and φx
1−φπ

> − s+∂xs
∂πs , and

noting that Ψ̄ = G−1 = B0
P0
(Y∗)−1 > 0, we have

µ̃′x = φx

[
1−
− ∂xs+s

φx
+ Ψ̄e−x

∂πs
1−φπ

+ Ψ̄e−x

]
> φx

[
1−

∂πs
1−φπ

+ Ψ̄e−x

∂πs
1−φπ

+ Ψ̄e−x

]
= 0.

This proves that xt necessarily explodes, implying that σx = 0 generically.

Proof of Theorem 4. We specialize the results of Corollary A.1 as follows. Using the
assumption of short-term debt (β→ ∞) in equation (A.47) implies that

Ψ(x) = Ψ̄e−γx, when σx 6= 0,

where Ψ̄ = 1/G. Notice that γΨ′(x) + Ψ′′(x) = 0 in this solution. Then, equation (A.49)
implies, given s = s̄ and the function Ψ,

(Y∗)1−γ s̄ =
(
ῑ + Φ(x, π)− π

)
Ψ̄e−x, when σx 6= 0, (A.54)

which pins down π uniquely when σx 6= 0, unless the rule Φ(·) takes a knife-edge form.
Finally, equation (A.48) specializes to

σ2
x = σ̃2

x := 2
ρπ − κ f (x)− ῑ+Φ(x,π)−π−ρ

γ π′

γπ′ + π′′
, when σx 6= 0. (A.55)
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Given the solution for π, this pins down σ2
x uniquely when it is non-zero.

Given the functions Ψ(x), π(x), and σx(x)2 are all pinned down assuming σx 6= 0, it
remains to verify that the candidate sunspot equilibrium explodes, which then implies
σx = 0. This step is almost identical to Theorem 3. First, we want to show that the
solution for σ̃2

x in (A.53) necessarily becomes negative at some x > −∞, which implies
that non-exposiveness requires us to ensure xt ≥ x for all t. Using the equation (A.54),
and the linear Taylor rule Φ(x, π) = φxx + φππ, we solve for π and its derivatives
explicitly as

π(x) =
Ψ̄−1(Y∗)1−γ s̄ex − ῑ− φxx

φπ − 1

π′(x) =
Ψ̄−1(Y∗)1−γ s̄ex − φx

φπ − 1

π′′(x) =
Ψ̄−1(Y∗)1−γ s̄ex

φπ − 1

Notice that, as x → −∞, given the assumption that φx
1−φπ

> 0, we have π → −∞,

π′ → φx
1−φπ

, and π′′ → 0. Plugging these into (A.55), we obtain limx→−∞ σ̃2
x = −∞. Thus,

let us define x := inf{x : σ̃2
x = 0} > −∞.

Second, note that to ensure xt ≥ x, we require

µx(x) =
1
γ

[
ῑ + Φ(x, π(x))− π(x)− ρ

]
≥ 0.

Rather than prove this cannot hold, we instead prove that the function µ̃x(x) := γ−1[ῑ +

Φ(x, π(x)) − π(x) − ρ] is strictly increasing when π is given by (A.54). This suffices,
since it implies that xt → +∞ under any parameters such that xt ≥ x, in violation of the
non-explosion condition. Indeed, µ̃x(x) is the drift of xt when volatility is zero, and the
volatility only serves to increase the drift.

Differentiating µ̃x(x), using the linear form of the Taylor rule, and substituting π′

from above, we obtain

γµ̃′x = φx + (φπ − 1)π′ = φx + (φπ − 1)
Ψ̄−1(Y∗)1−γ s̄ex − φx

φπ − 1
= Ψ̄−1(Y∗)1−γ s̄ex > 0,

where we have used the fact that s̄ > 0 and Ψ̄ = G−1 = B0
P0
(Y∗)−γ > 0. This proves that

xt necessarily explodes, implying that σx = 0 generically.
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A.6 Proof of Proposition 6

First, note that the spectral decomposition of A = VΛV−1 is

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 and V =
[
v(λ1) v(λ2) v(λ3)

]
,

where the eigenvalues λ1, λ2, λ3 and the corresponding eigenvectors v(λ1), v(λ2), v(λ3)

are

λ1 =
1
2

[
ρ + φx +

√
(ρ− φx)2 − 4κ(φπ − 1)

]
λ2 =

1
2

[
ρ + φx −

√
(ρ− φx)2 − 4κ(φπ − 1)

]
λ3 = −ζ.

and

v(λ1) =


φπ−1
λ1−φx

1
0

 , v(λ2) =


φπ−1
λ2−φx

1
0

 , v(λ3) =

 −(ρ + ζ)σ

−κσ

(φx + ζ)(ρ + ζ) + κ(φπ − 1)


Recall equation (45) that

E0[F̃t] = exp(Λt)F̃0, (A.56)

where F̃t = V−1Ft is a rotated version of the state Ft = (xt, πt, Et)′, and where

V−1 =
1

λ2 − λ1


(λ1−φx)(λ2−φx)

φπ−1 −(λ1 − φx)
λ1−φx
φπ−1

(λ2−φx)(ρ+ζ)−κ(φπ−1)
(φx+ζ)(ρ+ζ)+κ(φπ−1) σ

− (λ1−φx)(λ2−φx)
φπ−1 λ2 − φx −λ2−φx

φπ−1
(λ1−φx)(ρ+ζ)−κ(φπ−1)
(φx+ζ)(ρ+ζ)+κ(φπ−1) σ

0 0 λ2−λ1
(φx+ζ)(ρ+ζ)+κ(φπ−1)

 .

In equation (A.56), exp(Λt) refers to element-by-element exponentiation of Λ.
Let’s consider the three cases of the proposition, using Condition 1 to kill explosive

solutions to (A.56):

1. Case 1: ρ + φx > 0 and ρφx + κ(φπ − 1) > 0.

In this case, Re(λ1), Re(λ2) > 0. Therefore, all non-explosive solutions to (A.56)
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must satisfy F̃(1)
t = F̃(2)

t = 0. Using the expression for V−1, this implies that

xt = −
(ρ + ζ)σ

(φx + ζ)(ρ + ζ) + κ(φπ − 1)
Et and πt = −

κσ

(φx + ζ)(ρ + ζ) + κ(φπ − 1)
Et

2. Case 2: ρφx + κ(φπ − 1) < 0.

In this case, both eigenvalues are real and have opposite signs: λ1 > 0 > λ2.
Therefore, all non-explosive solutions to (A.56) must satisfy F̃(1)

t = 0, which using
the expression for V−1 implies

πt =
λ2 − φx

φπ − 1
xt +

(λ2 − φx)(ρ + ζ)− κ(φπ − 1)
(φx + ζ)(ρ + ζ) + κ(φπ − 1)

σ

φπ − 1
Et. (A.57)

Given σx,t = 0 from Theorem 1, this then implies σπ,t = 0 as well.

3. Case 3: ρ + φx < 0 and ρφx + κ(φπ − 1) > 0.

In this case, Re(λ1), Re(λ2) < 0, meaning all initial conditions to (A.56) are non-
explosive. Therefore, any F̃0 corresponds to a valid equilibrium.

In all cases, we note that x0 and ςx,t are pinned down by (GD) at t = 0 and at t > 0,
respectively. Indeed, using dst = λs[st − s̄]dt + ςs,t · dZt in equation (A.25), we obtain

Ψt = Ψ(st) :=
s̄
ρ
+

st − s̄
ρ + λs

,

which is exogenous. Using Ψt in (GD), we obtain

xt = log(
Bt/Pt

Ψ(st)Y∗
). (A.58)

On the other hand, for t > 0, we have ςΨ = 1
ρ+λs

ςs. Apply this in equation (A.30) of
Lemma A.3, with γ = 1 and Q ≡ 1, to obtain

ςx,t = −
ρ

λs s̄ + ρst
ςs,t. (A.59)

Thus, xt and ςx,t are pinned down by Bt/Pt and st.
The remaining claims to prove are the existence/uniqueness statements. In Case 1,

the equilibrium fails to exist generically, because xt ∝ σEt cannot be consistent with
(A.58) and (A.59). In Case 2, the equilibrium is unique, because the initial condition E0

is given exogenously, x0 is pinned down by (A.58), and so π0 is pinned down by (A.57),
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and because the surplus shock exposures ςx,t and ςπ,t =
λ2−φx
φπ−1 ςx,t are pinned down by

(A.59). In Case 3, the equilibrium is not unique because, although x0 is pinned down by
(A.58), π0 is not pinned down. Furthermore, πt can have arbitrary non-fiscal volatility
σπ,t, despite the fact that σx,t = 0.

B Inflation Dynamics under Rotemberg

Here, we generalize the sticky-price model of Rotemberg (1982) to our environment.
Since firms in our economy are ex-ante identical, they will have identical utilization
and price-setting incentives, allowing us to study a representative firm’s problem and a
symmetric equilibrium.

To set up the representative intermediate-goods-producer problem, let lt denote the
firm’s hired labor, at some equilibrium wage Wt. The firm produces yt = lt. The firm
makes its price choice pt, internalizing its demand yt = (pt/Pt)−εYt, where Pt and Yt

are the aggregate price and output. This demand curve comes from an underlying
Dixit-Stiglitz structure with CES preferences (with substitution elasticity ε > 1) and
monopolistic competition in the intermediate goods sector.

Letting Mt denote the real SDF process, the representative firm solves

sup
p,l

E
[ ∫ ∞

0
Mt

( pt

Pt
yt −

Wtlt
Pt
− 1

2η

( 1
dt

dpt

pt

)2Yt

)
dt
]

(B.1)

subject to yt = (pt/Pt)
−εYt (B.2)

yt = lt (B.3)

The quadratic price adjustment cost in (B.1) has a penalty parameter η. As η → 0 (η →
∞), prices become permanently rigid (flexible). We assume that this price adjustment
cost is purely non-pecuniary for simplicity (this means that adjustment costs do not
affect the resource constraint). Alternatively, we could redistribute these adjustment
costs lump-sum to the representative household.

Before solving the problem, we can immediately note the following property: price
changes are necessarily absolutely continuous (“order dt”). Indeed, the adjustment cost
per unit of time is a function of price changes per unit of time, i.e., 1

dt
dpt
pt

. If prices

were to change faster than dt, say with the Brownian motion dZt, then 1
dt

dpt
pt

would be
unbounded almost-surely (because Brownian motion is nowhere-differentiable), leading
to infinite adjustment costs. Consequently, we know that 1

dt
dpt
pt

= ṗt
pt

for some ṗt.
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The firm’s optimal price sequence solves a dynamic optimization problem. Substitut-
ing the demand curve from (B.2) and the production function from (B.3), we may rewrite
problem (B.1) as

sup
ṗ

Et

[ ∫ ∞

t

MsYs

MtYt

(( ps

Ps

)1−ε − Ws

Ps

( ps

Ps

)−ε − 1
2η

( ṗs

ps

)2
)

ds
]
.

Furthermore, note that in the log utility model used in the text, we have MtYt = e−ρt.
Letting J denote this firm’s value function, the HJB equation is

0 = sup
ṗt

{( pt

Pt

)1−ε − Wt

Pt

( pt

Pt

)−ε − 1
2η

( ṗt

pt

)2 − ρJt +
1
dt

Et
[
dJt
]}

The firm value function follows a process of the form

dJt = [µJ,t + ṗt
∂

∂p
Jt]dt + σJ,tdZt,

where µJ,t and σJ,t are only functions of aggregate states (not the individual price). The
only part that the firm can affect is ṗt

∂
∂p Jt. Plugging these results back into the HJB

equation and taking the FOC, we have

0 = − 1
η

( ṗt

pt

) 1
pt

+
∂

∂p
Jt (B.4)

Differentiating the HJB equation with respect to the state variable pt, we have the enve-
lope condition

(ε− 1)
( pt

Pt

)−ε 1
Pt
− ε

Wt

Pt

( pt

Pt

)−ε−1 1
Pt

=
1
η

( ṗt

pt

)2 1
pt
− ρ

∂

∂p
Jt +

1
dt

Et
[
d
( ∂

∂p
Jt
)]

, (B.5)

where the last term uses the stochastic Fubini theorem. Combining equations (B.4) and
(B.5), we have

η(ε− 1)
( pt

Pt

)−ε 1
Pt
− ηε

Wt

Pt

( pt

Pt

)−ε−1 1
Pt

=
( ṗt

pt

)2 1
pt
− ρ
( ṗt

pt

) 1
pt

+
1
dt

Et
[
d
(( ṗt

pt

) 1
pt

)]
(B.6)

At this point, define the firm-level inflation rate πt := ṗt/pt, note that Et
[
d
(
πt

1
pt

)]
=
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1
pt

Et[dπt]− 1
pt

π2
t dt, and use the symmetry assumption pt = Pt in (B.6) to get

η(ε− 1)− ηε
Wt

Pt
= −ρπt +

1
dt

Et[dπt]. (B.7)

Equation (B.7) is the continuous-time stochastic Phillips curve, with πt interpreted also
as the aggregate inflation rate (given a symmetric equilibrium).

Finally, note that the firm’s optimization problem also requires the following transver-
sality condition (see Theorem 9.1 of Fleming and Soner (2006)):

lim
T→∞

Et[MTYT JT] = 0.

In a symmetric equilibrium (p = P), and using the log utility result MtYt = e−ρt, we
have that

MTYT JT = ET

[ ∫ ∞

T
e−ρt

(
1− (Y∗)1+ϕe(1+ϕ)xt − 1

2η
π2

t

)
dt
]

Take expectations and the limit T → ∞. Sufficient conditions for the result to be zero are

lim
T→∞

Et[e(1+ϕ)xT−ρT] = 0 (B.8)

lim
T→∞

Et[e−ρTπ2
T] = 0 (B.9)

Equation (B.8) is identical to the one of the requirements for the consumer’s problem
to be well-defined (see Appendix A.1). Equation (B.9) avoids nominal explosions that
imply an infinite present value of adjustment costs. Note that under Condition 1, both
of these equations automatically hold.

C Nonlinear Phillips Curve

This section briefly explores the stability properties of the nonlinear Phillips curve, in
contrast the linearized version used oftentimes in the paper. We will do this only in
the context of deterministic equilibria, for simplicity. For convenience, we repeat this
nonlinear equation here:

π̇t = ρπt − κ
( e(1+ϕ)xt − 1

1 + ϕ

)
. (C.1)
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We also repeat the IS curve after substituting the linear Taylor rule with target rate ῑ = ρ:

ẋt = φxxt + (φπ − 1)πt. (C.2)

A deterministic non-explosive equilibrium in this environment is (xt, πt) that satisfy
(C.1)-(C.2) and asymptotic non-explosion Condition 1.

The nonlinearity of the Phillips curve does not change the basic determinacy result
of Proposition 1, as we show next (although our proof requires stronger assumptions on
the Taylor rule to ensure global determinacy).

Proposition C.1. Consider the system (C.1)-(C.2) with φx > ρ and φπ > 1. Then, the only
initial pair (x0, π0) consistent with a deterministic non-explosive equilibrium is (x0, π0) =

(0, 0). Any other initial pair diverges, but only asymptotically (i.e., not in finite time).

Proof of Proposition C.1. Define f (x) := e(1+ϕ)x−1
1+ϕ . From (C.1)-(C.2), the steady state

solves
−φxx = (φπ − 1)κρ−1 f (x)

The two sides of this equation have opposite slopes in x, so the unique solution is x = 0,
proving the unique steady state is (x, π) = (0, 0). The steady state is locally unstable,
by the same linearized eigenvalue analysis leading to Proposition 1. By the local stable
manifold theorem, we have that the unique stable solution to the dynamics is in fact this
steady state. We now prove that any non-explosive equilibrium (satisfying Condition 1)
must have (xt, πt) = (0, 0) for all t. Assume not, i.e., assume, leading to contradiction,
that xt ∈ [x, x] for all t > 0, where x < 0 < x.

First, from (C.1),

e−ρtπt − π0 = −κ
∫ t

0
e−ρs f (xs)ds (C.3)

Substituting (C.3) into (C.2), we have

ẋt = φxxt + (φπ − 1)
[
eφxtπ0 −

κ

ρ

∫ t

0
ρeρ(t−u) f (xu)du

]
(C.4)

Under the boundedness assumption, we may bound f (x) ≤ f (xt) ≤ f (x), which when
plugging into (C.4) leads to

φxxt + (φπ − 1)
[
eφxtπ0 −

κ

ρ
(eρt − 1) f (x)

]
︸ ︷︷ ︸

:=Lt

≤ ẋt ≤ φxxt + (φπ − 1)
[
eφxtπ0 −

κ

ρ
(eρt − 1) f (x)

]
︸ ︷︷ ︸

:=Ut
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If π0 > 0, then Lt, Ut → +∞ as t → ∞ for every possible value of xt ∈ [x, x]. On the
other hand, if π0 < 0, then Lt, Ut → −∞ as t→ ∞ for every possible value of xt ∈ [x, x].
Hence, π0 > 0 implies xT > x for some T > 0, while π0 < 0 implies xT < x for some
T > 0. This contradicts the bounded set xt ∈ [x, x], which implies π0 = 0 is required.

However, since time 0 is arbitrary in this analysis, and the entire argument could be
shifted forward in time, we in fact require πt = 0 for all t ≥ 0. Going back to equation
(C.1), we then have that xt = 0 for all t ≥ 0.

D Nuclear Taylor Rules and Finite-Time Explosions

Suppose we would like to allow deterministic equilibria that explode asymptotically, in
violation of Condition 1. For instance, Cochrane (2011) considers some types of asymp-
totically exploding equilibria in his argument for non-uniqueness. In that case, is the
spirit of Proposition 1 still true, i.e., do there exist Taylor rules which can eliminate inde-
terminacies? The answer is yes, but a “nuclear Taylor rule” is required to force explosion
in finite time.

In particular, let us dispense with the linear rule (linear MP). Suppose the response
function (MP) takes the nonlinear form

Φ(x, π) =
φx

2
(ex − e−x) + π (D.1)

with φx > 0 and suppose the target rate is again the natural rate ῑ = ρ. Note that the
log-linearized version of (D.1) renders the linear Taylor rule (linear MP) with φπ = 1.

Combining (D.1) with (IS), the dynamics of xt are given by

ẋt =
φx

2
(ext − e−xt) (D.2)

This ODE has solution

xt = log
(

1− Keφxt

1 + Keφxt

)
where K = 1−ex0

1+ex0 . This process diverges in finite time for any x0 6= 0: it explodes at time
T = −φ−1

x log(|K|). Hence, we have proved by construction the following result.

Proposition D.1. Taylor rules exist such that any deterministic equilibrium has xt = 0 forever.

The analysis above abstracts from any feedback effects from inflation to output gap
by setting a monetary policy rule with φπ = 1. This serves two purposes. First, it em-
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phasizes the focus on self-fulfilling demand and not inflation per se. Equilibrium char-
acterization requires the output gap to remain bounded for any finite horizon. There
is no such requirement for inflation (e.g., hyperinflation might be an equilibrium out-
come). Second, it simplifies the analysis and illustrates the point with examples that
permit closed form solutions. As an additional benefit, Proposition D.1 holds for either
the linearized or non-linear Phillips curves.

Determinacy extends beyond the particular response function (D.1) that has exactly a
one-for-one inflation response. In particular, consider inflation sensitivities of more than
one-for-one, such as

Φ(x, π) =
φx

2
(ex − e−x) + φππ, φx > 0, φπ > 1. (D.3)

While more challenging technically to analyze, this rule also selects the zero output gap
equilibrium xt = 0. We demonstrate this result formally next.

Under rule (D.3), the dynamical system for (xt, πt) is

π̇t = ρπt − κ f (xt) (D.4)

ẋt =
φx

2
(ext − e−xt) + (φπ − 1)πt (D.5)

where f (x) := (1 + ϕ)−1[e(1+ϕ)x − 1].

Proposition D.2. Consider the system (D.4)-(D.5) with φx > 0 and φπ > 1. Then, (xt, πt) =

(0, 0) is the unique equilibrium that does not explode in finite time.

Proof of Proposition D.2. Suppose the solution (xt(φπ), πt(φπ))t≥0 associated to some
φπ > 1 (which is unique prior to an explosion by the standard ODE uniqueness the-
orem) did not explode in finite time. In that case, because the solution is contin-
uous in φπ (again, standard ODE theorems ensure this), it follows that the solution
(xt(φ̃π), πt(φ̃π))t≥0 associated with φ̃π < φπ also does not explode in finite time. Con-
tinuity requires this: otherwise, the two solutions would be infinitely far apart at some
finite time T when one of the solutions does explode. But Proposition D.1 has already
shown that (xt(1), πt(1))t≥0 is explosive in finite time, a contradiction.

E Sunspot equilibria with inflation

In the sunspot equilibrium constructions of Proposition 2, we work in the rigid price
limit (κ → 0) for analytical tractability. Here, we provide one class of equilibrium con-
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structions where prices are partially flexible, so inflation is present. For this example, we
will assume the linearly approximated Phillips curve (linear PC) and utilize a linear Tay-
lor rule (linear MP) that is sufficiently aggressive. In particular, we will assume φx > 0
and φπ > 1, so the Taylor principle is satisfied and deterministic multiplicities (as well
as linearized stochastic multiplicities) are ruled out.

To maintain tractability, we assume a type of Markovian equilibrium where inflation
is a function of the output gap. In particular, suppose πt = π(xt) for some function π(·),
to be determined. Obviously, this must be supported by a volatility process σx which
is solely a function of x. These restrictions imply only one dimension of multiplicity,
but the set of equilibria can still be relatively rich. By Proposition 2, part (ii), we need
only consider sunspot equilibria with x ≤ 0. A numerical illustration of the equilibrium
constructed in the following proposition is contained in the text (Figure 3).

Proposition E.1. Consider an economy with the linearly approximated Phillips curve (linear PC)
and a linear Taylor rule (linear MP) with φx > 0, φπ > 1, ῑ = ρ, and without monetary shocks
(σ → 0). Then, there exists a family of non-explosive sunspot equilibria, indexed by constants
x̄ < 0 and π̄ satisfying 0 < π̄ < κ/ρ. In particular, define the functions

π(x) :=

π̄x, if x ≤ x̄

f (x), if x > x̄
(E.1)

σ2
x(x) :=

2
(

ρ− κ/π̄ − φx − (φπ − 1)π̄
)

x, if x ≤ x̄

σ̄2x2, if x > x̄,
(E.2)

where σ̄2 is such that σx(x)2 is continuous at x̄, and where the function f solves the ODE

ρ f (x)− κx =
[
ῑ + φxx + (φπ − 1) f (x)− ρ +

1
2

σ̄2x2
]

f ′(x) +
1
2

σ̄2x2 f ′′(x) (E.3)

on x ∈ (x̄, 0), subject to the boundary conditions f (x̄) = π̄x̄ and f (0) < 0, assuming such
solution exists. Then, a non-explosive sunspot equilibrium exists, which is stationary and ergodic
on {xt < 0}, in which inflation is given by πt = π(xt) and volatility by σ2

x,t = σ2
x(xt).

Proof of Proposition E.1. Let us conjecture an equilibrium of the form described in the
proposition. By Itô’s formula, we may derive the dynamics of π, which when combined
with the linear Phillips curve (linear PC) yields the equation

ρπ(x)− κx =
[
ῑ + φxx + (φπ − 1)π(x)− ρ +

1
2

σ2
x

]
π′(x) +

1
2

σ2
x π′′(x) (E.4)
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First, consider the lower region {x < x̄}. Plug in the guess π(x) = π̄x, the target rate
ῑ = ρ, and then rearrange the equation for σ2

x to obtain

1
2

σ2
x =

(
ρ− κ

π̄
− φx − (φπ − 1)π̄

)
x

This equation clearly coincides with (E.2), provided the right-hand-side is non-negative.
Notice that the right-hand-side is in fact non-negative precisely when x < 0, by the
restrictions φx > 0, φπ > 1, and the fact that 0 < π̄ < κ/ρ.

Next, consider the upper region {x > x̄}. Substitute the volatility function σ2
x = σ̄2x2

from (E.2) into the Phillips curve (E.4) to obtain the ODE (E.3). As stated, we assume a
solution f exists to this ODE, subject to the boundary condition f (x̄) = π̄x̄. If so, then
the resulting inflation function π(x) is continuous at x̄ (i.e., inflation does not jump). In
that case, the Phillips curve holds for almost all x, the exception being x = x̄, where
dπt can include a local time. However, so long as the resulting stationary distribution
places no point mass at x̄, then firm optimality still holds, because firms’ FOCs hold
for almost all times. Given the continuity of the volatility function σ2

x(x), and given the
continuity of π(x), hence µx(x), the resulting stationary distribution (if it exists) cannot
have a point mass at x̄.

Thus, in the conjectured equilibrium, which presumably has xt < 0 forever (to be
verified), we will have σ2

x(xt) well-defined and positive, and π(xt) satisfying the Phillips
curve at almost all times. This proves that the equilibrium is valid, subject to the non-
explosion Condition 1. The rest of the proof is dedicated to verifying this non-explosion.

First, let us prove that xt never visits the upper boundary {x = 0}. For xt ∈ (x̄, 0),
the output gap dynamics are

µx = φxx + (φπ − 1) f (x) +
1
2

σ̄2x2

1
2

σ2
x =

1
2

σ̄2x2

Study x̃ := −x, which has x̃µx̃ = xµx and σ2
x̃ = σ2

x . Both the drift and diffusion vanish
as x → 0, but dividing them we obtain

θ0 := lim
x̃↘0

2x̃µx̃

σ2
x̃

= lim
x↗0

2xµx

σ2
x

=
2φx

σ̄2 +
2(φπ − 1)

σ̄2 lim
x↗0

f (x)
x

Given the assumption that f (0) < 0, we have limx↗0
f (x)

x = +∞, and so θ0 = +∞.
Applying an analogous logic to Lemma A.1, we find that xt < 0 for all t almost-surely.
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Next, we prove that xt > −∞ almost-surely. To do this, compute the dynamics of
yt = ext on {xt < x̄} by Itô’s formula as

µy = yµx +
1
2

yσ2
x =

(
2
(

ρ− κ

π̄

)
− φx − (φπ − 1)π̄

)
y log(y)

1
2

σ2
y =

1
2

y2σ2
x =

(
ρ− κ

π̄
− φx − (φπ − 1)π̄

)
y2 log(y)

Notice that both the drift and diffusion vanish as y → 0 (i.e., as x → −∞). However,
dividing these results in

θ−∞ :=
2yµy

σ2
y

= 1 +
ρ− κ/π̄

ρ− κ/π̄ − φx − (φπ − 1)π̄

Given the parameter assumptions made, θ > 1. Furthermore, the other hypotheses of
Lemma A.1 all hold—σ2

y is strictly positive, bounded, and vanishes slower than quadrati-
cally as y→ 0. Consequently, xt = log(yt) satisfies lim infT→∞ E[xT] > −∞. This verifies
all the parts of Condition 1.

Remark E.1. Proposition E.1 presumes the existence of a solution f to the ODE (E.3) that
satisfies f (x̄) = π̄x̄ and f (0) < 0. While the right boundary condition may seem unusual,
there is conceptually no issue, as we now show. Taking x ↗ 0 in the ODE (E.3), and using
ῑ = ρ, we obtain ρ f (0) = (φπ − 1) f (0) f ′(0−). If f (0) < 0, we must have that f ′(0−) =

ρ/(φπ − 1). Consequently, it is equivalent to think of solving (E.3) subject to f (x̄) = π̄x̄
and f ′(0) = ρ/(φπ − 1), which is a more conventional situation with one Dirichlet and one
Neumann boundary condition.

F Zero Lower Bound

Let us address the fact that a zero lower bound (ZLB) constrains monetary policy. To
simplify the exposition, we work exclusively in the rigid-price limit κ → 0, and so
inflation is zero (πt = 0) and the nominal rate is equal to the real rate (ιt = rt). To make
matters interesting, we will assume that monetary policy aims to achieve the flexible-
price allocation whenever possible, but they are subject to the ZLB rt ≥ 0.

In particular, monetary authorities set the nominal rate (hence the real rate) to im-
plement xt = 0 whenever possible, subject to the ZLB. This is the same idea behind the
policy in Caballero and Simsek (2020), who consider a version of the New Keynesian
model with risky capital. Under this policy rule, zero output gap prevails whenever the
real rate is positive, and a negative output gap must arise at the ZLB (because recall

69



raising the interest rate will lower output):

0 = min[−xt, rt]. (F.1)

In Lemma F.1 below, we show that within the class of equilibria we study, (F.1) is the
outcome of optimal discretionary monetary policy (i.e., monetary policy without com-
mitment to future policies).

Lemma F.1. Optimal discretionary monetary policy—which maximizes (2) subject to rt ≥ 0,
optimal household and firm decisions, and its own future decisions—implements (F.1).

Proof of Lemma F.1. Since there is no upper bound on interest rates, the central bank
can always threaten rt high enough to ensure that xt ≤ 0. Since positive output gaps
are undesirable, they will implement this. Then, we can restate the problem as: optimal
discretionary monetary policy seeks to pick a rt to maximize (2), subject to (IS), xt ≤ 0,
the ZLB rt ≥ 0, and subject to its own future decisions.

We will discretize the problem to time intervals of length ∆ and later take ∆ → 0.
Noting that Ct = extY∗, the time-t household utility is proportional to

Et

[ ∫ ∞

0
ρe−ρsxt+sds

]
≈ ρxt∆ + Et

[ ∫ ∞

∆
ρe−ρsxt+sds

]
≈ −ρ∆Et[xt+∆ − xt] + Et

[ ∫ ∞

∆
ρe−ρsxt+sds

]
+ ρ∆Et[xt+∆]︸ ︷︷ ︸

taken as given by discretionary central bank

.

The term with brackets underneath is taken as given by the time-t discretionary central
bank, because it involves expectations of future variables that the future central bank can
influence.

Thus, taking ∆→ 0, the time-t central bank solves

min
rt≥0

Et[dxt]

subject to the constraints

rt = ρ + µx,t −
1
2

σ2
x,t

xt ≤ 0 and if xt = 0 then µx,t = σx,t = 0.

Note that σx,t is independent of policy when xt < 0. There are two cases. If xt = 0,
then the constraints imply that rt = ρ. If xt < 0, we may substitute the dynamics of xt
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(replacing µx from the first constraint) to re-write the problem as

min
rt≥0

[rt − ρ +
1
2

σ2
x,t].

Since σx is taken as given, the optimal solution is rt = 0. Thus, the discretionary central
bank optimally sets

rt = ρ1{xt=0}.

In other words, the complementary slackness condition xtrt = 0 holds, which together
with rt ≥ 0 and xt ≤ 0 implies (F.1).

The entire model dynamics are characterized by the IS curve (IS) with volatility when
rt = 0 and xt < 0 and deterministic dynamics otherwise, i.e.,

µx,t = (−ρ +
1
2

σ2
x,t)1{xt<0}. (F.2)

The entire previous analysis from Section 4 goes through with φx = 0 and ῑ = 0.
However, just to see a different construction, let y = ex, let ν2 > 2ρ, and suppose

σx =

ν(1− y), if y < 1;

0, if y ≥ 1.
(F.3)

(If we had set σx = ν/y when y < 1, then the argument would be identical to that in
Section 4.) In this case, the dynamics of yt are

dyt = yt

[
− ρ + ν2(1− yt)

]
1{yt<1}dt + yt(1− yt)ν1{yt<1}dZt. (F.4)

This process never reaches y = 0 and satisfies Condition 1. Indeed, yt it behaves asymp-
totically as a geometric Brownian motion as yt → 0. Furthermore, the asymptotic geo-
metric drift ν2 − ρ is greater than one-half the asymptotic geometric diffusion squared
1
2 ν2, by the assumption that ν2 > 2ρ. By standard arguments, yt will not concentrate
mass near y = 0 in the long run. Thus, we have constructed a valid equilibrium with
volatility at the ZLB.

In this construction, volatility is sufficiently countercyclical that it remains forever
recurrent. To see this, notice that the drift of log(yt) is negative as yt → 1, and its
volatility vanishes, so yt will never reach y = 1 either. There will be a non-degenerate
ergodic distribution of yt, hence volatility σx,t. This economy is persistently demand-
driven and stuck at the ZLB.
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